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The stability of two-layer oscillatory flows was studied experimentally in a cylindrical
container with a vertical axis. Two superposed immiscible liquids, differing greatly in
viscosity, were set in relative oscillatory motion by alternating container rotation.
Waves arising beyond a threshold were observed in detail for small oscillation
frequencies ranging from 0.1 to 6 Hz. Measurements were performed on the growth
rate and the wavenumber of these waves. The instability threshold was determined
from the growth rate data. It was found that the threshold and the wavenumber varied
with the frequency. In particular, significantly lower thresholds and longer waves were
found than those predicted by the inviscid theory of the oscillatory Kelvin–Helmholtz
instability. Favourable agreement with the predictions of an existing viscous theory
for small oscillation amplitude flows indicates the important role of viscosity, even
at the highest frequency, and suggests a similar mechanism behind the instability as
that for the short wave instability in steady Couette flows. A semi-numerical stability
determination for finite amplitude flows was also performed to improve the prediction
in experiments with a frequency lower than 1 Hz.
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1. Introduction
The stability of two-layer flows is of practical importance and has been studied by

many researchers in a variety of configurations (Joseph & Renardy 1992). However,
the configuration of oscillatory shearing flows has been less well studied than
other configurations. Inviscid theories developed by Kelly (1965) and Lyubimov
& Cherepanov (1987) predict an instability that has the same threshold in relative
velocity, �Ucr , and the same most unstable wavenumber mode, kcr , as the classical
Kelvin–Helmholtz instability. The following predictions are given for oscillatory flow:

�Ucr =

√
2(ρ2

1 − ρ2
2 )gλcap

πρ1ρ2

, kcr =
2π

λcap

, (1.1)
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Figure 1. Waves formed at a silicone oil–water interface along a cylindrical container
periphery (side view, the frequency and amplitude of container rotation are ω/2π = 4.0 Hz
and Φ0 =2.5◦).

where ρ1 (ρ2) is the density of the lower (upper) fluid and λcap is the
capillary wavelength λcap =2π

√
γ /(ρ1 − ρ2)g (γ : interfacial tension, g: gravitational

acceleration).
The formation of interface waves, called ‘frozen waves’, was observed experimentally

in oscillatory two-layer flows (Wolf 1969; Shyh & Munson 1986; Beysens et al. 1998;
Ivanova, Kozlov & Evesque 2001a; Ivanova, Kozlov & Tachkinov 2001b; Talib,
Jalikop & Juel 2007). These experiments were typically conducted in a container with
two superposed immiscible liquid layers. The container was vibrated horizontally
to induce a shearing motion between the liquid layers (for more details on the
existing experiments, see Yoshikawa & Wesfreid 2011, referred to herein as Part 1).
Experimental values of �Ucr and kcr showed significant dependence on the oscillation
frequency (Beysens et al. 1998; Ivanova et al. 2001a , b). Furthermore, �Ucr is often
much lower than the predicted values (1.1). Recent theoretical investigations have
shown that the inclusion of viscosity in the linear stability analysis can explain this
behaviour (Talib et al. 2007; Part 1).

In Part 1, we developed a linear stability theory for viscous flows. An asymptotic
case, in which the oscillation amplitude �U/ω (�U : relative velocity between two
fluids) is much smaller than the wavelength λ, was considered. The stability was
determined by using asymptotic expansions about a small Keulegan–Carpenter
number K = 2�U/ωλ. This number is twice the ratio of the oscillation amplitude to
the wavelength and reflects the importance of advection relative to local variation
in time-periodic flows. This viscous small-amplitude theory showed an important
dependence of �Ucr and kcr on the frequency, as found in the experiments. A
particular frequency regime, called the moderate frequency regime, was distinguished
for layers with a large viscosity contrast, where the instability threshold becomes
substantially lower. In this regime, it was suggested that instability was due to
perturbation flow generated through the velocity continuity at the disturbed interface,
similar to the short wave instability of steady two-layer Couette flows (Hooper &
Boyd 1983; Hinch 1984). Comparison with the experiments of Talib et al. (2007) with
large frequencies (10 Hz< ω/2π < 50 Hz) indicated that the asymptotic theory is valid
up to a relatively large value of K(≈0.5).

