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Data from a spatial array of wave gauges is analysed using the Wavelet Directional Method (WDM) to
directly determine the wavenumber spectrum. The data shows that the asymptotic depth-limited
wavenumber spectrum can be represented as a two-parameter form, which is far simpler than the
corresponding frequency spectrum. The WDM analysis shows that there are significant nonlinear processes
active in the finite depth water, which results in energy being “smeared” across a range of wavenumbers and
frequencies around the standard dispersion shell. As a result, the wavenumber spectrum has much less peak
enhancement than seen in the frequency spectrum obtained with standard Fourier analysis. In addition, the
wavenumber spectrum does not have the clear harmonic previously observed in the finite depth frequency
spectrum. This result demonstrates that the harmonic is nonlinearly phase-locked to the spectral peak.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The asymptotic depth-limited spectral form is the limiting surface
wave spectrum which would be generated by wind of a given strength
blowing over a large area of uniform finite depth water. As such, this
spectral form represents an important limiting condition for engineering
design. The form of the spectrum also provides an important insight into
the physical processes responsible for wind-wave generation and decay,
as the limiting form represents a balance between the known processes
of atmospheric input, nonlinear four-wave interactions, white-cap dissi-
pation, bottom friction and three-wave finite depth nonlinear processes.

There are numerous measurements of wave spectra in finite depth
conditions (e.g. Thompson, 1980; Bouws et al., 1985, 1987; Vincent,
1985; Resio, 1988; Miller and Vincent, 1990). All of these observations
are, however, of oceanic waves which have propagated into finite
depth water, having been previously generated in deep-water. As
such, the spectral balance is different from the present situation.
Waves propagating from deep to shallow water evolve due to the
effects of shoaling and the dissipative mechanisms of wave breaking
and bottom friction. In contrast, wave generation in relatively constant
water depth represents a balance of the processes of atmospheric
input, nonlinear interactions and dissipation due to bottom friction
and wave breaking. Observations of waves generated in such finite
depth conditions are much rarer (Thijsse, 1949; U.S. Army Corps of
Engineers, 1955; Bretschneider, 1958; Young and Verhagen, 1996a).
These observations concentrate on the integral spectral properties of

total energy and peak frequency, rather than the form of the spectrum.
Observations of the full spectrum are largely confined to the mea-
surements in Lake George (Young and Verhagen, 1996b; Young et al.,
1996; Resio et al., 2004; Young and Babanin, 2006) and the recent
observations in Lake IJssel (Bottema, 2007).

These shallow-water observations have been in the form of time
series from which the frequency spectrum can be directly obtained,
although it has been recognized that in finite depth conditions the
wavenumber spectrum is probably a more appropriate representation
(Bouws et al., 1987; Miller and Vincent, 1990; Young and Babanin,
2006). Attempts to define the wavenumber form in finite depth
conditions have relied on transforming the frequency spectrum with
an assumed (linear) dispersion relation, rather than measuring the
wavenumber form directly. As waves in finite depth conditions are
likely to be nonlinear, the assumption that the frequency spectrum
can be transformed in this manner is questionable. Hence, the validity
of such inferred wavenumber spectra needs to be investigated.

Themost detailedof these previous observations are those of Young
and Babanin (2006) (henceforth called Part I). These measurements
were made using a spatial array of capacitance gauges, although the
Young and Babanin (2006) analysis used only a single gauge to form
the frequency spectrum. The current paper will extend the analysis of
Part I by directly determining the wavenumber spectrum from the
spatial array using the Wavelet Directional Method (WDM) described
by Donelan et al. (1996). This analysis, combined with that of Part I
provides a full description of the asymptotic depth-limited spectrum in
both frequency and wavenumber space and provides insight into the
nonlinear processes active in these conditions.

The arrangement of the paper is as follows. Section 2 provides a brief
description of previous observations, with particular reference to the
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wavenumber spectrum. Section 3 describes the experimental config-
uration and data collected. An important element of this paper is the
WDM analysis and this technique and the data analysis are described in
Section 4. Section 5 provides a comprehensive analysis of the data and a
parametric representation of the wavenumber spectrum. Discussion of
the results and conclusions are made in Section 6.

2. Observations of the depth-limited spectrum

Part I provides a detaileddescriptionofprevious observations of both
the integral parameters of the spectrum and the spectrum itself in finite
depth conditions. An abbreviated form is repeated here with particular
concentration on the wavenumber spectrum. Such wind-generated
finite depth observations typically consider the integral properties of
total energy, E=∫F(f)df and peak spectral frequency, fp, where F(f) is
the frequency spectrum and f=ω/2π is the frequency and ω the
angular frequency. In wavenumber space, the corresponding quantities
become, E=∫F(k)dk and the peak spectral wavenumber, kp, where F(k)
is the omnidirectional wavenumber spectrum [note that E=∫F(f)
df=∫F(k)dk] and k=|k_| is the modulus of the wavenumber vector.
These parameters are typically represented innon-dimensional formas:
nondimensional energy ε=g2E/U10

4 , nondimensional peak frequency
ν= fpU10/g and nondimensional wavenumber κ=U10

2 kp/g, where U10

is thewindspeedmeasured at a referenceheight of 10m.Asdiscussed in
Part I, the friction velocity,u⁎ and thewind speed at a reference height of
one-half a wavelength Uλ/2 have also been proposed as scaling wind
speeds (Young, 1999). In the present analysis, U10 has been chosen for
the pragmatic reason that it is the quantitywhich ismost often available
in the field.

Young and Babanin (2006) determined asymptotic limits to these
quantities of the form

ed = 1:0 × 10−3δ1:2 ð1Þ

and

κd = 1:80δ−0:73 ð2Þ

where δ=gd/U10
2 is the nondimensional depth and the subscript d

signifies that this is the asymptotic depth-limited value. Hence, εd, κd
and νd are the depth-limited values of nondimensional energy,
wavenumber and frequency, respectively.

Importantly, Young and Babanin (2006) could not find a similar
relationship between νd and δ which was applicable over the full
parameter range of their data. This result led Young and Babanin
(2006) to postulate that the wavenumber spectrum may be the most
appropriate spectral form to describe the data. As their analysis could
not directly determine F(k), they could not investigate this possibility.

