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The directional resolving power of various directional instruments is examined. It 
is concluded that pitch/roll buoys have intrinsically poor directional resolving 
power. This finding accounts for the broader directional spreading functions 
which have been reported for pitch/roll buoy data as compared to spatial array 
data. Improved instrument performance can be achieved by increasing the 
number of measurement elements in the measurement system. This is most easily 
achieved with a spatial array of wave gauges. A rational method for the design of 
spatial arrays is presented. This technique allows the number and placement of 
gauges in an array to be determined so as to achieve the desired instrument 
performance. 

1 INTRODUCTION 

For a variety of applications, including coastal and 
ocean engineering, ship routing and the interpretation of 
remotely sensed data, information on the directional 
wave spectrum is desirable. Knowledge of the integrated 
or one-dimensional spectrum is considerable, due largely 
to field measurements such as the Joint North Sea Wave 
Project (JONSWAP)) A similar situation, however, 
does not exist in the case of directional spectra. This is 
largely due to the added complexity and cost of 
directional measurements as well as the increased 
sophistication required in data analysis. As will be 
shown, both the instrumentation chosen and the 
analysis technique adopted can have significant effects 
on the resulting directional spectrum. 

There are two common in-situ techniques for the 
measurement of directional wave spectra: pitch/roll 
buoys (or pressure/velocity (p, u, v) meters) and spatial 
arrays of wave gauges. The directional wave spectrum is 
typically discretized into frequency and direction bins. 
An adequate description of this two-dimensional form 
may require as many as 30 directional components at 
each frequency. Since measurement instruments provide 
only a small number of quantities from which these 
components are to be determined (three in the case of a 
buoy, the number of sensors in the case of a spatial 
array), the problem is under-determined and the various 
analysis techniques provide only an estimate of the true 
directional spectrum. As a result, both the number of 
quantities the instrument measures and the analysis 
technique may have significant effects on the result. 
Remote techniques, such as HF Radar (Barrick, 2) 

Synthetic Aperture Radar (Hasselmann et al., 3) Surface 
Contour Radar (Walsh et al., 4) Stereo Photography 
(Holthuijsen 5) and others can also be used to determine 
directional spectra. These techniques will not be 
considered in this paper. 

Proposed analytical forms for the directional spread- 
ing function yield quite different results as to the spectral 
spreading for fetch limited conditions. This paper shows 
that this divergence is consistent with the measurement 
instrument and analysis technique used. The arrange- 
ment of the paper is as follows. In Section 2, proposed 
forms for the directional spreading function are 
presented and their considerable differences high- 
lighted. Section 3 presents the commonly used tech- 
niques for the analysis of both buoy and array data. An 
intercomparison of these techniques is presented in 
Section 4, thus explaining the differences in reported 
spreading functions. A rational basis for the design of 
measurement arrays is then presented in Section 5, 
followed by conclusions in Section 6. 
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2 PROPOSED DIRECTIONAL SPREADING 
FUNCTIONS 

It is common practice to consider the directional 
frequency spectrum, F(w, 0), where w is the radian 
measure of frequency and 0 the wave propagation 
direction, in terms of the one-dimensional spectrum, 
E ( w ) ,  as ,  6 

F(~, O) = E(~)D(w, O) (1) 

The directional spreading function, D(~, 0) must satisfy 
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the condition 

I D(w, 0 ) =  (2) dO 1 

Based on field data, analytical forms for D(w, O) have 
been proposed by Mitsuyasu et al., 7 Hasselman et al. 8 
and Donelan et al. 9 Mitsuyasu et al. 7 considered data 
collected with a cloverleaf buoy which measures six 
quantities related to the surface wave field (the vertical 
acceleration of the water surface, r/tt, the wave slope, r/x, 
r/y and the surface curvature, r/xx, r/yy, r/xy)" Their analysis 
procedure considered only the surface acceleration and 
slope information, reducing the data to that which 
would be collected with a pitch/roll buoy. Following 
Longuet-Higgins et al. 6 they represented D(w, 0) in the 
form 

(0 - On(w)) (3) 
D(w, O) = Q(s) cos z~ 2 

where Q(s) is a normalization factor required to satisfy 
eqn (2) and Om is the mean wave direction at frequency 
w. Based on their data, Mitsuyasu et al. 7 parameterized s 
as 

Sp w < %  

S = ' [  Sp (~pp)-2"5 W~Wp (4) 

where sp is the value of s at the frequency of the spectral 
peak, %, given by 

(U10~ -2'5 
Sl, = 11.5 k,C~-p ,/ (5) 

C? = g/w? is the deep water phase speed of components 
at the spectral peak and /-110 the wind speed at a 
reference height of 10 m. 