In the present paper, we report detailed observations of the evolution of interface
waves developed at the interface of highly viscous silicone oil and water (see figure 1).
The instability threshold and wavenumber of the resulting patterns are also reported.
Experiments were carried out with a vertically installed cylindrical container in which
the two fluids were superposed. In contrast with most of the preceding experiments,
the relative oscillatory motion of the fluid layers is in the azimuthal direction. It
was created by the shear force exerted by the container sidewall on the fluid layers.
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Figure 2. Schematic illustration of an experimental set-up.

The frequencies are smaller than in typical experiments and range from 0.1 to 6 Hz.
Only Shyh & Munson (1986) have performed experiments in this geometry. They
reported wave formation through a supercritical bifurcation. Although they measured
the instability threshold and the height of saturated waves, they did not report any
wavelength measurement.

The set-up and the basic flows established in the absence of interface waves are
described in § 2. Experimental results, covering a wide range of K (0.2 < K < 1.5),
are presented and discussed in § 3, including a comparison with the small-amplitude
theory of Part 1. In § 4, a semi-numerical determination of the linear stability is
performed to provide better predictions for large K experiments (equivalently, for
small frequency experiments). Conclusions are given in § 5.

2. Experimental set-up
2.1. Set-up

Highly viscous silicone oil (47V10000) of density ρ2 = 973 kg m−3 and viscosity
ν2 = 10 000 mm2 s−1 and water were superposed in a cylindrical glass container with
a vertical axis as shown in figure 2. The container radius R was 112 or 120 mm. The
layer thicknesses were 35 mm for the oil and about 70 mm for the water. Sodium
dodecyl sulphate (SDS) was dissolved in the water at a concentration of 1.8 kg m−3 to
minimize the undesired optical effects of the interface meniscus during the interface
visualization in lateral views. A small amount of fluorescein was also added to the
water to enhance the optical contrast at the interface. The interfacial tension of
this solution with the silicone oil was measured as 10 ±3 mN m−1 (correspondingly,
λcap =39 ±6 mm) by the pendant drop method.

The container is mounted on a horizontal turntable that executes alternating
rotations around a vertical axis aligned with the container centre axis. The angle Φ

of the turntable rotation follows Φ = Φ0 sin (ωt) for a given frequency ω/2π and a
given rotation amplitude Φ0. When the container is in rotation, the sidewall shears the
fluids and sets them in motion. In a fluid with kinematic viscosity ν, such oscillatory
shears penetrate over a depth of the order of the Stokes boundary layer thickness
δ=

√
2ν/ω. In the oil, this penetration depth, δ2, is comparable to the container radius,

and the entire layer is set in motion. In water, the depth δ1 is quite small (less than
1.8 mm in our experiments) and the water layer is primarily at rest in the laboratory
frame. Therefore, the essential configuration is that in which a viscous oil layer shears
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Figure 3. Wave evolution from a lateral view (a) and a final saturated state from a top view
(b). A movie of the evolution shown in (a) is available at journals.cambridge.org/flm (the
oscillation parameters: ω/2π=1.10 Hz and Φ0 =6.7◦).

a stationary water layer in an oscillatory manner, generating the condition for the
oscillatory Kelvin–Helmholtz instability.

A circular fluorescent lamp is used for lighting the oil–water interface uniformly
around the container periphery. The interface behaviour is observed optically from
the top and side views by two CCD cameras (see figures 3(a) and 3(b) for side and
top view images, respectively). The optical axis of the top-view camera aligns with the
container’s centre axis, while that of the side-view camera is set to see the interface
in a horizontal radial direction at the interface level. The side- and top-view cameras
observe, respectively, the vertical and radial evolutions of interface deformations. To
enhance the visualization of interface deformations in the top view, concentric circles
are printed on the container bottom, as seen in figure 3(b). Images captured by both
cameras are recorded by the computers for analysis.