Young and Babanin (2006) considered spectra for which both ε and
κwerewithin±20%of the limits definedbyEqs. (1) and (2) respectively
and considered these spectra to be at the finite depth asymptotic limit.
These frequency spectra appeared similar to typical deep water spectra
but had a consistent small harmonic at approximately 2fp which was
interpreted as the result of 3-wave or triadnonlinear interactions. Young
and Babanin (2006) parameterized this “two-peak” form by

F fð Þ = F1 fð Þ + F2 fð Þ ð3Þ

where

F1 fð Þ = β1g
2 2πð Þ−4f− 5 + n1ð Þ

p1
f n1exp

n1

4
f
fp1

 !−4" #
� γ

exp
− f − fp1ð Þ2

2σ2
1
f2p1

� �
1 ð4Þ

F2 fð Þ = β2g
2 2πð Þ−4f− 5 + n2ð Þ
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f n2exp

n2

4
f
fp2

 !−4" #
ð5Þ

The parameters in Eqs. (4) and (5) were defined by

β1 = 5:89 × 10−3δ0:085 ð6Þ

γ1 = 2:97 × 10−3β−1:34
1 ð7Þ

σ1 = 2:0 × 10−6β−2:09
1 ð8Þ

and n1=−4, n2≈−8.35 and β2≈0.074.
The system of Eqs. (3)–(8) fully defines the spectrum given the

water depth, d and wind speed U10. Although these relationships
model the observed frequency spectra well, the complex two-peak
spectral form is a purely empirical approximation to the data. The
frequency spectral (Fourier) form is usually interpreted as a summa-
tion of independent spectral components, each propagating at its local
phase velocity. This is not the case for finite depth waves, where the
harmonic is not a free wave, but is phase-locked to the spectral peak
and propagates at the phase speed of the peak. In reality there are not
two sinusoidal waves with frequencies fp and 2fp, but a single non-
sinusoidal (Stokes-like) wave of frequency fp (or wavenumber kp).
This feature, together with the wavenumber scaling of the asymptotic
relationship Eq. (2) and the absence of Doppler smearing suggests
that the wavenumber spectrum, F(k), may be a more appropriate
representation for the asymptotic form.

The wavenumber spectrum has previously been proposed for the
modelling of finite depth spectra. Based on the assumption that the
highwavenumber region of the spectrum is the result of a constantflux
of energy through the spectrum from 4-wave nonlinear interactions,
Kitaigorodskii et al. (1975) were able to show that the wavenumber
spectrum takes the form

F kð Þ~k−3
: ð9Þ

Eq. (9) holds irrespective of the water depth, provided that the
assumption that the high wavenumber region is the result of 4-wave
nonlinear interactions, remains valid. Bouws et al. (1985) extended
Eq. (9) to develop a full finite depth spectral representation, termed
the TMA spectrum.

Eq. (9) yields a frequency spectrum proportional to f −5 in deep
water and f −3 at the shallow water limit. Based on the fact that many
deep water observations yield a form proportional to f −4, Miller and
Vincent (1990) questioned the validity of Eq. (9) and instead proposed

F kð Þ~k−2:5
: ð10Þ

Similar forms were also proposed by Kitaigorodskii (1983) and
Phillips (1985). Miller and Vincent (1990) termed Eq. (10) the FRF spec-
trum, which asymptotes to a deep water frequency form proportional to
f−4, consistent with the observational data.

Theoretical support for the k−2.5 form in finite depth water has
been provided by Resio et al. (2001), who showed that this form
results from a constant flux of energy to higher frequencies, analogous
to the Kolmogorov cascade which occurs in turbulence. Experimental
evidence from the surf zone (Smith and Vincent, 1992, 2002) suggests
that two ranges may exist, with k−4/3 (consistent with the theory of
Zakharov (1999) for shallow water), for lower values of kd, and a
transition to k−2.5 for kdN1.

As noted by Vincent (1984), the TMA (or FRF) form is attractive, as
the water depth is included explicitly through the wavenumber. The
strict validity of the form may however, be limited by the assumption
of the high wavenumber tail being maintained by a constant flux of
energy through the spectrum. As water depth varies, the source term
balance also changes with all terms (input, dissipation, 4-wave
nonlinear and bottom friction) increasing in magnitude. In addition,
3-wave interactions also become important, as evidenced by the
harmonic in Eq. (3). Therefore, although the general argument for
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representation of the finite depth spectral form in wavenumber space
still holds, the exact forms proposed by Bouws et al. (1985), Miller and
Vincent (1990) or Resio et al. (2001) may not strictly hold.

3. Experimental configuration and recorded data

Wave data were collected in Lake George in south-eastern
Australia. This site has been well documented in the previous studies
of Young and Verhagen (1996a,b) and Young et al. (1996). The
measurements weremade from a platform on the eastern shore of the
lake. This experimental site and the instrumentation and data
recorded for this experiment have been reported in detail in Young
et al. (2005) and in Part I. A broad range of environmental parameters
were recoded as part of the full experimental program. Of particular
relevance to this study, coincident measurements of the water surface
elevation, water depth and wind speed at a reference height of 10 m
were made. The water surface elevation measurements were made
using a spatial array in the form of a centred pentagon of radius 15 cm.
Fig. 1a shows the configuration of gauges and Fig. 1b shows a
photograph of the array. The probes in the array were coincidently
sampled at 25 Hz, records consisting of 20 min duration (i.e. 30,000
samples per probe). This array data was analysed using the WDM
method (see Section 4) to obtain wavenumber spectra. All other
details of the experimental configuration can be found in Part I.

As described in Section 4, it is desirable for the array to have a small
foot print, as this reduces errors caused by multiple wavelets being
within the array footprint at the same time and also improves the high
wavenumber limit. However, as the array size decreases, the accuracy
with which lowwavenumbers can be resolved reduces. The array wires
have a diameter of 1 mm. Hence, with a diameter of 300 mm for the
array, the slope accuracy is±0.5/300=0.0017. Typical spectra recorded
during the experiment had a peak wavenumber, kp=0.8 rad/m or
wavelength of 7.8 m and a peak frequency, fp=0.4 Hz. Noting that
the sampling rate of the array was 25 Hz, the accuracy with which
the wave height could be determined becomes ΔH=±7.8×0.0017/
(2.5×25)=±0.212mm.Hence,with a typicalwave height of 0.3m, the
potential error is ±0.07% at the spectral peak. Although this error
increases with decreasing wavenumber, the error remains small over
the full range of data considered.

The high wavenumber limit of the array is also limited by array
size. With an array of 300 mm, the highest wavenumber which can be
resolved without aliasing is k=2π/0.3=21 rad/m. This corresponds
to a high frequency limit of f=2.3 Hz. In the present analysis, spectra
were only considered up to k=10 rad/m, thus ensuring that the
upper wavenumber limit was not exceeded.