Hasselmann et al. 8 considered pitch/roll buoy data, 
also representing their data in the form of eqn (3) but 
with a different parameterization for s: 

"06 
--  w < l'05Wp 

s = \ w ? /  (6) 

9.77 w > 1.05% 

where # has a weak dependence on wave age: 

) # = -2"33 - 1.45 \ C? - 1.17 (7) 

Based on data from an array of 14 wave gauges, 
Donelan et al. 9 found that the form represented by 
eqn (3) did not adequately represent their data and 
adopted the alternative form 

D(w, 0) = 0.5/3sech2/3(0 - Om(W)) (8) 

They found that /3 varied as a function of 

non-dimensional frequency, w/w?. Their data, however, 
extended only to w / %  = 1'6 and beyond this point they 
assumed /3 was constant. Banner 1° reviewed this 
conclusion in the context of high frequency stereo 
photography data and concluded that the assumption 
that/3 = constant for W/Wp > 1.6 was unreasonable. He 
proposed a formulation for /3 beyond 1-6% which is 
combined with the Donelan et al. 9 parameterizations for 
co < 1.6% in eqn (9) below: 

2.61 (~p) 13 

/~= 2.28 (~p) -1"3 

10{-0"4+0"8393 exp[ 0"567 In ((~o/%)2)]} 

0-56 < w/COp < 0.95 

0.95 < w,/% < 1.6 

~O/Wp > 1.6 

(9) 

2.1 Comparison of spreading functions 

Figure 1 shows the directional spreading functions 
calculated using eqns (4), (6) and (9) at frequencies of 
co/% = 1, 2 and 3 and values of the inverse wave age 
Ulo/Cp = 1, 1.3 and 2. The differences between these 
proposed formulations are significant. It is clear that 
the spreading functions derived from pitch/roll buoy 
data yield broader spreading functions than the 
spatial array data. 9 A clearer representation of the 
differences is evident if the mean spectral width, 0 is 
examined: 

~0 2rr F(w, O)8dO 

~(~) =o  (10) 

j 2~ F(w, 0) dO 

Figure 2 shows the mean spectral width as a function of 
w/cop and inverse wave age, Ulo/C e for each of the above 
spreading parameterizations. 

All representations indicate that the spreading is 
narrowest in the region of the spectral peak, becoming 
broader at frequencies both above and below w e . The 
Donelan et al. 9 formulation is not a function of wave 
age whereas the representations of both Mitsuyasu et al.7 
and Hasselmann et al. 8 indicate increased broadening as 
a function of wave age (decreasing UIo/Cp). This 
dependence on wave age is considerably stronger in 
the Mitsuyasu et al. 7 formulation than that of 
Hasselmann et al. 8 Whether the directional spreading 
should be a function of wave age has been discussed by 
both Hasselmann et al. 8 and Donelan et al. 9 The answer 
to this question depends on which physical process is 
controlling the directional spreading. If  it is nonlinear 
interactions within the spectrum, as proposed by 
Hasselmann, 11 then wave age should play no role. If, 
however, atmospheric input plays a role, the spreading 
should be dependent on wave age. Young and Van 
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Fig. 1. (a) The directional spreading function D as proposed by Mitsuyasu et al., 7 Hasselmann et al. 8 and Donelan et al. 9 for w = ~ ,  
2 ~  and 3% and Ulo/Cp = 1.0. (b) As for Fig. l(a) but for Ulo/Cp = 1-3. (c) As for Fig. l(a) but for Ulo/Cp = 2-0. 

Vledder 12 and Banner and Young 13 have investigated 
the development of  the directional spectrum under fetch 
limited conditions using a spectral model with a full 
solution to the nonlinear source term. They find that the 
directional spreading is almost completely controlled by 

nonlinear interactions, input playing only a very minor 
role. Hence, it would appear that either no dependence 
on wave age (Donelan et al. 9) or a weak dependence 
(Hasselmann et al. 8) is most appropriate. 

