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a b s t r a c t

The most commonly used wave dispersion relation, k0h = kh tanh(kh), has been closely approximated
as an explicit formula for direct calculation of wave number k in any coastal water depth h by using
two different root-findingmethods. One explicit formula derived with the Newton–Raphsonmethod has
a maximum relative error of only 0.01% in calculating k in any water depth. This is the most accurate
explicit one proposed so far and should be used to compute k in wave-relatedmodels that require a large
of number of wavelength calculations. The other explicit formula derived with the one-point iteration
method has a maximum relative error of 0.1%, but is of a simple form and can be easily applied to
compute k in any water depth with a hand calculator. The validity of the wave dispersion relation under
the coastal conditions is also investigated based on the comprehensive field data on wave pressure and
orbital velocity.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thewave number k is a fundamental parameter inmodelling of
wave transformation, wave hydrodynamics and coastal sediment
transport, but it can’t be directly calculated from the wave
dispersion relation, k0h = kh tanh(kh), where k0 is the wave
number in deep water and h is the mean local water depth.
Therefore, it is of practical engineering importance to approximate
the implicit wave dispersion relation as a single, explicit, and
accurate formula for direct calculation of k in any coastal water
depth without laborious iterations.
A number of explicit formulas have been approximated from

the wave dispersion relation for calculation of k in shallow,
intermediate, and deep waters. Basically, these explicit formulas
were obtained by approximating the hyperbolic tangent function
in the wave dispersion relation with different approaches. For
example, the explicit solution of Hunt [9] was derived with a
Pade approximation method, Nielsen [11] with a Taylor expansion
approach, and Guo [8] with a logarithmic matching method. The
explicit formula of Eckart [5] was derived with a different wave
theory. The explicit solutions derived with the Taylor expansion
are quite accurate in shallow water, less accurate in intermediate
water, and become invalid in deep water. You [16] discussed
and compared several commonly used explicit solutions, and
concluded that the explicit solution of Hunt [9] is themost accurate
one and should be used to directly calculate k in wave-related
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models that require a large number of wavelength calculations.
However, it may not be convenient for engineers to apply Hunt’s
explicit solution to give a quick calculation of k with a hand
calculator.
Thewave dispersion relation is derived from linearwave theory

under the assumptions of irrotational flow, linear waves, constant
water depth or flat seabed, and no current. In coastal zones,
however, many of these assumptions become invalid. For example,
the slope of the seabed always exists even though it is quite small
and subsequently the mean water depth varies from one location
to another, the tidal current always co-exists with waves, and
coastal waves are often nonlinear especially during coastal storms.
There are few studies undertaken to investigate the validity of
the wave dispersion relation under the real field conditions. As
the result, it is always assumed that the wave dispersion relation
derived from linear wave theory under idealized monochromatic
waves is still valid for the calculation of thewavelength of irregular
waves under the real field conditions.
In this study, two explicit formulas will be derived from the

wave dispersion relation for direct calculation of k in any water
depth by using two different root-finding methods. The validity
of the dispersion relation under the real field conditions is also
investigated based on the comprehensive field data on wave
pressure and orbital velocity.

2. Wave dispersion relation

The relationship among wave period T , wave number k and
meanwater depth h is described by themost commonly usedwave
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Fig. 1. The variation of khwith k0h is explicitly calculated fromEq. (1) and the three
relative water depths are defined in terms of k0h.

dispersion relation

ω2 = gk tanh kh or k0h = kh tanh kh (1)

whereω thewave angular frequency andω = 2π/T , k0 is thewave
number in deep water, and g is the acceleration of gravity. The
wave dispersion relation, Eq. (1), is derived under the assumptions
of irrotational flow, linear and small waves, constant water depth,
and no current. A different dispersion relation from Eq. (1) was
proposed by Kirby and Dalrymple [10] to consider the effect of
nonlinear waves on the wave number k. Fenton [6] and Fenton
and Mckee [7] also derived a more general dispersion relation
that had taken the effects of wave height and currents on k into
account. Thus, thewave dispersion relation, Eq. (1), is only a simple
approximation to the real problem.
The distribution of kh with k0h can be theoretically studied by