The wave probe records were sub-divided into blocks of 256
points and the wavelets formed using an analysis with 8 voices. The
wavelet analysis considers the wave field to be made up of a
summation of independent Morlet wavelets, each of different scale
(Donelan et al., 1996). To improve accuracy, it is common to carry out
the analysis at additional intermediate scales, called voices. The
number of voices was varied between 4 and 12 with little impact on
the resulting spectra. Part I presented a detailed analysis of the
confidence limits associated with the resulting spectra. Such an
analysis is beyond the scope of this paper, as the statistical variability
of WDM derived spectra is yet to be determined. However, 6 times as
much data is used to derive each spectrum in the WDM analysis
compared to the Fourier analysis of Part I. Therefore, it is reasonable
to assume that the confidence limits will not be larger than those
for Part I (i.e. the upper and lower 95% confidence limits are given by
1.3 F(k) and 0.8 F(k), respectively, where F(k) is the estimate of the
spectral ordinate).

The data employed in this paper were recorded over an
approximately 1 year period between September 1997 and October
1998 (full details of all recorded time series are given in Part I). A total
of 55 records were used in the WDM analysis, the parameters
associated with each of the records is summarised in Table 1. This is
less than the 92 records used in Part I since it was necessary for all 6
probes in the array to be operating correctly in order to apply the
WDM analysis. As detailed in Part I and above, records which are
considered to be at the asymptotic depth-limited condition are
identified in Table 1 with a Depth Flag value of 1.

4. The Wavelet Directional Method

The direct measurement of the directional wavenumber spec-
trum, F(k_), where k_ is the wavenumber vector is a challenging
undertaking. The most obvious approach is to define the two
dimensional surface elevation over a spatial domain. Because of the
need to resolve long wavelengths, this is a particularly challenging
instrumentation problem. The most common approach has been
through stereo-photography (e.g. Holthuijsen, 1983; Banner et al.,
1989). Such approaches have difficulty imaging a large enough
region, whilst maintaining sufficiently high resolution to be able to
resolve the full wavenumber range of the spectrum. Remote sensing
techniques have also been applied to the problem (e.g. Alpers et al.,
1981; Young et al., 1985; Hasselmann et al., 1985). Such systems have
great potential but rely upon still incomplete knowledge of complex
transfer functions and other factors relating the image spectrum to
the wave spectrum.

Fig. 1. (a) The spatial array of capacitance wave gauges. The array is in the form of a
centred pentagon of radius, 15 cm. (b) A photograph of the array of (a) deployed during
the experiment.
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In recent years wavelet analysis has been applied to surface gravity
waves (e.g. Farge, 1992; Foufoula-Georgiou and Kumar, 1994; Mallat,
1998, Torrence and Compo, 1998; Massel, 2001; Huang, 2004).
Whereas Fourier analysis sacrifices all temporal information for
enhanced frequency resolution, wavelet analysis provides information
on the frequency as a function of time, at a cost of some loss of
frequency resolution. As such, it is ideal for the analysis of non-
stationary processes such as wave breaking or freak waves (e.g. Liu,
1994; Liu and Mori, 2000; Liu and Babanin, 2004). Donelan et al.
(1996) extended this approach to an array of wave gauges in the so-
called Wavelet Directional Method (WDM).

A complex Morlet wavelet transformation (Grossman and Morlet,
1984) is applied to each of the wave gauges of a spatial array. This

analysis yields a set of wavelet coefficients which are a function of
both time and scale (or frequency). If it is assumed that at any instant
of time, there is only one wave packet (wavelet) present within the
wave array, then the wavenumber vector can be determined by
considering the phase difference of the wavelet between the gauges.
The phase difference between the gauges i and j is given by (Donelan
et al., 1996; Krogstad et al., 2006)

/ij tð Þ = kx tð ÞXij + kyYij ð11Þ

where (Xij, Yij) denotes the spatial separation vector between the pair
of gauges defined by the array geometry and (kx, ky) represents the
orthogonal component of the wavenumber vector k_ . Eq. (11) is an

Table 1
Summary data used in WDM analysisa.