2.2. Basic flow

Flows induced by alternating container rotation can be calculated by assuming a
flat oil–water interface with an infinite viscosity contrast. A one-dimensional flow
U =U eϕ (eϕ: azimuthal unit vector) in a fluid of a viscosity ν is governed by the
Navier–Stokes equation in cylindrical coordinates (r, ϕ, z):

∂U

∂t
= ν

[
1

r

∂U

∂r
+

∂2U

∂r2
+

∂2U

∂z2
− U

r2

]
. (2.1)

For the oil layer (z > 0), the shear at the interfaces with air and water is negligible.
The flow in the oil is induced only by the shear exerted by the sidewall and is uniform
in the z-direction. The periodic flow satisfying (2.1) and the no-slip condition on the
wall is

U2 = |Û2|cos(ωt + arg Û2) (2.2)
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with

Û2(r) = ωRΦ0

J1

(√
−i2 r/δ2

)
J1

(√
−i2 R/δ2

) (2.3)

where J1(x) is the Bessel function of first kind of order 1. The magnitude |Û2| is an
increasing function of r and attains its maximum value, ωRΦ0, at the wall.

In the water (z < 0), the flow is induced by the shear exerted by the oil layer as
well as by the sidewall. The velocity field is no longer uniform in the z-direction. A
Stokes boundary layer will develop on the oil–water interface. The solution of (2.1)
that satisfies the no-slip conditions on the wall and at the interface can be expressed
as a series of Bessel functions {J1(µnr/R)} (n= 1, 2, . . .) with z-dependent coefficients
(µn: nth zero of J1(x)). Inspection of this solution for a thick water layer, as in
the experiment, shows that the velocity field is well approximated by the following
equation at a radial position smaller than R − 5δ1:

U1 = |Û2| ez/δ1 cos

(
ωt +

z

δ1

+ arg Û2

)
. (2.4)

In the vertical direction, this flow has the same velocity profile as in Stokes’
oscillatory flow induced by an oscillating flat plate (Lamb 1945, art. 345). It diminishes
rapidly with the distance from the interface. The water layer is immobile. On the
sidewall, another Stokes boundary layer develops. With r increasing in a thin region
R − 5δ1<r<R, the velocity U1 approaches the sidewall velocity. Consequently, the
relative velocity between the oil and water layers goes to zero.

As shown in § 4, the determined flow, (2.2) and (2.4), at a given radial position
has the same velocity profile as in the flow considered in Part 1 in the limit of
a large viscosity contrast. The stability of flows induced by container rotation can
therefore be analysed by using the formulation in Part 1. In the application of stability
theories of two-dimensional flows in plane geometry (e.g. the inviscid theory (1.1) and
the theory of Part 1) to the present experiment, the flow at r ≈ R − 5δ1 should be
considered, where the relative motion is maximum and the instability first occurs. The
relative velocity between the layers at this radial position is well approximated by
�U =RωΦ0, because the Stokes boundary layer in water is very thin (δ1 � R) in the
present experiment. The validity of the theoretical flow (2.2) and (2.4) was examined
experimentally as described below. Centrifugal effects neglected in the derivation of
(2.2) and (2.4) will be discussed later.

The theoretical basic flow (2.2) and (2.4) was confirmed by two tests: (i) following
the positions of coloured water drops suspended in the oil layer and comparing them
with the calculation and (ii) injecting dye into the water layer to qualitatively observe
the immobility of the water layer. In test (i), the drops had a diameter of about 5 mm,
which was much smaller than the Stokes boundary layer thickness δ2 in the oil within
the examined frequency range (180 mm for 0.1 Hz and 23 mm for 6 Hz). Viscous
drag exerted on a drop is then dominant over the inertia of the drop. Therefore, the
motions of the drops directly represent the flow in the oil layer. It was observed that
the drops moved sinusoidally in the azimuthal direction like ϕ=φm sin(ωt+θ), without
any radial displacement. Figure 4 shows the amplitude φm (r) and the phase θ (r) of
the flow determined from the drop motions and compares them with theoretical
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Figure 4. Azimuthal motion of drops suspended in the oil layer: ϕ = φm sin (ωt + θ ). The
circles and the squares stand for 0.17 Hz and 1.41 Hz, respectively. (R = 112 mm and Φ0 = 8.2◦

for both experiments). The lines show the prediction of (2.5).

predictions of ∫
U2 dt =

|Û2|
ω

sin(ωt + arg Û2). (2.5)

The theoretical predictions are found to agree well with the experiments. In test (ii),
a small amount of dye (fluorescein solution) was injected at a middle level of the
water layer over a wide horizontal area. During a number of container rotations at
different frequencies, the traces of dye were observed to be immobile except near the
container wall and the interface with the oil, implying the immobility of the bulk of
the water layer.