In interpreting these proposed spreading functions, 
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Fig. 2. The mean directional width 0 as a function of inverse wave age and frequency as proposed by: (a) Mitsuyasu et al., 7 (b) 
Hasselmann et al., 8 and (c) Donelan et al. 9 The parameter range for which data was collected is outlined by the shading. 

the parameter  range of  the data upon which the various 
formulations are based should be noted. Table 1 shows 
the appropriate  regions of  data validity for each of  these 
studies. 

These regions of  data  validity have been marked on 
Fig. 2. I t  is clear that the data upon which the 
formulation of  Mitsuyasu et  al. 7 are based, cover a 
very small range of  wind-sea  wave ages and hence the 
accuracy of  the strong dependence on wave age in this 
formulation must  be questioned. Over the parameter  
range for which the data of  Mituyasu et  al. 7 and 
Hasselmann et  al. 8 overlap, there is in fact quite good 
agreement between these formulations (see Fig. l(a) and 

T a b l e  1.  P a r a m e t e r  r a n g e  f o r  t h e  d a t a  f r o m  p u b l i s h e d  d i r e c t i o n a l  
f o r m u l a t i o n s  

Study authors w / % Ulo / Cp 

Donelan et al./Banner < 5 1 6 
Mitsuyasu et al. < 3 0"6-1.2 
Hasselmann et al. < 3 1-1"8 

(b)). These formulations are however considerably 
broader than those of Donelan et  al. 9 

3 ANALYSIS T E C H N I Q U E S  F O R  D I R E C T I O N A L  
DATA 

Donelan et  al. 9 have indicated that the differences in 
directional spreading described in Section 2 are caused 
by a combination of the directional resolving power of  
the instruments and the adopted analysis technique. In 
this section the various analysis techniques will be cast in 
a common mathematical  framework for subsequent 
comparison in Section 4. 

The time and space variant water surface elevation, 
~(x, t) is commonly represented as 

~ ( x , t ) =  I I e i ( k ' x - ~ t ) Z ( k , w ) d k d w  ( l l )  

where Z(k, w) is the complex Fourier amplitude of  the 
component  with wavenumber, k and frequency, a;. 
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The wavenumber-frequency spectrum can be rep- 
resented in terms of the Fourier coefficients by 

S(k, w)dkdw = (Z(k, w)Z*(k, ~)) (12) 

where the angle brackets denote an ensemble average 
and the star notation the complex conjugate. Generally, 
the water surface elevation ~ is not measured directly, 
but some quantity ~ which can be related to 77 (e.g. 
pressure, p or slope, ~x). Following Isobe e t  al., 14 the 
general quantity, ~ can be related to ~ through the 
definition of a transfer function, H: 

H(k, w) = (cos 0) ~ (sin 0) ~ G(k, w) (13) 

The quantities a,/3 and G depend on the quantity being 
measured, ~, and are tabulated in Appendix 1. 

Substitution of eqn (13) into eqn (11) yields 

~(x, t)= I [ H(k'w)ei(k'x-~t)Z(k'w)dkdw (14) 

The cross-spectrum, e~,,~(w) between any two of the 
quantities measured, ~,,(Xm, t) and ~,(x., t) is 

¢bmn(w) dw=(JHrn(k,w)ei(k'x')Z(k,w)dk 

x I H*(k', w)e-i(k"x.)Z*(k', w)dk' ) 

(15) 

Since Z is a random variable (Z(k, w)Z*(k', w)) = 0 for 
k ~ k' and eqn (15) becomes 

~r,m(w) = I Hm(w)H*(w)e-ik'(x"-x')F(w, 0)d0 (16) 

where the dispersion relationship has been used to 
introduce the directional frequency spectrum F(w, O) in 
place of the wavenumber-frequency spectrum, S(k, w). 