Dateb δ ε κ Hs (m) fp (Hz) U10 (m/s) d (m) kpd Ur Fc Depth flag

1 c010204.no7 4.86e–002 2.13e–005 17.11 0.338 0.398 13.400 0.89 0.832 21.7 124 1
2 c010226.no7 4.57e–002 2.25e–005 17.93 0.374 0.391 13.900 0.90 0.819 24.4 134 1
3 c010248.no7 4.17e–002 1.93e–005 19.97 0.392 0.389 14.800 0.93 0.832 24.0 131 1
4 c011210.oc8 1.15e–001 4.97e–005 9.90 0.233 0.493 9.000 0.95 1.14 7.45 53.8 0
5 c011245.oc8 9.51e–002 4.28e–005 10.45 0.261 0.444 9.900 0.95 0.994 11.0 73.9 0
6 c011323.oc8 8.96e–002 5.09e–005 10.21 0.303 0.416 10.200 0.95 0.915 15.0 93.6 1
7 c011406.oc8 7.56e–002 3.49e–005 12.18 0.297 0.418 11.100 0.95 0.921 14.5 91.5 1
8 c011445.oc8 5.43e–002 2.13e–005 15.70 0.323 0.393 13.100 0.95 0.852 18.5 112 0
9 c031151.se8 2.78e–001 1.62e–004 5.42 0.169 0.607 5.700 0.92 1.50 3.20 28.7 1
10 c031214.se8 2.35e–001 1.19e–004 5.89 0.171 0.574 6.200 0.92 1.38 3.84 33.3 0
11 c031243.se8 2.56e–001 1.25e–004 5.55 0.159 0.589 5.900 0.91 1.42 3.41 30.7 0
12 c031307.se8 2.01e–001 1.15e–004 6.78 0.196 0.569 6.700 0.92 1.36 4.53 36.5 1
13 c031331.se8 1.16e–001 5.27e–005 9.98 0.234 0.502 8.900 0.94 1.16 7.29 52.3 0
14 c031356.se8 1.64e–001 1.13e–004 7.06 0.243 0.501 7.500 0.94 1.16 7.64 53.8 1
15 c031419.se8 2.51e–001 1.76e–004 4.76 0.195 0.518 6.000 0.92 1.19 5.88 46 1
16 c031442.se8 2.75e–001 1.96e–004 4.54 0.185 0.537 5.700 0.91 1.25 5.16 41.6 1
17 c061151.oc8 5.46e–002 2.21e–005 16.56 0.334 0.408 13.200 0.97 0.905 16.6 99.6 0
18 c061234.oc8 6.09e–002 2.14e–005 15.29 0.294 0.417 12.500 0.97 0.931 13.8 88.2 0
19 c061323.oc8 5.38e–002 2.18e–005 16.71 0.336 0.406 13.300 0.97 0.899 16.9 101 0
20 c061425.oc8 5.07e–002 1.99e–005 16.74 0.341 0.387 13.700 0.97 0.849 19.3 114 0
21 c111051.oc7 6.72e–002 1.66e–005 28.16 0.276 0.628 12.900 1.14 1.89 2.67 23.2 0
22 c111124.oc7 6.83e–002 1.77e–005 27.78 0.281 0.629 12.800 1.14 1.90 2.71 23.3 0
23 c111156.oc7 7.04e–002 1.87e–005 24.56 0.280 0.596 12.600 1.14 1.73 3.24 26.7 0
24 c111224.oc7 7.90e–002 2.02e–005 23.46 0.259 0.620 11.900 1.14 1.85 2.62 23.2 0
25 c111402.oc7 6.62e–002 1.62e–005 27.30 0.277 0.611 13.000 1.14 1.81 2.94 24.9 0
26 c111538.oc7 8.31e–002 2.09e–005 23.95 0.251 0.647 11.600 1.14 1.99 2.19 20.6 0
27 c141237.no7 6.68e–002 2.72e–005 13.10 0.306 0.395 12.000 0.98 0.875 16.1 102 0
28 c141259.se8 9.14e–002 3.11e–005 13.32 0.232 0.517 10.100 0.95 1.22 6.51 47.6 0
29 c141305.no7 4.93e–002 1.82e–005 18.06 0.346 0.397 14.100 1.00 0.891 17.2 103 0
30 c141328.no7 4.89e–002 1.82e–005 17.60 0.356 0.382 14.300 1.02 0.861 18.6 111 0
31 c141351.no7 4.85e–002 1.95e–005 18.13 0.379 0.385 14.500 1.04 0.88 18.6 108 1
32 c141358.se8 8.29e–002 2.89e–005 13.73 0.246 0.492 10.600 0.95 1.14 7.88 55.4 0
33 c141415.no7 4.29e–002 1.37e–005 19.86 0.362 0.373 15.500 1.05 0.851 18.8 113 0
34 c141448.se8 1.08e–001 3.39e–005 13.23 0.205 0.577 9.300 0.95 1.43 4.2 34.1 0
35 c141502.se8 9.90e–002 3.44e–005 11.62 0.225 0.496 9.700 0.95 1.15 7.06 51.9 0
36 c151238.de7 6.53e–002 1.69e–005 17.05 0.207 0.521 11.100 0.82 1.11 8.03 57 0
37 c151249.se7 1.10e–001 6.88e–005 9.16 0.331 0.417 9.900 1.10 1.01 11.7 75.2 1
38 c151301.de7 5.92e–002 1.59e–005 15.82 0.227 0.451 11.800 0.84 0.936 12.2 82.3 0
39 c151325.de7 5.99e–002 1.87e–005 15.19 0.245 0.438 11.800 0.85 0.91 13.8 90.1 0
40 c151342.se7 1.30e–001 6.92e–005 8.97 0.281 0.466 9.100 1.10 1.17 7.38 52.4 1
41 c151405.de7 5.23e–002 1.50e–005 17.19 0.243 0.442 12.400 0.82 0.899 14.4 93.4 0
42 c151410.se7 1.15e–001 6.09e–005 9.80 0.299 0.453 9.700 1.10 1.12 8.5 58.1 1
43 c161149.se8 1.37e–001 4.91e–005 11.41 0.192 0.616 8.200 0.94 1.56 3.3 28.5 0
44 c161318.se8 1.16e–001 4.23e–005 12.69 0.210 0.594 8.900 0.94 1.48 4.05 32.7 0
45 c191214.oc8 8.45e–002 1.48e–005 23.18 0.173 0.702 10.500 0.95 1.96 1.87 19.1 0
46 c261219.no7 1.59e–001 2.53e–005 8.15 0.106 0.575 7.200 0.84 1.30 2.98 30.7 0
47 c261330.no7 1.26e–001 2.01e–005 8.96 0.120 0.519 8.100 0.84 1.12 4.45 42 0
48 c271100.oc7 2.50e–001 1.37e–004 5.06 0.178 0.532 6.100 0.95 1.27 4.59 38.8 0
49 c271235.oc7 1.53e–001 7.94e–005 7.66 0.221 0.503 7.800 0.95 1.17 6.67 49.7 1
50 c281153.se8 2.48e–001 1.68e–004 6.07 0.191 0.611 6.000 0.91 1.5 3.65 30.7 1
51 c311908.oc7 5.48e–002 3.32e–005 12.99 0.391 0.342 12.900 0.93 0.712 32.7 181 1
52 c311930.oc7 5.69e–002 2.97e–005 14.76 0.364 0.388 12.800 0.95 0.84 21.4 122 1
53 c311958.oc7 7.22e–002 4.19e–005 12.04 0.355 0.391 11.600 0.99 0.869 18.7 110 1
54 c312021.oc7 5.33e–002 3.00e–005 16.99 0.419 0.398 13.700 1.02 0.906 19.8 108 1
55 c312048.oc7 5.74e–002 3.53e–005 14.76 0.422 0.378 13.200 1.02 0.848 22.7 124 1

a Records with a value of 1 in the Depth flag column define records classed as at the asymptotic depth limit, as defined in the text.
b Dates are given in the format, cddtttt.mmy, where dd=day, tttt=time, mm=month, y=year (e.g., c312048.oc7 represents 31 October 1997 at time 20:48).
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equation in two unknowns, (kx, ky) and hence for two or more
independent pairs of gauges, this system of equations can be solved.
For more than two pairs, the system is over-determined. The resulting
solution yields the wavenumber, frequency and direction of each
wavelet. Importantly, the solution has not imposed any a priori as-
sumptions about a “dispersion” relationship between wavenumber
and frequency. The energy spectrum can then be formed by summing
the amplitude squared of each of the wavelets within appropriate bins
of frequency, wavenumber and direction. As a result it is possible to
obtain the directional wavenumber spectrum, F(k, θ), the directional
frequency spectrum, F(f, θ) and the wavenumber–frequency spectrum
(dispersion relationship), F(k, f). In this paper, our interest will be in
the omni-directional forms F(f)=∫F(f, θ)dθ and F(k)=∫F(k, θ)kdθ.