considering k0h as the function of kh. When kh is given, the value
of k0h can be calculated directly from Eq. (1). The distribution
of kh with k0h can be then explicitly constructed by plotting the
calculated values of k0h versus the given values of kh. Fig. 1 shows
the distribution of khwith k0h. The shallow, intermediate and deep
waters have been commonly defined as kh ≤ 0.1π , 0.1π < kh <
π and kh ≥ π , respectively (e.g. [4,1]). Since kh is always unknown
before it is calculated from Eq. (1), it may be convenient to define
the shallow, intermediate and deep waters in terms of the known
relativewater depth k0h rather than kh. On substituting kh = π/10
and kh = π into Eq. (1), the shallow water is then defined as
k0h ≤ 0.1, the intermediate water as 0.1 < k0h < π and the
deep water as k0h ≥ π as shown in Fig. 1.
The wave dispersion relation, Eq. (1), is often approximated as

kh =
√
k0h at kh → 0 in shallow water, and kh = k0h at kh > π

in deep water. The true relative error of kh =
√
k0h is found to

increase with k0h and has a maximum of 1.6% in shallow water,
while the use of kh = k0h in deep water results in a maximum
error of only 0.4%. In intermediate water, however, Eq. (1) needs
to be iterated for calculation of k. In this study, the true relative
error εt is calculated as follows: for a given kh, k0h is directly
calculated from Eq. (1) and then used to compute kh from an
approximated formula, and finally the calculated (kh)C and the
given (true) (kh)T are used to calculate the true relative error as
ε = [(kh)C/(kh)T −1.0]×100%. Themethod used to compute ε in
this study is somehow different from that in previous studies. For
example, Guo [8] and You [16] directly iterated Eq. (1) to obtain the
‘‘true’’ value of kh for a given k0h. The iterated value of kh may be
close enough to the true value, but never be exact and thus their
value of ε is relative error, but not the true relative error.
Fig. 2. The number of times required to iterate Eq. (1) for calculation of kh varies
with different initial values of x0 and khwhen ε ≤ 0.01.

3. Methodology

3.1. Newton–Raphson method

The Newton–Raphson method is one of the most popular
methods for root finding and it has been most commonly used
to iterate Eq. (1) for the calculation of k. With this method, an
improved estimate of kh can be computed from Eq. (1) as

kh ≈ x0 − f (x0)/f ′(x0) = x0

[
k0h+ (x0/ cosh x0)2

x0 tanh x0 + (x0/ cosh x0)2

]
(2)

where f (x) = x tanh x−k0h, f ′(x) is the first derivativewith respect
to x, tanh(x) and cosh(x) are the hyperbolic functions and x0 is an
initial guess of kh. Eq. (2) reduces to kh = k0h at x0 →∞ in deep
water. The calculated value of kh should be always much closer
to the exact value of kh than the initial guess of x0 because the
Newton– Raphson method is of quadratic convergence.
There are three factors in Eq. (2), which determine the number

of iterations required for the calculation of k, namely, the initial
guess x0, the relative water depth k0h and the accuracy of
approximation or relative error ε. It is illustrated in Fig. 2 that
the number of iterations required for Eq. (2) is determined by kh
and x0 when ε ≤ 0.01 is given. In shallow and intermediate
waters, the number of iterations ranges from 3 to 15 when x0 =√
k0h is chosen, but varies so widely from 15 to more than 1000
when x0 = k0h is used. In deep water, however, the number
of iterations required for Eq. (2) varies only from 1 to 2 and is
almost independent of x0. Fig. 2 also clearly indicates that the
direct iteration of Eq. (1) would take enormous computing time in
wave-related models that require a large number of wavelength
calculations especially when the number of computing grids is
extremely large, the computing time step is quite small (e.g. less
than several seconds), and the initial value x0 could not be properly
assigned.
In this study, however, we are not interested in numerically

iterating Eq. (2), rather than provide an explicit and accurate
formula for the calculation of kh. If we could find a solution for
x0 = f (k0h) that is quite close to the exact solution of kh in shallow
and intermediate waters and also gives x0 ≥ π in deep water,
Eq. (2) might be directly used to compute kh in any water depth
without laborious iterations. The requirement of x0 ≥ π in deep
water will automatically reduce Eq. (2) to kh = k0h. The detail
on how to determine a simple explicit solution for x0 = f (k0h)
in shallow and intermediate waters is given as follows.
A simple curve fitting method is used to derive an explicit