The determination of the directional spectrum, 
F(w, 0) can then be achieved by the inversion of 
eqn (16). In practice, however, this is not straight- 
forward. At any given frequency, w, it is desired to define 
F(w, O) at sufficient discrete values of 0 to accurately 
define the directional spreading. The number of 
measured cross-spectra which can be used to determine 
these discrete values of the spectrum are limited by the 
number of independent quantities measured by the 
instrument. For common instruments the number of 
cross-spectra are far less than the desired number of 
discrete values of the directional spectrum. The problem 
is under-defined. A number of possible solutions to this 
problem have been proposed, 6,14-19 the two most 
commonly used being described in detail below. 

3.1 Solution by Fourier Expansion (FEM) 

Longuet-Higgins e t  al. 6 expanded the directional 
spreading function, D(w, 0) as a Fourier series of the 

form 
M 

D(w, O) = ao + Z ap(w) cos pO + bp(w) sin pO (17) 
p=l 

If there are N quantities being measured by the 
instrument, ¢,.. is an N × N matrix, but since 
era, = ~ there are effectively only N(N + 1)/2 unique 
cross-spectra. Equation (17) has a total of 2 M +  1 
unknowns (the coefficients %, bp). Therefore, provided 
M <_ N(N + 1)/4 - 1/2 the system of equations can be 
directly solved for the coefficients, thus defining the 
directional spreading function through eqn (17). As the 
number of measured quantities, N, is decreased, the 
Fourier series (eqn (17)) must be progressively truncated 
at lower order, M. For instance, in the case of a pitch/ 
roll buoy, N = 3 and hence M must be truncated at 2. A 
consequence of this truncation is that negative lobes 
develop in the resulting directional spreading function. 6 
In order to overcome this problem, Longuet-Higgins 
et al. proposed that D be constrained to the analytical 
form represented by eqn (3). The two parameters in this 
functional form Om and s can be determined from the 
coefficients of eqn (17): 

O = = t a n - 1  

rllr s = - - ;  d = a  2 + b  2 
1 -rlTr 

(18a) 

(18b) 

This is the analysis technique used by both Mitsuyasu 
e t  al.  7 and Hasselmann et al. s For brevity, the term 
Fourier Expansion Method or FEM is used in the 
remainder of this paper to describe this technique. 

3.2 Solutionby Maximum l,ikelihood Method (MLM) 

Solution by the FEM as represented by eqn (18) 
constrains the directional spreading function to a 
predetermined model form. A number of model 
independent formulations have also been proposed. 
The most commonly used of these is the Maximum 
Likelihood Method (MLM). 14' 15 

As its name suggests, the MLM attempts to determine 
the directional spectrum which has the maximum 
likelihood of conforming to the limited number of 
cross-spectral estimates. As developed by Isobe et al., 14 
the energy incident from angle 0 is evaluated by 
minimizing the influence from all other components. 
This minimization is achieved through the use of the 
Lagrange multiplier theory. The final result is 

Q(w) 
0) = ) 

m n 

(19) 

where Q(w) is a normalization factor such that the total 
energies of the directional and one-dimensional spectra 
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are equivalent (eqn (3)). Details of the application of the 
MLM to both pitch/roll buoy systems and spatial arrays 
are given in Appendix 2. 

3.3 Other solution techniques 

In addition to the FEM and the MLM there are a 
number of alternative techniques which have been used 
for the extraction of directional spectra from measured 
data. These techniques include: the Iterative Maximum 
Likelihood Method (Pawka2°), the Normalized Maxi- 
mum Likelihood Method (Brissette and Tsanis is) and 
the Maximum Entropy Method (Lygre and Krogstad 21). 
A comparison of the advantages and disadvantages of 
these techniques has been reported by Tsanis and 
Brissette. 19 Based on their results, it appears that the 
MLM produces reasonable results under a wide range of 
conditions. Although the Normalized Maximum Like- 
lihood Method can produce superior results, the rather 
subjective choices which must be made in the normali- 
zation make it unattractive for the present application. 
As a result only the FEM (due to its wide usage) and the 
MLM are considered in the remainder of this paper. 