Centrifugal effects were not taken into account in the derivation of the flow (2.2)
and (2.4). In experiments, a dome-like global deformation of the oil–water interface
was observed, as also reported by Shyh & Munson (1986). This deformation is
caused by a pressure increase �pcen =

∫
ρ2(U

2
2 /r) dr in the oil due to centrifugal force.

The interface should shift vertically in order to balance �pcen at the interface by a
hydrostatic pressure. The dome height HD can be estimated from this balance: since
�pcen∼ρ2(RωΦ0)

2/4, the height HD is given approximately by ρ2(RωΦ0)
2/4(ρ1−ρ2)g.

The latter value should be small compared with the container diameter 2R for a
flat oil–water interface. Centrifugal force also generates a radial flow component ur

in the boundary layer on the oil–water interface in water. This component can be
estimated from the theoretical results of Rogers & Lance (Greenspan 1969): ur =
−0.886(ν1∂Φ/∂t)1/2. For one-dimensional velocity fields in the azimuthal direction, the
component ur should be small compared with the azimuthal velocity RωΦ0. From
these two requirements, HD � 2R and ur � RωΦ0, one can derive the following
conditions on the container velocity RωΦ0 for negligible centrifugal effects:

0.79ν1

R
� RωΦ0 �

√
8(ρ1 − ρ2)gR

ρ1

. (2.6)

It follows that a large container radius is necessary for appropriate experiments. For
example, the critical velocity is typically of the order of �Ucr given by (1.1). Using
RωΦ0∼�Ucr in the conditions (2.6), one will find R �

√
ρ1ρ2ν

2
1/(ρ1

2 − ρ2
2)gλcap and

R � (ρ1 + ρ2)λcap/4πρ2. In the present experiments, the conditions (2.6) are well
satisfied. Indeed, HD/2R < 5×10−3 and ur/RωΦ0 � 0.05 for all the measurements
presented in the next section.
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Figure 5. Wave height evolutions (a) and growth rates (b) for different frequencies. The
oscillation amplitude of the container is fixed at 25◦ (R = 112 mm). In (a), the evolutions for
frequencies higher than 0.39 Hz are enlarged in the inset.

3. Results and discussion
3.1. Wave evolution

When oscillatory rotations of the container exceed a certain threshold, the interface
deforms waves along the container periphery, where the relative oscillatory motion
of the layers is the most intense. These waves are fixed on the oil layer and sheared
by water and have a radial extent of a few centimetres, fading out over this distance
towards the container centre. No waves form inside a circular region at the centre of
the interface. At the beginning of their emergence, the shape of the waves along the
periphery is sinusoidal (see the first picture in figure 3a). The wave height h, defined
as the difference between the crest and trough levels in the lateral view, increases
exponentially with time at this linear evolution stage. In figure 5(a), the temporal
evolutions of h are shown in a logarithmic scale for different oscillation parameters.
The initial linear parts of these curves correspond to the linear evolution stage. After
around 3–4 mm, the height is found to increase more rapidly, as seen in the second
linear section of the evolution curves in the figure. At this nonlinear amplification
stage, the formation of non-sinusoidal waves starts from some locations and they
propagate along the periphery. The waves exhibit finger-like invading parts of the oil
into the water (see the second picture in figure 3a). The radial extent of the waves
continues to increase. This nonlinear amplification continues until the wave height
reaches a maximum value. Then, the waves begin to relax to their final saturated
state. When the frequency is relatively small (ω/2π � 3 Hz), thinning of the oil fingers
is observed during the relaxation. Finally, being sheared by the stationary water, the
oil fingers horizontally oscillate like pendulums with their roots fixed on the oil layer.
This thinning process is often accompanied by a small reduction of the height. A
movie of the entire evolution process in this small-frequency experiment is available
at journals.cambridge.org/flm. In experiments with a large frequency (ω/2π � 3 Hz),
the thinning process is not observed and the final wave shape is different from that
of small-frequency experiments, as seen in figure 1. The waves are more triangular
in shape, as reported by Ivanova et al. (2001a), and look ‘frozen’ after saturation
without pendulum-like oscillations. Only the tips of the oil fingers oscillate with a
small amplitude.
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Jalikop & Juel (2009) investigated saturated waves generated in oscillatory two-
layer flows, by experiments in a horizontally vibrated parallelepiped container.
The considered upper-layer fluids were silicone oils of viscosities 114 mm2 s−1 and
210 mm2 s−1. The oscillation frequencies ranged from 20 to 30 Hz. They distinguished
gravity-dominated waves and capillary-dominated waves. The former arise in the
weakly nonlinear regime and are characterized by small curvature (� 2π/λcap) at
the crest or trough and by small wave height (� λcap/2π). They exhibit trochoid or
inverted-trochoid shapes, depending on the viscosity ν2 of the upper-layer fluid. The
latter waves are observed in the strongly nonlinear regime and have sharp crests and
troughs. In the present experiments, the curvature at the crest is much smaller than
2π/λcap (=0.16 mm−1). For the waves formed at 4 Hz shown in figure 1, for example,
the curvature at the crest is around 0.06 mm−1. Indeed, all the experiments were
performed with oscillation parameters near the instability thresholds. The observed
waves are gravity-dominated. However, the waves attain larger height than λcap/2π
(=6.2 mm), as seen in figure 5(a). Jalikop & Juel (2009) reported that the wave
height increases with a decrease in frequency. Their data also indicate that the wave
height increases with the viscosity ν2. Both tendencies would lead to the large gravity-
dominated waves observed in the present experiments. Another remarkable difference
of the present waves from those in Jalikop & Juel (2009) is their shape. At large
frequencies ( >3 Hz), the oil fingers have sharp tips and waves exhibit non-trochoidal
shapes (e.g. figure 1). Waves with the deep thin fingers observed in small-frequency
experiments ( <3 Hz) are also non-trochoidal (e.g. the third picture in figure 3a). The
shape difference would also stem from the large viscosity and small frequencies. The
sharp tips and the deep thin fingers are formed during their horizontal oscillation in
the stationary water. The size L of oscillating tips ought to be smaller than δ2, as