The WDM has been extensively reviewed and validated by
Krogstad et al. (2006) who compared it with more traditional Fourier
approaches to the analysis of directional wave spectra. They concluded
that for weakly stationary (a requirement for Fourier analysis) deep
water conditions, the WDM produces results consistent with tradi-
tional Fourier approaches. In particular, it yields omni-directional
frequency spectra almost identical to those obtained from Fourier
analysis. Waseda et al. (2008) have also shown that the WDM
can recover the directional spectrum of waves generated in a tank to
much greater accuracy than alternative methods, such as Maximum
Likelihood.

As mentioned in Section 2, the Fourier approach to the representa-
tion of the spectrum is problematic in finite depth conditions, where
the wave field becomes nonlinear. This nonlinearity manifests itself as
a change in shape of the wave profile. Waves in finite depth water
typically have peaked crests and flat troughs. The Fourier representa-
tion of such a wave form consists of a primary wave at fp, a harmonic
at 2fp and possibly additional harmonics. The harmonic is often
described as being phase-locked to the primary wave, as it must
propagate at the phase speed of the primary wave to maintain the
nonlinear wave profile. Clearly, there are not two waves present, and
the harmonic is a mathematical artefact of representing a nonlinear
wave profile by the summation of a series of sinusoids. Hence, it is
highly likely that the harmonic reported in Part I is such an artefact.

In contrast, theWDM avoids the assumption that the water surface
is composed of a summation of sinusoidal components or that there is
a particular dispersion relationship relating frequency and wavenum-
ber. The method does, however, assume that only one wavelet is
present within the measurement array at any time. Hence, the array

should be small compared to the wavelength of the waves being
considered.

5. The omni-directional wavenumber spectrum

TheWDMwas applied to each of the time series in Table 1 and the
omni-directional wavenumber, F(k) and frequency, F(f) spectra
together with the wavenumber–frequency spectra, F(k, f) were
calculated. A typical example of the resulting spectra are shown in
Figs. 2–4 (Record c010204.no7 is shown, as in Fig. 4 of Part I). Fig. 2
shows a comparison of the frequency spectrum, F(f) as determined by
the WDM and the traditional Fourier analysis of Part I. The WDM
cannot resolve the spectrum to as higher frequencies as the Fourier
analysis, as it is limited by the spatial separation of the wave gauges.
Two significant differences are immediately apparent in this figure.
The WDM spectrum has less peak enhancement and the harmonic at
2fp is much less pronounced in the WDM spectrum. Fig. 3 shows a

Fig. 2. The omni-directional frequency spectrum, F(f). The WDM form is shown by the
squares and the Fourier form by the solid line. Also shown is a f −4 reference line.

Fig. 3. The omni-directional wavenumber spectrum, F(k). The WDM form is shown by
the squares and the Fourier form by the solid line. Also shown is a k−2.5 reference line.

Fig. 4. The wavenumber–frequency spectrum, F(k, f). The spectrum has been
normalized, such that the maximum value is 1 and contours have been drawn at 0.9,
0.8,…, 0.1. The dotted line is the linear dispersion relationship and the dashed line
represents the Stokes 3rd order correction Eq. (15) to the dispersion relationship.
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comparison of the wavenumber spectrum, F(k) calculated by the
WDM and Fourier methods. The Fourier derived wavenumber
spectrum was determined from the corresponding frequency spec-
trum of Fig. 2 since

σ2 =
R
F fð Þ df =

R
F kð Þ dk ð12Þ

where σ2 is the variance, and hence

F kð Þ = F fð Þ df
dk

: ð13Þ

Assuming the linear dispersion relationship ω2=gktanh(kd)
yields

df
dk

=
g

8π2f
tanh kdð Þ + kd sech2 kdð Þ
h i

ð14Þ

It is clear in Fig. 3 that the WDM derived wavenumber spectrum
has much less peak enhancement and no apparent harmonic. The
WDM spectrum has a much “rounder” shape near the peak than the
Fourier form. Both spectra agree well at wavenumbers above
approximately 2 to 3kp. Assuming the deep water form of the
linear dispersion relationship, Eq. (13) suggests that F(f)∞ f−4 will
yield F(k)∞k−2.5. This result is shown in Fig. 3, the data seeming to
decay slightly more rapidly than suggested by the exponent of −2.5.

Fig. 4 shows the wavenumber–frequency spectrum, F(k, f). The
figure shows contours of energy in the two-dimensional wavenumber–
frequency domain. The spectrum has been normalized to have a
maximum value of 1 and contours have been drawn at [0.9, 0.8,…, 0.1].
Also shown on the figure is the linear dispersion relationship (dotted
line). The data near the peak of the spectrum conformwell to the linear
dispersion relationship. At higher frequencies (wavenumbers), the data
systematically deviates from this relationship. For a givenwavenumber,
the corresponding frequency is larger than predicted by linear theory.
In order to investigate whether this deviation was a result of
nonlinear processes, the Stokes 3rd order relationship (Miche, 1944)
was calculated

ω2 = ω2
0 1 +

kH
2

� �2 5 + 2 cosh 2kdð Þ + 2cosh2 2kdð Þ
8 sinh4 kdð Þ

" #( )
ð15Þ

where ω0 is the linear result. This result is strictly applicable to a
monochromatic wave and hence is only an approximation to the

present case of a full spectrum. Nevertheless, it does represent a
reasonable approximation noting the fact that the spectrum is
relatively narrow-banded.

Eq. (15) has been plotted in Fig. 4 (dashed line), assuming a water
depth, d=0.6 m and a wave height, H=0.3 m, typical of the present
data set. As can be seen from the figure, this relationship fits the data
remarkablywell over the full range of wavenumbers. This result is also
consistent with deep-water estimates of the wavenumber–frequency
spectra of steep waves obtained bymeans of the Maximum Likelihood
Method (Efimov and Babanin, 1990).

It is also clear that the energy below the spectral peak deviates
considerably from the dispersion relationships. At frequencies below
the spectral peak, the wavenumber of the components are much
larger than one would expect. As a result, the wavenumber spectrum
has a much more rapid fall-off below the spectral peak than the
corresponding frequency spectrum. This low-frequency energy will
appear in the wavenumber spectrum “folded” back into the region
immediately above the spectral peak. This possibly accounts for
the less peaked form of the wavenumber spectrum. The reason for
the significant deviation from the dispersion relation is not clear,
but one can speculate that these low frequency waves may have
been generated by difference interactions (i.e.ω=ω2−ω1) (Longuet-
Higgins and Stewart, 1962; Hasselmann et al., 1963; Elgar and Guza,
1985; Herbers et al., 1994; Young and Eldeberky, 1998; Toffoli et al.,
2007).