4 THE CONSEQUENCES OF ANALYSIS 
TECHNIQUE AND INSTRUMENT TYPE 

Donelan et aL 9 have indicated that pitch/roll buoys have 
intrinsically poor directional resolving power and Isobe 
et a l}  4 have indicated that the MLM is the analysis 
technique with the highest directional resolving cap- 
abilities. These statements tend to suggest that both the 
selection of the instrument and the analysis technique 
will influence the results. In this section a number of 
numerical experiments are conducted to determine the 
sensitivity of the derived spectra to these quantities. 
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Fig. 3. (a) A comparison between an input directional 
spreading function of the form (8) with/~ = 3 (solid line) and 
the derived spreading function (dashed line) for a pitch/roll 
buoy analysed using the FEM. (b) As for Fig. 3(a) but 

analysed using the MLM. 

4.1 A comparison between FEM and MLM 

In order to compare these two analysis techniques an 
input directional spectrum with a spreading function of 
the form proposed by Donelan et aL 9 (eqn (8)) was 
defined. To make the test as demanding as possible, the 
relatively large value of /3 = 3 was selected (narrow 
directional spreading). A small amount (1% of 
maximum spectral ordinate) of incoherent noise was 
also added to the spectrum. With the spectral form 
defined, the cross-spectral matrix can be determined 
from eqn (16). These cross-spectra can then be run 
through the analysis techniques and the resulting 
directional spreading compared with the input form. 

Figure 3 shows comparisons between the input and 
calculated directional spreading functions for a pitch/ 
roll buoy system derived with both the FEM and MLM. 
Both analysis techniques produce directional spreading 
which is too broad and significantly underestimate the 

magnitude of the narrow directional distribution. As 
expected, the MLM is marginally superior but the 
differences are only minor. It is interesting to note that if 
the small amount of noise is removed from the input 
spectrum, the resulting fit is much improved. It is felt, 
however, that the addition of the noise more closely 
simulates the situation encountered in reality. 

Since the MLM is not constrained by the adoption of 
a specific directional representation, in theory, it has the 
ability to reproduce skewed or bimodal directional 
forms. Fourier expansion can, however, produce only 
one symmetric peak at any frequency. This is demon- 
strated in Fig. 4, where a second peak, half the 
magnitude of the original peak and separated by 45 °, 
has been added to the input form. The FEM attempts to 
approximate this bimodal distribution with a single peak 
centred about the weighted mean direction. Although 
the MLM cannot accurately separate these two narrow 
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Fig. 4. (a) Input (solid line) and derived (dashed line) bimodal 
spreading functions for a pitch/roll buoy analysed using the 

FEM. (b) As for Fig. 4(a) but analysed using the MLM. 

and closely spaced peaks, it clearly produces a superior 
result to the FEM with the existence of both peaks being 
clear. 

Figures 3 and 4 generally produce disappointing 
results, the conclusion being that neither analysis 
method is capable of producing adequate results with 
the limited amount of data available from a pitch/roU 
buoy. The analysis and hence the conclusions are the 
same for any instrument with three elements. Examples 
of  this include: p,u,v meters and three element gauge 
arrays. 
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Fig. 5. Input (dashed line) and derived (solid line) spreading 
functions for centred regular spatial arrays with different 

numbers of measurement elements. 

elements, although they quickly become cumbersome. 
Figure 5 shows the results for the same input spectrum 
as used in Fig. 3 for spatial arrays with 4, 5, 6, 7 and 10 
elements respectively. In all cases the arrays were 
symmetric with one gauge at the centre and the 
remaining gauges evenly distributed at the same radius 
around this central gauge. The MLM was used for the 
analysis. Not surprisingly, increasing the number of  
gauges progressively improves the results. As the 
number of  gauges increases, the peak of  the output 
spreading function increases and the overestimation in 
energy at angles away from the dominant wave direction 
decreases. 

5 OPTI MUM DESIGN OF SPATIAL ARRAYS 

4.2 Influence of  the number of  measurement elements 

The obvious conclusion from Section 4.1 is that the 
number of measurement elements should be increased. 
This is really not practical in a floating buoy system, 
although clover-leaf buoys do increase the effective 
number of measurement elements from three to six. 
Spatial arrays can, however, have any number of  

The performance of a spatial array is not solely 
determined by the number of array elements. This is 
clearly illustrated in Fig. 5. Comparison of the results 
for the 6 and 7 element arrays shows that although the 7 
element array generally produces a better approxima- 
tion to the directional distribution, in the mean direction 
the 6 element array is slightly superior. The actual 
geometry of the gauges in the array and their spacing 
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Fig. 6(d). As for Fig. 6(a) but for a seven element array. 

relative to the wavelength o f  the waves being measured 
are important design considerations. These aspects have 
been previously noted by Davis  and Regier)  6 They 
point out that the critical parameter in the design o f  a 
spatial array is the so called co-array. Here, the co-array 
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is defined as 

era. = k .  ( x .  - x = ) / k  (20)  

Equation (20) defines the spatial lags between gauges for 
a given wave direction. Through eqn (16), this quantity 
influences the cross-spectra from which the directional 
spectrum is obtained. 