the viscous relaxation time ( ∼
√

L2/ν2) should be smaller than the oscillation time
scale ω−1 for their oscillatory motion. In the preceding experiments (Ivanova et al.
2001a; Jalikop & Juel 2009), δ2 is of the order of a few millimetres. The size L

is then of the order of 1 mm. However, oscillation of such small structures will be
prevented by interface capillarity. The sharp tips will not be formed. In the present
experiments, δ2 ranges from 23 to 180 mm due to a large ν2 and small frequencies.
Alternating shear exerted by water can therefore set the tips in oscillation and
sharpen them. Particularly, δ2 becomes comparable with the wavelength below 3 Hz.
Entire fingers can oscillate at such small frequencies and the deep thin fingers are
formed.

A wave height evolution similar to figure 5(a) is found in the formation of sand
ripples under oscillatory water flow (Stegner & Wesfreid 1999). One similarity between
the two systems is that a linear evolution is followed by a rapid nonlinear amplification
in both scenarios. In the ripple formation, the latter stage corresponds to a transition
to ripples with sharp crests, called vortex ripples. Vortex ripples are associated with
flow separation behind the crests. The criterion of Sleath (1984), often used to predict
the presence of the separation, is that the ratio of the ripple height to the wavelength
is larger than around 0.1. In the two-fluid experiment, the nonlinear amplification also
begins when this criterion is satisfied. Indeed, the above-mentioned starting height is
around 0.1 times that of the capillary wavelength, which is a typical wavelength as
seen below. The nonlinear evolution of waves and an analogy with the sand ripple
formation are interesting subjects to investigate but are beyond the scope of the
present work. A possible influence of the contact line dynamics on the nonlinear
evolution of waves is beyond the scope as well. They will be the subjects of future
publications.
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Figure 6. Stability diagram (a) and wavenumber of the most unstable mode (b).
Experimentally obtained values (�: with a container of R = 112 mm, �: with a container
of R = 120 mm) are compared with the viscous small-amplitude theory of Part 1 (bold solid
line) and the viscous finite-amplitude theory presented in § 4 (dashed line).