Even though the energy above the spectral peak concentrates
along the line of the dispersion shell, there is significant spreading
around this shell, both in wavenumber and frequency space. As a
result, this will cause a “smearing” of energy across frequency and
wavenumber in both F(f) and F(k). Although this occurs across the full
spectrum, it is only noticeable near the spectral peak, where the
spectrum is most narrow-banded. For a given frequency, the energy
will be located over a range of wavenumbers concentrated around the
dispersion relationship. This effect appears muchmore pronounced in
the present data than in the deep water results of Efimov and Babanin
(1990), Donelan et al. (1996) or Krogstad et al. (2006). It is assumed
that the “smearing” observed in the present data is a result of the
nonlinearity of the shallow water spectra (note from Table 1, kpd for
the data ranges between 0.8 and 1.3).

Fig. 5 shows a composite plot of all the wavenumber spectra
detailed in Table 1. In comparison to typical frequency spectra it is

Fig. 5. A composite plot of all wavenumber spectra, F(k) detailed in Table 1. Note the
apparently constant level of the high wavenumber region and lack of significant peak
enhancement.

Fig. 6. A composite plot of the wavenumber spectra, as in Fig. 5. The spectra are shown
in the form F(k)k2.8. Note the apparently constant level of the high wavenumber region
and lack of significant peak enhancement.
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obvious that there is little (if any) peak enhancement and that the high
wavenumber region of the spectrum appears constant as a function of
kp. This is further examined in Fig. 6, where the form F(k)k2.8 is plotted
for each of the spectra. The lack of any peak enhancement and the fact
that the high wavenumber region of the spectrum can be modelled by
a form ∝Ak−2.8, where A is a constant, are clear in this figure.

5.1. Parametric spectral form

Based on the results above, a parametric relationship for the
wavenumber spectrum of the following form was investigated.

F kð Þ = βk− 3 + nð Þ
p knexp

n
4

k
kp

 !−3" #
ð16Þ

Eq. (16) is a modified form of the Pierson–Moskowitz (PM)
spectrum (Pierson and Moskowitz, 1964), which was developed to

model the deepwater fully developed frequency spectrum. It has been
chosen here, because it is a form with no peak enhancement.
Alternative forms could have been investigated, particularly for the
region below the spectral peak. Relationships of the form of Eq. (16)
are, however, commonly used in practice and hence, for simplicity
have been adopted here. As well as expressing the relationship in
terms of wavenumber, Eq. (16) was also changed compared to the PM
form by altering the (k/kp) exponent to −3, compared to the original
−4. A value of −4 resulted in a low wavenumber face which con-
sistently decayed more rapidly than the observed data.

Eq. (16) has two free parameters, n, the exponent of decay of the
high wavenumber face and β the scale parameter. These parameters
were determined using a least-squares fit to the observed spectra.
Figs. 7 and 8, show n and β as functions of the nondimensional water
depth, kpd and δ. The spectra considered in this analysis are all
in finite depth water, but not all are at the asymptotic depth limit.
These asymptotic cases are identified in Table 1 and are shown in
Figs. 7 and 8 as the solid dots. The data indicates that the values
of both parameters are approximately constant, with n=−2.8 and
β=1.02×10−2. Interestingly, there is no apparent difference between
the data at the asymptotic depth limit and the other finite depth cases.
Apparently, these parameters are equally applicable for the full data
set.

5.2. Consistency analysis

With the constant values of n and β specified above, the
wavenumber spectral form, Eq. (16) is fully defined. The asymptotic
depth-limited integral parameter relationships Eqs. (1) and (2) are,
however, defined over a much larger range of values of nondimen-
sional depth, δ [see Part I] thanwas available for the spectral fit shown
in Figs. 7 and 8. Therefore, it is important to determine whether these
values of the spectral parameters yield results consistent with the

Fig. 7. Values of the exponent n in Eq. (16) as a function of kpd. Data at the asymptotic
limit are shown by the solid dots. The horizontal line is drawn at |n|=2.8.

Fig. 8. Values of the parameter β in Eq. (16) as a function of the non-dimensional depth
δ. Data at the asymptotic limit are shown by the solid dots. The horizontal dotted line is
drawn at the mean value β=1.02×10−2. The solid line is the result of the consistency
analysis, Eq. (17).

Fig. 9. The non-dimensional energy, ε as a function of the non-dimensional water
depth, δ. The asymptotic limit defined by Eq. (1) is shown by the solid line. The solid
dots show quantities calculated for a range of values of U10 and d. Parametric forms of
the spectra were calculated for these values and integrated to determine the total
energy. A constant value of β=1.02×10−2 was assumed for the wavenumber spectrum.

Fig. 10. As for Fig. 9, but β was represented by Eq. (17), β=6×10−3δ−0.2.
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integral parameters over this extended parameter range. In order to
test this consistency, a range of values of d and U10 were defined and
the resulting values of δ calculated. For each of these values, κp and
hence kp was determined from Eq. (2). With each value of kp and the
stated constant values of n and β, the corresponding spectrum, F(k)
was determined. These spectra were integrated to determine the total
energy and hence the nondimensional energy, ε. These values were
then compared with the predicted values of ε from Eq. (1). This
comparison is shown in Fig. 9. As can be seen, there is a consistent
deviation from Eq. (1), suggesting that the value of β is not constant
over this extended parameter range. The relationship between β and
δ was modified to obtain a more consistent result, as shown in Fig. 10.
This modified relationship is given by

β = 6 × 10−3δ−0:2
: ð17Þ

This relationship is plotted in Fig. 8 and gives as consistent a fit to
the measured values of β as the previously assumed constant value.

6. Discussion and conclusions

The present analysis has shown significant differences between
the wavenumber spectrum determined by theWDM and that inferred
from a Fourier analysis. As shown in Fig. 4, this occurs because there is
not a “1 to 1” relationship between wavenumber and frequency, as
typically assumed by the Fourier analysis. In these finite depth
conditions, energy is “smeared” over wavenumbers and frequencies
surrounding the dispersion shell. This “smearing” is interpreted as the
effects of nonlinearity for these depth-limited conditions. The fact that
depth-dependent nonlinear processes are active is obvious from the
Fourier frequency spectrum, where a clear harmonic can be seen. The
WDM analysis confirms that this harmonic represents energy bound
to the spectral peak and not conforming to the dispersion relationship.
As a result of the nonlinear processes, the WDM derived wavenumber
form has a much less peaked (rounder) spectral form than the
inferred Fourier form. Also, there is no harmonic apparent in theWDM
wavenumber form, again confirming that this “peak” represents
energy bound to the spectral peak. Krogstad et al. (2006) have
compared WDM and Fourier spectra in deep water and found good
agreement at the spectral peak. This result adds strength to the
suggestion that the differences observed in the present data set are
the result of depth-induced nonlinearity.