An optimum array should have a co-array with lags 
evenly and densely distributed in both space and 
direction so as to adequately resolve the anticipated 
wave system. In order to investigate array geometry and 
gauge spacing, the 4, 5, 6 and 7 element arrays discussed 
in Fig. 5 were subjected to further analysis. The results 
of these analyses are shown in Fig. 6. Rather than 
consider the results at only a single frequency (or 
wavelength), the input spectrum was assumed to have 
the same directional spreading as reported previously 
but over a wide range of wavelengths. The panels of 
Fig. 6 show the array geometry, the co-array for waves 
approaching from eight different directions (every 45°), 
the input spectrum, F(0~, O) and the array-derived 
spectrum P(0J, O) at wavelengths of 50, 10 and one 
times the array element spacing R. In addition, the error 
function, e(a;) is also shown, where 

/ IF(~v, O) F(~v, 0) I d0 
e(~v) = (21) 

/ F(oJ, O) dO 

It is clear from the error functions in Fig. 6 that the 
performance of the arrays is a function of the 
wavelength-to-gauge spacing ratio, L/R. Not surpris- 
ingly, as L/R approaches one, spatial aliasing becomes a 
problem and the directional spreading is poorly 
resolved. This is clear both in the plots of the 
directional spread and in the error functions. At very 
large values of L/R the cross-spectra are almost all 
identical and the directional resolution is influenced by 
the accuracy to which the now poorly conditioned cross- 
spectral matrix can be inverted. In a practical situation, 
the measurement accuracy of the gauges will cause a 
much more rapid degradation of performance than is 
shown here as L/R becomes large. Between these two 
limits, the error functions for all the arrays show a 
relatively wide region where array performance is 
optimal. The magnitude of the error function progres- 
sively decreases as the number of measurement elements 
increases, indicating improved performance. 

Although the number and distribution of lags in the 
co-array generally increases with the number of 
elements, for waves travelling along a line of symmetry 
of the array, many of the lags will be redundant. This is 
clearly the case for the arrays with 6 and 7 elements. 
Although the 7 element array has more elements, it has a 
poorer distribution of lags for waves travelling at 0 ° and 
180 ° than the 6 element array, This is due to the more 
complete symmetry of the 7 element or centred hexagon 

array as compared to the 6 element or centred pentagon 
array. Hence, it could be expected that the smaller array 
would actually have better resolving power in these 
directions. This explains why the 6 element array 
produced a slightly larger spectral value in the mean 
wave direction as shown in Fig. 5. When the error in all 
directions is considered, however, as reported by c(~), 
the larger array is still superior. 

The arrays considered above are all regular in that the 
elements are evenly spaced in direction and at a constant 
radius. The number and distribution of lags in the 
co-array could be increased by the use of an irregular 
array. The performance of such an array is shown in 
Fig. 7. Here a 7 element array is again used. Rather than 
have the elements arranged as a centred hexagon with 
radius R, however, this array is in the form of a 
Mercedes star. Three elements are at a radius R and 
three at radius R/2. As expected, the number and 
distribution of lags in the co-array has been improved in 
comparison to the regular 7 element array. The 
performance of the array has also clearly improved. 
Although the minimum values of e(oJ) are the same for 
the two arrays, the span of values of L/R for which the 
array performs well is significantly wider for the 
irregular array. In addition, due to the inclusion of 
more closely spaced gauges, the minimum value of L/R 
at which data can be obtained without spatial aliasing 
has been improved. Hence, this array geometry would 
be capable of providing directional measurements over a 
much wider range of spectral frequencies than the 
regular array. 
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6 CONCLUSIONS 

A review of  proposed directional spreading formula- 
tions has been conducted. Of the three commonly used 
formulations, those derived from pitch/roll buoy data 
(Mitsuyasu et al.; 7 Hasselmann et al. 8) produce 
significantly broader directional spreading than the 
spatial array data of  Donelan et al. 9 An analysis of  
the directional resolving power of  pitch/roll buoy 
systems shows that this is a result of  the limited 
number of  quantities measured by the instrument. 
Hence, it can be concluded that, although such 
instruments can provide an accurate measurement of  
the mean wave direction, directional spectra will be 
excessively broad. 