3.2. Stability and wavenumber selection

The linear growth rate σ of interface waves is determined as the slope of semilog-
plotted height evolutions at the linear evolution stage. A series of measurements of
the growth rate with a fixed oscillation amplitude for different frequencies gives an
estimate of the instability threshold in frequency by linear extrapolation, as shown in
figure 5(b). Determined thresholds for different amplitudes yield a stability diagram
on the amplitude–frequency plane, as shown in figure 6(a). The rotation amplitude
Φ0 has been transformed into the amplitude of azimuthal oscillation of the container
at the sidewall, RΦ0, where the first wave formation is observed. It is seen that the
threshold lowers monotonically as the frequency increases. The stability diagram is
shown in the velocity–frequency plane in the inset of the figure (the velocity �U is
calculated by �U = ωRΦ0). It is seen that the instability threshold is characterized
by a constant velocity over a wide frequency range. Its value, around 92 mms−1,
is substantially smaller than the prediction of the inviscid theory (1.1), which gives
115 mm s−1. For frequencies lower than 1 Hz, the critical velocity �Ucr diverges.
Similar behaviour of the instability threshold was reported in the literature (Ivanova
et al. 2001a , b; Talib et al. 2007), where the authors employed fluids of high viscosity.

The oil viscosity affects the interface stability, as expected from its large value.
According to the analysis in Part 1, very high frequencies are required for neglecting
viscous effects: ω/2π>104 × ν2/πλ2

cap ≈ 20 kHz. In the figure, the prediction of the
viscous small-amplitude theory of Part 1 is shown as a bold solid line. This theory
predicts a constant critical velocity for frequencies higher than 0.12 Hz. An experiment
with such a frequency falls in the moderate frequency regime distinguished in Part 1.
In this regime, the critical velocity is smaller than that of the inviscid theory (1.1) by
a factor

√
ρ1/(ρ1 + ρ2)=0.507. The viscous theory reproduces the observed constant

critical velocity in experiments with a frequency higher than 1 Hz and yields a
diverging behaviour of �Ucr for small-frequency experiments ( < 1 Hz). However,
it underestimates the threshold in these small-frequency experiments and does not
provide an adequately rapid divergence of �Ucr with decreasing frequency, compared
to the experimental values.
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In experiments, the number N of formed waves did not change with time. It
was observed that the waves emerging from the periphery (r =R) kept their relative
azimuthal positions throughout their entire evolution. The primary wavenumber k

( = 2π/λ) can then be calculated from the number N of formed waves in the saturated
state by the relation k=N/R. In figure 6(b), this wavenumber is shown as a function
of the frequency. The error bars in the figure represent the effect of geometrical
confinement or quantification. The quantification gives ±1 uncertainty in the number
of waves. It is seen that the wavenumber is smaller than the capillary wavenumber
2π/λcap below around 2 Hz. Observations of waves of k smaller than the capillary
wavenumber were also reported in the literature (Ivanova et al. 2001a , b; Talib et al.
2007). The wavenumber increases with frequency and seems to equal the capillary
wavenumber beyond 2 Hz.

The predictions of the viscous small-amplitude theory are plotted as a bold solid
line in the figure. It shows an increasing behaviour of k with increasing frequency.
Above 0.2 Hz, the predicted wavenumber is nearly constant and equal to the capillary
wavenumber. The continuous slight increase beyond this value with increasing
frequency is due to a peculiar behaviour found in Part 1: k attains a maximum
when (λcap/δ2)

2 ≈ 60 (equivalently ω/2π ≈ 126 Hz, for the present silicone oil). Below
0.2 Hz, the theory predicts a rapid decrease of k with decreasing frequency. As in
the comparison of the instability threshold, the viscous theory qualitatively explains
the behaviour of the critical wavenumber. For large-frequency experiments (>2 Hz),
it provides good quantitative predictions. However, the theory fails to reproduce
quantitatively the experimental rapid decrease of k with decreasing frequency below
2 Hz.

In the above discussion, it was seen that the experimental results on the instability
threshold and the critical wavenumber are explained by the viscous small-amplitude
theory of Part 1 developed for flows in a plane geometry. As suggested in Part 1,
the instability of oscillatory flows with frequency such that (λcap/δ2)

2<10ρ2/ρ1

(equivalently, ω/2π<20 Hz, for the present silicone oil) is velocity-driven, i.e. due to
perturbation flow generated through the velocity continuity at the disturbed interface,
similar to the short wave instability of steady two-layer Couette flows (Hooper & Boyd
1983; Hinch 1984). The generated perturbation flow is advected by the basic flow
to yield an out-of-phase flow component enhancing the interface disturbance. This
mechanism is different from the classical Kelvin–Helmholtz instability (1.1), which
is expected in very high frequency experiments. Agreements with the viscous theory
suggest that the present experiments concern the former velocity-driven instability,
not the classical instability.