In addition to the depth-induced nonlinearities at low wavenum-
bers, the high wavenumber region of the spectrum, where the local
components become steep, also shows nonlinearity. As a result, these
components deviate from the linear dispersion relationship. The data
do, however, agree remarkably well with the 3rd order result of Miche
(1944). This deviation from the linear result at high wavenumbers has
also been observed in deep water by Efimov and Babanin (1990) and
Krogstad et al. (2006).

As shown in Figs. 6 and 7, the wavenumber spectrum has a high
wavenumber form proportional to k−2.8, although there is clear
scatter in the value of the exponent as has been clear in previous
measurements of the frequency spectrum (e.g. Liu, 1989; Young et al.,
1996). The value of the exponent (i.e. −2.8) is larger in magnitude
than one might initially expect. Miller and Vincent (1990) have
proposed a form proportional to k−2.5, based on transforming a
frequency spectrum of the form f−4 (as observed for this data set by
Young and Babanin, 2006). As already noted above, the data do
deviate from the linear dispersion relationship and hence a deviation
from a value of −2.5 is not surprising. Indeed, as the high frequency
(wavenumber) exponent is the result of the balance between the
various physical processes (atmospheric input, nonlinear interaction,
wave breaking and bottom friction), a variety of values may well be
possible, depending on the relative balance at a particular time. This
may account for some of the scatter apparent in Fig. 7.

The present analysis has clearly shown that the wavenumber
spectrum is superior to the frequency spectrum in representing finite
depth wind generated waves. The form represented by Eqs. (16) and
(17) fully defines the asymptotic depth-limited wind wave spectrum
in a far simpler manner than was possible for the frequency spectrum
[e.g. Part I]. There is also evidence that this form may be applicable to
finite depth spectra which are not at the asymptotic limit [e.g. Figs. 7
and 8 show no difference for data at the asymptotic limit and other
finite depth data]. The present data set cannot, however, define the
parameter range over which the form may be applicable. Clearly, it is
not a universal form, as the deep water limit is quite different to Eq.
(16) near the spectral peak.

Finally, the analysis has clearly shown the power of the WDM in
analysing finite depth data. The nonlinear nature of the data means
that the assumption of any dispersion relationship is problematic. In
such circumstances, the WDM represents a powerful method for the
direct determination of the wavenumber spectral form.

Acknowledgements

The authors gratefully acknowledge thefinancial support of the U.S.
Office of Naval Research (grants N00014-97-1-0234, N00014-97-1-
0277 and N0014-97-1-0233) and the Australian Research Council
(grant A00102965). We also express our gratitude to the staff and
students of the School of Civil Engineering of the Australian Defence
Force Academy: Jim Baxter, Karl Shaw, Ian Shephard and Michael
Wilson who offered highly professional and prompt responses to all
urgent demands during the experiments.

References

Alpers, W.R., Ross, D.B., Rufenach, C.L., 1981. On the detectability of ocean surface waves
by real and synthetic aperture radar. J. Geophys. Res. 86, 6481–6498.

Banner, M.L., Jones, I.S.F., Trinder, J.C., 1989. Wavenumber spectra of short gravity waves.
J. Geophys. Res. 73, 513–530.

Bottema, M., 2007. Measured wind-wave climatology Lake IJssel (NL). Report RWS RIZA
2007.020. ISBN: 978-90-369-1399-7. 278 pp.

Bouws, E., Günther, H., Rosenthal, W., Vincent, C.L., 1985. Similarity of the wind wave
spectrum in finite depth water, 1. Spectral form. J. Geophys. Res. 90, 975–986.

Bouws, E., Günther, H., Rosenthal, W., Vincent, C.L., 1987. Similarity of the wind wave
spectrum in finite depth water, 2. Statistical relationships between shape and
growth stage parameters. Dtsch. Hydrogr. Z. 40, 1–24.

Bretschneider, C.L., 1958. Revisions in wave forecasting: deep and shallow water. Proc.
2nd Conf. on Coastal Eng. ASCE, Council on Wave Research.

Donelan, M.A., Drennan, W.M., Magnusson, A.K., 1996. Nonstationary analysis of the
directional properties of propagating waves. J. Phys. Oceanogr 26, 1901–1914.

Efimov, V.V., Babanin, A.V., 1990. Nonlinear effects in the wind wave spectrum. Izv.
Atmos. Ocean. Phys. 26 (2), 133–138.

Elgar, S., Guza, R.T., 1985. Observations of bispectra of shoaling surface gravity waves.
J. Fluid Mech. 161, 425–448.

Farge, M., 1992. Wavelet transforms and their applications to turbulence. Annu. Rev.
Fluid Mech. 24, 395–457.

Foufoula-Georgiou, E. Kumar, P. (Eds.), 1994. Wavelets in Geophysics. Academic Press,
San Diego, CA. 372 pp.

Grossman, A., Morlet, J., 1984. Decomposition of Hardy functions into square integrable
wavelets of constant slope. SIAM J. Math. Anal. 15 (4), 723–736.

Hasselmann, K., Munk, W., MacDonald, G., 1963. Bispectra of ocean waves. In:
Rosenblatt, M. (Ed.), Time Series Analysis. John Wiley, New York, pp. 125–139.

Hasselmann, K., Raney, R.K., Plant, W.J., Alpers, W., Schuchman, R.A., Lyzenga, D.R.,
Rufenach, C.L., Tucker, M.J., 1985. Theory of synthetic aperture radar ocean
imaging — a MARSEN view. J. Geophys. Res. 90, 4659–4686.

Herbers, T.H., Elgar, S., Guza, R.T., 1994. Infragravity-frequency (0.005–0.05 Hz) motions
on the shelf. Part I: Forced waves. J. Phys. Oceanogr. 24, 917–927.

Holthuijsen, L.H., 1983. Observations of the directional distribution of ocean-wave
energy in fetch-limited conditions. J. Phys. Oceanogr. 13, 191–207.

Huang, M.C., 2004. Wave parameters and functions in wavelet analysis. Ocean Eng. 31
(1), 111–125.

Kitaigorodskii, S.A., 1983. On the theory of the equilibrium range in the spectrum of
wind-generated gravity waves. J. Phys. Oceanogr. 13, 816–827.

Kitaigorodskii, S.A., Krasitskii, V.P., Zaslavskii,M.M.,1975. On Phillips' theory of equilibrium
range in the spectra of wind-generated gravity waves. J. Phys. Oceanogr. 5, 410–420.