A general mathematical framework for the analysis of  
data from any measurement system is developed and 
specifically applied to the Fourier Expansion Method 
(FEM) and Maximum Likelihood Method (MLM). 
Although the MLM produces a superior representation 
of  the directional spreading when applied to pitch/roll 
buoy data, the improvement is only marginal. 

An improvement in the directional resolving power of  
a sensor can only be achieved by increasing the number 
of  measurement elements in the sensor. This is clearly 
demonstrated by investigating the performance of  
spatial arrays with varying numbers of  elements. 

The detailed performance of  a spatial array is not only 
dependent on the number of  measurement elements but 
also the geometrical spacing of  elements and the nature 
of  the incident wave spectrum. A rational technique for 
the design of  arrays is developed based on the concept of  
the co-array. This analysis clearly shows that, for 
optimum performance, an array should have as many 
nonredundant  spatial lags between elements as possible. 
As a result, even a symmetric array will not have 
uniform resolving power for waves incident from all 
directions. 

In the above analyses it is assumed that the 
measurement instrument is capable of measuring 
accurately the quantities from which the directional 
spectrum is obtained. For  example, in a floating buoy 
system it is assumed that the motion of  the buoy is such 
that the surface slope and acceleration can be obtained 
without error. Obviously this is not the case and such 
errors will further degrade the resolving power of  the 
instrument. Similar errors will occur in spatial arrays 
due to the accuracy with which the array geometry is 
known and in estimates of  wave induced currents from 
current meters which perform some spatial averaging 
(for example, electro-magnetic current meters). 
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A P P E N D I X  1: V A L U E S  OF T H E  T R A N S F E R  F U N C T I O N  H (eqn (13)) 

Measured quantity, ~ Symbol H(k, w) G(k, w) a /3 

Water surface elevation 
Pressure 
Vertical velocity 
Vertical acceleration 
Surface slope (x dir.) 
Surface slope (y dir.) 
Surface curvature (x) 
Surface curvature (y) 
Surface curvature (xy) 
Water particle velocity (x dir.) 

Water particle velocity (y dir.) 

Water particle velocity (z dir.) 

Water particle accel. (x dir.) 

Water particle accel. (y dir.) 

Water particle accel. (z dir.) 

r/ 1 1 0 0 
p p g ~  p g ~  0 0 cosn xa cosn xa 
r h -iw -iw 0 0 
~] tt --03 2 --03 2 0 0 

~lx ik cos 0 ik 1 0 
fly ik sin 0 ik 0 1 
rlxx - k  2 cos 2 0 - k  2 2 0 
~yy - k  2 sin 2 /9 - k  2 0 2 
rlxy - k  2 cos 0 sin 0 - k  2 1 1 
u w cos 0 cscccccccc~ w cosh kz 1 0 

slnfl Ka 
v w sin 0 ~ w cosh kz 0 1 

slnn/ca 
sinh kz - iw  sinh kz 0 0 

w -iw sm-rnh--k-d sm-Tnh--k'-d 
U, - - i w  2 COS /9 ~ - - i w  2 COS 0 ~ 1 0 slnn tea slnn tea 
vt - i ~  2 sin 0 cosh kz cosh kz -i~v 2 sin 0 ~ 0 1 

wt _w2 sinh kz _w2 sinh kz 0 0 
sln-]-rK-k-d sm-?fiK-k-d 

A P P E N D I X  2: A P P L I C A T I O N  O F  M L M  T O  
S P E C I F I C  CASES 

1. Pitch/roll buoys 

F or  the specific case o f  a th ree-component  sensor such 
as a pitch/roll  buoy,  which measures Ott, rTx and ~Ty, the 
cross-spectral  matrix,  ~m, becomes 