The viscous theory of Part 1 fails to quantitatively explain the small-frequency
behaviour of �Ucr and kcr . This is expected because the validity condition K � 0.5
of the small-amplitude theory is violated for these experiments. The effects due to
a finite amplitude should be taken into account. In the next section, we solve the
linear stability problem formulated in Part 1 without assuming small values for K .
This solution enables one to distinguish amplitude effects from viscous ones on the
stability and to improve quantitative predictions.

4. Stability of flows with a finite oscillation amplitude
We present a semi-numerical resolution method of the linear stability problem

formulated in § 2 of Part 1. This formulation is for fluid layers of semi-infinite depth.
Considered flows are two-dimensional and in plane geometry as seen in figure 7. Note
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W2( y, t )

W1( y, t )

γ
δ1

δ2

Fluid 1
ρ1   ν1

(less viscous)

Fluid 2
ρ2   ν2

(more viscous)

x

y

Figure 7. Oscillatory flow in semi-infinite fluid layers considered in Part 1 (in the interface
reference frame). The basic flows, W1 and W2, are given in (4.1).

that the vertical coordinate is denoted by y to prevent confusion with the cylindrical
coordinate system used earlier. The flows have the following velocity field:

W1 = − ρκ�U

1+ρκ

[
cos (ωt) − ey/δ1 cos

(
ωt+

y

δ1

)]
(in the less viscous fluid),

W2 =
�U

1+ρκ

[
cos (ωt) − e−y/δ2 cos

(
ωt− y

δ2

)]
(in the more viscous fluid),

⎫⎪⎪⎬⎪⎪⎭ (4.1)

in the interface reference frame, i.e. the reference frame moving with the basic flow
velocity Ui(t) at the interface level (y =0). The density and viscosity contrasts, ρ and κ ,
in (4.1) are ρ =ρ2/ρ1 and κ =

√
ν2/ν1. For fluids with a large viscosity contrast (κ � 1),

the above velocity profiles are reduced to W1 = −�U [cos (ωt) − ey/δ1 cos(ωt +y/δ1)]
and W2 = 0. These are identical to the velocity fields (2.2) and (2.4) with Ui =
|Û2|cos(ωt+ arg Û2) and �U = |Û2|. The stability of the flow induced by container
rotation can therefore be analysed by using the formulation in Part 1.

The stability problem consists of linearized vorticity equations and boundary
conditions with respect to stream functions and interface disturbance. These are
decomposed into a net evolution eσ t and different frequency components according to
the Floquet theory (Yih 1967). The boundary conditions required at the interface are
the velocity continuity, the stress balance and the kinematic equation of a material
interface. In Appendix A, these boundary conditions written in the interface reference
frame are reproduced from Part 1. All the equations are non-dimensionalized with the
time scale ω−1 and the velocity scale �U . Lengths in a fluid are scaled by the Stokes
boundary layer thickness in the fluid to respect the dynamics inside the boundary layer.
The resulting equations involve dimensionless parameters: wavenumber q =λcap/λ,
frequency Ω =(λcap/δ2)

2 and velocity parameter B =πρ1ρ2�U 2/2(ρ1
2−ρ2

2)gλcap ,
besides ρ, κ and K .

4.1. Resolution method

The resolution method consists of a shooting resolution of the vorticity equation.
The method was developed for calculating the oscillatory flow over a solid wavy
wall (Vittori 1989) and was used to model the formation of sand ripples under sea
waves (Vittori & Blondeaux 1990). In application of this resolution, we consider only
the situation corresponding to the experiments. We assume an interface disturbance
having a static component and slow growth compared with the oscillation and
viscous dissipation. It follows that the periodic components of flow can be calculated
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by neglecting their net evolution. Stability is then determined by a small steady
component of the velocity at the interface.