solution for x0 = f (k0h) based on the data that are generated in
Fig. 1. The discrete data points (kh, koh) are generated explicitly
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Fig. 3. [A] A simple solution of x0 is obtained by directly fitting the data to a quadratic regression line, and [B] the variation of ε with k0h.
Fig. 4. [A] The relative errors calculated from Eq. (3), and [B] the relative errors computed from Eq. (2) with Eq. (3).
from Eq. (1) for given different values of kh, and then used to
construct the data (k0h, kh/

√
k0h). A quadratic regression curve is

fitted to the constructed data points to obtain x0 = f (k0h) as

x0
√
k0h
≈ 1+

1
6
(k0h)+

1
30
(k0h)2, (3)

where x0 = kh. The use of (kh/
√
k0h − 1) as the y axis in Fig. 3

[A] is to ensure that Eq. (3) will reduce to x0 =
√
k0h in shallow

water. The range of the data used in Fig. 3[A] is determined to give
the best quadratic fitting to the data in shallow and intermediate
waters. The true relative errors of Eq. (3) in shallow, intermediate
and deep waters are shown in Fig. 3[B]. It can be seen that Eq.
(3) is almost equal to the exact solution of kh in shallow water,
and then becomes less accurate with increasing k0h and has a
maximum error of about 4% in intermediate water, and finally
becomes invalid in deep water. Eq. (3) is also found as accurate
as those of Nielsen [11] and Wu and Thornton [13] derived with
different methods.
Since Eq. (3) is generally close to the exact solution of Eq.

(1) in shallow and intermediate waters, and also gives x0 >
π in deep water, Eq. (2) together with Eq. (3) may then be
used for the calculation of kh in any water depth without any
laborious iterations required. It is shown in Fig. 4[B] that the
maximum relative error of Eq. (2) is less than 0.01% and occurs
at k0h ≈ 4. It can be also seen from Fig. 4 that Eq. (2) with Eq.
(3) is much closer to the exact solution than Eq. (3) especially
when k0h > 2. This is because the Newton–Raphson method
is of quadratic convergence. Hunt’s [9] explicit solution with a
maximum relative error of 0.2% was concluded by You [16] as the
most accurate explicit solution, but Eq. (2) with Eq. (3) is much
simpler and more accurate than Hunt’s one and should be used
to compute k in wave-related numerical models that require a
large number of wavelength calculations. The use of this explicit
formula, Eq. (2) with Eq. (3), will significantly reduce computing
time in modelling of wave transformation, wave hydrodynamics
and coastal sediment transport.

3.2. One-point iteration

One-point iteration method is another root-finding method
that employees a formula to approximate the root of a function
of x = g(x) Chapra and Canale [2]. This method is simpler, but
converges much more slowly than the Newton–Raphson method.
Let us rewrite the wave dispersion relation, Eq. (1), as

kh =
k0h

tanh(kh)
=

k0h
tanh(x0)

, (4)

where x0 is an initial guess of kh. Similar to Eq. (2), Eq. (4) also
reduces to kh = k0h in deep water. The number of iterations
required for Eq. (4) has been found much larger than that for Eq.
(2). This is because the one-point iteration method is of linear
convergence, but the Newton–Raphson method is of quadratic
convergence. Similarly, if we could find a simple solution for x0 =
f (k0h) that is generally close to the exact solution of kh in both
shallow and intermediate waters and satisfies the condition of
x0 > π in deep water, Eq. (4) may be also used as an explicit
formula for calculation of k in any water depth without any
laborious iterations.
Again, Eq. (3) is used for the calculation of x0 in Eq. (4). The

relative error of Eq. (4) is shown in Fig. 5[B], and the maximum
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Fig. 5. [A] The relative errors calculated from Eq. (3), and [B] the relative errors computed from Eq. (4) with Eq. (3).
relative error is less than 0.1%. Fig. 5 also shows that Eq. (4)
together with Eq. (3) is much closer to the exact solution of Eq.
(1) than Eq. (3). Eq. (4) is similar to Eckart’s [5] simple solution,
kh = k0h/

√
tanh(k0h) with a maximum error of 5%, but much

more accurate. Eckart’s solution is recommended by SPM [12] and
CEM [1] for direct calculation of wavelength in intermediate water
depth. Thus, Eq. (4) with Eq. (3) is preferred for a quick calculation
of k in any water depth with a hand calculator.