~mn = I¢'~x'7, ¢, . ,x Cvx,, (A2.1) 

The  elements o f  this matr ix  can be normal ized by 
dividing by the appropr ia te  t ransfer  functions.  G(w) 
f rom Appendix  1. The  normal ized cross-spectral matr ix  
becomes 

nil /112 n13~ 

(1)Iron= ~n12 /122 n23 / 

\n13 /123 n33/ 

where 

¢rI,,,7,,. ¢'7,,rlx . 
nil = 0.)4 ' /112 = _ikw2, 

/1:2 /123 = 

(A2.2) 

Crh, r b 
n13 = _ikw2 

/133 = _k 2 

A similar result can be obta ined for  a system of  a 
pressure gauge and two or thogonal  current  meters, only 
the transfer  functions,  G(w), being different. No t ing  that  

all elements o f  (A2.2) are real and that  xn = Xm in 
eqn (19), the matr ix  (A2.2) can be inverted, eqn (19) 
finally yielding 

F(w, O) = Q(w)[MoM2(7 2 cos 2 /~ + sin 2 0) 

- M2 sin2 (0 - 0m) 

-- 2MlM2(7 2 cos 0 cos 0m + sin 0 sin 0m) 

+ M22 721 - '  (A2.3) 

where 

Mo = nil (A2.4) 

M 1 = i(n122 + n23) (A2.5) 

M2 = n22 + n332 F i ( n 2 2 - n 3 3 )  2 + n 2 3 " ~  (A2.6) 

= 0 - 0p (A2.7 

Om =Om - Op (A2.8 

0,, = tan -1 (/113~ (A2.9) 
\n12,/ 

1 _ 1 (  2n23 ~ 
0p = ~ tan . . . .  

\n22 -- n331 

(/lEE "Jr- n33 ) -- I ( n22  --/133) 2 + 4n223 ,) ,2= 

(A2.10) 

(A2.11) 
(/1122 + n33) + ~/(n22 - n33) 2 + 4n~3 

where Q(u:) is a normal iza t ion  factor  (see eqns (2), (3)). 
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2. Spatial array of gauges 

For the case of  a spatial array of  wave gauges, H m and 
Hn are both equal to one in eqn (19) yielding 

[~-'~ ~ ~-1 (w~eikRn cos 0. e-ikR,, cos 0~ 1 -1 F(~,  O) = a(w)  |A..,, L . ,  "" ,  , 
J L m n 

(A2.12) 

where On is the angle between probe element n and the 
wave component with propagation direction 0 and Rn is 
the distance of  probe element n from a fixed origin. As 
the cross-spectral matrix is available and the array 
geometry is known, eqn (A2.12) can be evaluated. The 
practical details of  an implementation are described 
below. 

The directional spectrum, F(u;, 0) is to be estimated at 
discrete frequencies, w and directions 0 from the water 
surface elevation time histories ~/t(t) of  np(l = 1, np) 
gauges situated at Cartesian coordinates Rlx, Rty. Each 
of  the gauges are sampled coincidentally at a rate AoJ. 

In order to overcome possible calibration errors 
between gauges, the ~lt(t) should be scaled to ensure 

they have the same standard deviation. The Fourier 
transform, ZI(,;) is then determined for each gauge and 
the normalized cross-spectral matrix evaluated 

~, , , (~)  = z,,,(o.,)z; (~) 
i Z~(w)}l Z,(~) i (A2.13) 

For each gauge and each discrete angle of wave 
approach, 0, the complex phase lag between gauge l and 
the origin is 

Xt(w, 0) = exp [-ik(Rt.,~ cos 0 + Rly sin 0)] (A2.14) 

Equation (A2.12) can then be evaluated using the matrix 
relationship 

F(w, 0) cx [Xtr(~, 0)~,~nl(~)Xt(a;, 0)]- '  (A2.15) 

where Xt r represents the transpose of the one- 
dimensional matrix Xt. 

The evaluation of  eqn (A2.15) can be complicated by 
the fact that ~ ( w )  can become singular. This can be 
easily overcome by multiplying all off-diagonal values 
by a small quantity e. is The constant of  proportionality 
in eqn (A2.15) can then be determined from the 
requirement E(~o) = fF(aJ, O)dO. 