Krogstad, H.E., Magnusson, A.K., Donelan, M.A., 2006. Wavelet and local analysis of
ocean waves. Int. J. Offshore Polar Eng. 16 (2), 97–103.

Liu, P.C., 1989. On the slope of the equilibrium range in the frequency spectrum of wind
waves. J. Geophys. Res. 94, 5017–5023.

Liu, P.C., 1994.Wavelet spectrum analysis and oceanwindwaves. In: Foufoula-Georgiou,
E. Kumar, P. (Eds.), Wavelets in Geophysics. Academic Press, CA, pp. 151–166.

541I.R. Young, A.V. Babanin / Coastal Engineering 56 (2009) 534–542



Author's personal copy

Liu, P.C., Babanin, A.V., 2004. Using wavelet spectrum analysis to resolve breaking
events in the wind wave time series. Ann. Geophys. 22, 3335–3345.

Liu, P.C., Mori, N., 2000. Characterizing freak waves with wavelet transform analysis. In:
Olagnon, M. Athanassoulis, G.A. (Eds.), Rogue Waves 2000. IFREMER, Plouzane,
pp. 151–155.

Longuet-Higgins, M.S., Stewart, R.W., 1962. Radiation stress and mass transport in
gravity waves with application to “surf beats”. J. Fluid Mech. 17, 459–480.

Mallat, S., 1998. A wavelet tour of signal processing. Academic Press, San Diego, CA.
577 pp.

Massel, S.R., 2001. Wavelet analysis for processing of ocean surface wave records. Ocean
Eng. 28, 957–987.

Miche, M., 1944. Mouvements ondulatoires de la mer en profondeur constante ou
decroissante. Ann. Ponts Chaussees 114, 25–78.

Miller, H.C., Vincent, C.L., 1990. FRF spectrum: TMA with Kitaigorodskii's f−4 scaling.
ASCE J. Waterw. Port Coast. Ocean Div. 116, 57–78.

Phillips, O.M., 1985. Spectral and statistical properties of the equilibrium range inwind-
generated gravity waves. J. Fluid Mech. 156, 505–531.

Pierson, W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed
wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. 69,
5181–5190.

Resio, D.T., 1988. Shallow-water waves. II: Data comparisons. J. Waterw. Port Coast.
Ocean Eng. 114 (1), 50–65.

Resio, D.T., Pihl, J.H., Tracy, B.A., Vincent, C.L., 2001. Nonlinear energy fluxes and the
finite depth equilibrium range in wave spectra. J. Geophys. Res. 106, 6985–7000.

Resio, D.T., Long, C.E., Vincent, C.L., 2004. Equilibrium-range constant inwind-generated
wave spectra. J. Geophys. Res. 109 (C01018). doi:10.1029/2003JC001788.

Smith, J.M., Vincent, C.L., 1992. Shoaling and decay of two wave trains on a beach.
J. Waterw. Port Coast. Ocean Eng. 118, 517–533.

Smith, J.M., Vincent, C.L., 2002. Application of spectral equilibrium ranges in the surf
zone. Proc. 28th Int. Conf. on Coast Eng. World Scientific, pp. 269–279.

Thijsse, J.Th., 1949. Dimensions of wind-generated waves. General Assembly of
Association d'Ocèanographie Physique. Procès-Verbaux, vol. 4, pp. 80–81. Oslo.

Thompson, E.F., 1980. Energy spectra in shallow U.S. coastal waters. Coastal Engineering
Research Center, Tech. Paper 80–2, Ft. Belvoir, Va. 149 pp.

Toffoli, A., Onorato, M., Babanin, A.V., Bitner-Gregersen, E., Osborne, A.R., Monbaliu, J.,
2007. Second-order theory and setup in surface gravity waves: a comparison with
experimental data. J. Phys. Oceangr. 37, 2726–2739.

Torrence, C., Compo, G.P., 1998. A practical guide towavelet analysis. Bull. Am. Meteorol.
Soc. 79 (1), 61–78.

U.S. Army Corps of Engineers, 1955. Waves and wind tides in shallow lakes and
reservoirs. Summary Report, Project CW-167, Jacksonville District, Fla.

Vincent, C.L., 1984. Shallowwaterwaves— a spectral approach. Int. Conf. on Coastal Eng.
ASCE, Houston, Texas, pp. 370–382.

Vincent, C.L., 1985. Depth-controlled wave height. J. Waterw. Port Coast. Ocean Eng. 111
(3), 459–475.

Waseda, T., Kinoshita, T., Tamura, H., 2008. Evolution of a random directional wave and
freak wave occurrence. J. Phys. Oceanogr. 38. doi:10.1175/2008JPO4031.1.

Young, I.R., 1999. Wind Generated Ocean Waves. Elsevier Sciences Ltd.0-08-043317-0.
306 pp.

Young, I.R., Babanin, A.V., 2006. The form of the asymptotic depth-limited wind-wave
frequency spectrum. J. Geophys. Res. 111 (C06031). doi:10.1029/2005JC003398.

Young, I.R., Eldeberky, Y., 1998. Observations of triad coupling of finite depth wind-
waves. Coast. Eng. 33, 137–154.

Young, I.R., Verhagen, L.A., 1996a. The growth of fetch limited waves in water of finite
depth. Part I: Total energy and peak frequency. Coast. Eng. 28, 47–78.

Young, I.R., Verhagen, L.A., 1996b. The growth of fetch limited waves in water of finite
depth. Part II: Spectral evolution. Coast. Eng. 28, 79–100.

Young, I.R., Rosenthal, W., Ziemer, F., 1985. A three-dimensional analysis of marine radar
images for the determination of ocean wave directionality and surface currents.
J. Geophys. Res. 90 (C1), 1049–1060.

Young, I.R., Verhagen, L.A., Khatri, S.K., 1996. The growth of fetch limited waves in water
of finite depth. Part III: Directional spectra. Coast. Eng. 28, 101–122.

Young, I.R., Banner, M.L., Donelan,M.A., Babanin, A.V.,Melville,W.K., Veron, F., McCormick,
C., 2005. An integrated system for the studyofwind-wave source terms infinite-depth
water. J. Atmos. Ocean. Technol. 22 (7), 814–831.

Zakharov, V., 1999. Statistical theory of gravity and capillary waves on the surface of a
finite-depth fluid. Eur. J. Mech. B/Fluids 18, 327–344.

542 I.R. Young, A.V. Babanin / Coastal Engineering 56 (2009) 534–542