3.3. Comparison

There are several explicit formulas proposed for direct compu-
tation of k in shallow, intermediate and deepwaters, but only a few
of them are valid for the calculation of k in any water depth. Some
of these explicit solutions have been compared in Fig. 4 of You [16].
The explicit solution of Hunt [9] is shown to be the most accurate
one of these explicit formulas

kh = (k0h)

√√√√1+ [(k0h)(1+ 6∑
n=1

Dn (k0h)n
)]−1

, (5)

where D1 = 0.6666666666, D2 = 0.3555555555, D3 =
0.1608465608, D4 = 0.0632098765, D5 = 0.0217540484, and
D6 = 0.0065407983. Chen and Thompson [3] refined the explicit
solution of Hunt [9] by revising the six coefficients asD1 = 0.6522,
D2 = 0.4622, D3 = 0, D4 = 0.0864, D5 = 0.0675, and D6 = 0 in
Eq. (5).
The relative errors of the four explicit solutions of Hunt [9],

Chen and Thompson [3], Eq. (2), and Eq. (4) are compared and
shown in Fig. 6. Eq. (3) is used to compute x0 in Eqs. (2) and (4).
It can be seen that Eq. (2) is almost equal to the exact solution
of Eq. (1) and is much more accurate than those of Hunt [9] and
Chen and Thompson [3]. Eq. (4) is shown twicemore accurate than
Hunt’s solution and slightly better than Chen and Thompson [3],
butmuch simpler than the formula of Hunt or Chen and Thompson.
For coastal engineering applications, Eq. (2) or Eq. (4) with Eq.
(3) is preferred to the explicit formulas of Hunt [9] and Chen and
Thompson [3] for the calculate of k in wave-related models that
require a large number of wavelength calculations.
Fig. 7 also shows the comparison of the relative errors εu in

calculating the maximum nearbed wave orbital velocity U0 when
the four explicit formulas of Hunt [9] and Chen and Thompson
[3], Eqs. (2) and (4) are used to calculate k. The maximum wave
orbital velocity U0 is an essential input parameter in modelling of
wave hydrodynamics and coastal sediment transport [14], and it is
often calculated from linearwave theory asU0 = 0.5Hω/ sinh(kh),
where H is the wave height. Based on the linear wave theory, the
Fig. 6. Comparison of the relative errors in calculating k from four formulas: ¬

Hunt [9], ­ Chen and Thompson [3], ® Eq. (2), and ¯ Eq. (4).

‘‘true’’ value of Ut is calculated with the ‘‘exact’’ value of kh and
the calculated value Uc is computed with the estimated values of
kh from the four different explicit formulas, and then the relative
error εu in U0 is computed as

εu =
Uc − Ut
Ut

× 100% =
[
sinh(kh)t
sinh(kh)c

− 1
]
× 100%, (6)

where (kh)t and (kh)c are the true and calculated values of kh. It
is again shown that Eq. (2) is most accurate in computing U0 than
the other three, and Eq. (4) is more accurate than the formulae of
[9]. It can be also seen that the maximum absolute relative errors
of the four formulas all occurred in deep water where Uo is close
to zero. In comparing Figs. 6 and 7, it is found that a small error in
estimating kwill result in a larger (about twice) error in computing
Uo. It should be noted here that this finding is based on the linear
wave theory under regularwaves, butmay not be conclusive under
the coastal conditions where the linear wave theory may become
inaccurate for calculation of Uo. It may be postulated that an error
in estimating k would result in at least the equal or larger error in
the calculated Uo under the coastal conditions.

4. Dispersion relation of coastal waves

The wave dispersion relation, Eq. (1), is derived from linear
wave theory under idealized monochromatic waves with constant
height andperiod. In the coastal zone, however,waves are irregular
and with different height and period. The wave-by-wave analysis
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Fig. 7. Comparison of the relative errors in calculating the nearbed wave orbital
velocity Uo when the four formulas, ¬ Hunt [9], ­ Chen and Thompson [3], ® Eq.
(2), and ¯ Eq. (5), are used to compute kh, respectively.

is often applied to define individual wave periods from time series
of wave pressure measured in the field. The wave period data are
then used to determine the probability distribution of wave period
or characteristic wave periods. Fig. 8 shows the probability density
distributions of wave periods measured in two coastal water
depths of 12 m and 24 m by You and Hanslow [15]. Instantaneous
wave orbital velocities andwave pressuresweremeasured at 0.5m
above the seabed for 17.07 min every 1.0 h at a 2 Hz sampling
rate with two Ocean ADV currents. The duration of the five field
deployments ranged from 31 to 65 days. It can be seen from
Fig. 8 that the measured density distribution is symmetry about
the mean wave period and it is lower and spreads out farther
in the 12 m water than that in the 24 m water. The measured
distributions ofwave periodmaybewell described by themodified
Gaussian density distribution

f (T ) =
1

C Trms
√
π
exp

[
−

(
T − T̄
C Trms

)2]
(7)

where Trms is the root-mean-square wave period, T̄ is the mean
wave period, and C = 0.36 in the water depth of 12 m and
C = 0.33 in 24 m. Several useful characteristic periods are also
calculated from the field data and can be generally described as

Tmax ≈ T1/10 ≈ T1/3 = 1.05Trms = 1.09T̄ , (8)

where Tmax is the maximum wave period, and T1/10 is the average
period of the wave periods that correspond to the largest 1/10 of
all waves. Eq. (8) clearly shows that the probability distribution of
wave period is much narrower than that of wave height, and it lies
mainly in the range of T = (0.5 − 1.5)T̄ . This is termed as the
narrow-banded condition in which all the wave periods are in a
narrow period band about T̄ .
The wave dispersion relation, Eq. (1), may be used to compute

the wavelength of individual irregular waves. It should be noted
here that Eq. (1) is derived from linear wave theory under
the assumptions of irrotational flow, monochromatic and linear
waves, constant water depth, and non mean current. Under the
coastal conditions, however, the flow is often rotational, waves
are irregular and often nonlinear, the mean water depth often
varies with location, and there are always mean currents co-
existing with waves. These field conditions are directly conflict
with the assumptions made for the derivation of Eq. (1). Now, the
question is if the linear wave theory is still valid for the deviation
of Eq. (1) under these field conditions. However, the validity of
Eq. (1) may not be directly verified under irregular waves because
the wavelength of individual irregular waves may not be directly
measured in the field. An alternative approach is proposed here to
verify the validity of Eq. (1) under coastal waves based on the field
wave data of You and Hanslow [15].
Under idealized monochromatic waves, a simple relationship

among the maximum wave orbital velocity U , wave period T , and
maximum hydrodynamic pressure P at a level above the bed can
be easily derived from the linear wave theory as

ωP
U
= tanh(kh), (9)

where k will be computed from the wave dispersion relation, Eq.
(1) or Eq. (2). In this study, the wave-by-wave analysis is used
to analyse individual irregular coastal waves from time series of
wave pressures recorded by the ADV current meter. The wave
data (Ui, Pi, Ti) of individual coastal waves can be then obtained
to verify if the wave dispersion relation, Eq. (1), which is derived
under monochromatic waves, is still valid under irregular coastal
waves based on Eq. (9). When the value of ωP/U measured in
the field generally agree with the theoretical value of Eq. (9),
Fig. 8. Probability density distributions of individual coastal wave period T measured in water depths of 12 m and 24 m by You and Hanslow [15] are compared with Eq.
(7).
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the linear wave theory may be proven to be valid under the
coastal conditions and then Eq. (1) may be still applicable to
coastal waves. Fig. 9 shows the comparison of Eq. (9) with the
field maximumwave data on (Umax, Pmax, Tmax). The zero-crossing
method is applied to determine the values of Umax, Pmax and
Tmax of individual maximum waves from time series of wave
orbital velocities and wave pressures measured for 17 min every
hour over the period of 65 days. There is only one data point
(Umax, Pmax, Tmax) obtained every hour from a 17min-timeseries of
wave pressure and orbital velocity. It can be seen from Fig. 9 that
the linear wave theory is generally valid for individual maximum
waves measured every hour in the two water depths even though
Eq. (9) slightly overestimates the measured values of ωP/U . Some
data points collected in the water depth of 12 m are shown to be
scattering. This may be due to the fact that the ADV current meter
was affected by biological growth on the sensors. In general, the
wavelength of individual maximumwavesmay be computed from
Eq. (1) or Eq. (2) with T = Tmax.
For most engineering applications, however, we may be

interested in the wavelength of characteristic waves, rather than
in the wavelength of individual irregular waves. The characteristic
of the real sea is often described by significant wave height
and period. The significant wave height Hs and period Ts has
been postulated to represent the characteristic of the real sea
in the simple form of monochromatic waves (Hs, Ts). With this
simplification, all the formulas derived under regular waves could
be used to compute the kinematic and dynamics of significant
waves, and Eq. (1) could be then used to compute k with T =
Ts. Fig. 10 shows the comparison of Eq. (9) with the field data
(Us, Ps, Ts) of significant waves. The significant wave data on
(Us, Ps, Ts) are analysed from time series of instantaneous wave
orbital velocities and pressuresmeasured in individual bursts with
the zero-crossing method. It can be seen from Fig. 10 that the
values of (ωP/U)s measured in the two water depths of 12 m and
24 m indeed are only the function of T as predicted theoretically,
but generally overestimated by Eq. (9). The best fitting curve fitted
to the field data is (ωP/U)s = 0.92 tanh(kh)s. This means that Eq.
(9) overestimates the measured values of (ωP/U)s by about 8%.
This discrepancy may be due to several factors, e.g. the validity
of the assumptions used to derive Eq. (1), the applicability of the
linear wave theory to the real sea waves, and the simplicity of
the dispersion relation. In comparing Figs. 9 and 10, the maximum
wave data (Umax, Pmax, Tmax) are better predicted by Eq. (9) than
the significant wave data (Us, Ps, Ts). It may be concluded here that
the wave dispersion relation, Eq. (1), may be still valid under the
coastal conditions, but only an approximation to the real problem,
and Eq. (2) or Eq. (4) together with Eq. (3) is accurate enough for
practical engineering applications.

5. Conclusion

The wave dispersion relation, Eq. (1), has been successfully
approximated as a single and explicit formula for direct calculation
of k in any coastal water depth by using the Newton–Raphson and
one-point iteration methods. The shallow, intermediate and deep
waters are explicitly defined in this study as k0h ≤ 0.1, 0.1 <
k0h < π and k0h ≥ π , respectively, in terms of k0h rather than
kh. The proposed explicit formula, Eq. (2) together with Eq. (3), is
derivedwith amaximumrelative error of only 0.01% for calculation
of k in any water depth. This formula is the most accurate
explicit one proposed so far, and should be used to calculate k in
wave-related models that require a large number of wavelength
calculations. The other explicit formula, Eq. (4) together with Eq.
(3), is simple and also accurate with a maximum relative error
of 0.1% and can be easily used to calculate k in any water depth
with a hand calculator. The newly derived relationship, Eq. (9),
Fig. 9. The theoretical relationship, Eq. (9) [dashed line], derived from linear
wave theory under monochromatic waves, is compared with the wave data on
(Umax, Pmax, Tmax).

Fig. 10. The theoretical relationship, Eq. (9) [solid line], derived from linear wave
theory undermonochromatic waves, is comparedwith the significant wave data on
(Us, Ps, Ts).

has enabled us to quantitatively verify the validity of the wave
dispersion relation under the coastal conditions. It is found that the
wave dispersion relation derived from linear wave theory under
idealized monochromatic waves may be still valid for calculation
of the wavelength of coastal characteristic waves, but only an
approximation to the real problem. The use of the newly proposed
two explicit formulas will significantly reduce computing time in
wave-related numerical models.
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