The vorticity equation for the flow in water in the laboratory frame, where the
water layer is immobile, is

(�1−i2m)�1φ̃1,m = iπK ey1
[
eiy1 (�1 − i2) φ̃1,m−1+ eiy1 (�1 + i2) φ̃1,m+1

]
(4.2)

for y1 < 0 (m = 0, ±1, ±2, . . .). φ̃1,m is the frequency component eimt of the stream
function in the laboratory frame. The vertical coordinate is non-dimensionalized by
δ1 and denoted by y1. The basic flow concentrates only within the Stokes boundary
layer developed on the interface (y1 =0) and diminishes exponentially as y1 → − ∞.
The advection associated with the basic flow found on the right-hand side of (4.2),
therefore, diminishes with the distance from the interface. In the outer layer y1< − D

(D represents the thickness of the boundary layer), the advection is negligible and the
stream function is given by

φ̃1,m =

⎧⎪⎨⎪⎩
a1,m e(2πq/κ

√
Ω)y1 + b1,m e

√
(4π2q2/κ2Ω)+i2my1 (m 
= 0),

a1,0 e(2πq/κ
√

Ω)y1 + b1,0

2πq

κ
√

Ω
y1 e(2πq/κ

√
Ω)y1 (m =0).

(4.3)

The constants {a1,m, b1,m} (m = 0, ±1, ±2, . . .) will be determined by the boundary
conditions, as seen later.

It is convenient to write the vorticity equation (4.2) for different frequency
components in a single matrix equation:

dφ1

dy1

=K1(y1) φ1 (4.4)

with φ1 = [φ̃1,−M φ̃′
1,−M φ̃′′

1,−M φ̃′′′
1,−M φ̃1,−M+1 · · · φ̃′′′

1,M ]tr . The frequency components
higher than M have been truncated. For the definition of the matrix K1, see
Appendix B. After (4.3), the stream function φ1 in the outer layer can be written as

φ1 =Q∞
1 v1 (4.5)

with a known matrix Q∞
1 (for its explicit definition, see Appendix B). The

column vector v1 is composed of the constants in (4.3): v1 = [a1,−M b1,−M

a1,−M+1 · · · a1,M b1,M ]tr .
The flow inside the boundary layer is computed by numerically integrating the

vorticity equation (4.4) from the boundary with the outer layer at y1 = − D. This
integration yields a matrix function Q1(y1) which relates φ1 and v1 at an arbitrary y1

by φ1 = Q1v1.

The computed stream functions {φ̃1,m} are used to derive the flow in the interface

reference frame by a transformation: ψ̃1,m =
∑

n Jn−m(ξ ) φ̃1,n (Rousseaux et al. 2004).
Jn(x) is the Bessel function of first kind of order n. The argument ξ is associated
with the amplitude of the relative oscillation between the reference frames (ξ =
− πKρκ/(1 + ρκ), for the water layer). Introducing a matrix J1 representing this
transformation, the stream function ψ1 in the new reference frame is found:

ψ1 = J1Q1v1 (4.6)

where ψ1 is composed of {ψ̃1,m} and their derivatives in a similar manner to the
definition of φ1.
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Figure 8. Dispersion relation calculated by (4.9) for different values of B. Other parameters
are ρ = 0.973, κ =100 and Ω = 0.3746.

A similar procedure applied to the flow in the oil gives the stream function ψ2 in
the interface reference frame as

ψ2 = J2Q2v2 (4.7)

where ψ2, v2 and Q2 are defined similarly to ψ1, v1 and Q1, respectively.
The boundary conditions at the interface can also be written in matrix notation:

A1ψ1(0) +A2ψ2(0) +Bη = C , with η =[η̃−M η̃−M+1 · · · η̃−1 η̃1 η̃2 · · · η̃M ]tr . The latter
column vector does not include the static component of the interface disturbance η̃0.
This component is set as η̃0 =1 without any loss of generality. The column vector C is
composed of terms associated with the interaction of η̃0 with the basic flow and terms
due to the stabilization by gravity and capillarity. The definition of C and those of
the matrices A1, A2 and B are found in Appendix B. The above boundary condition
in a matrix form does not include the kinematic equation for the steady mode. The
latter concerns the slow net evolution of the interface disturbance, and will be used
to calculate the growth rate, as shown later (see (4.9)).

Substituting (4.6) and (4.7) into the boundary condition, one finds a linear algebraic
equation set:

[A1J1Q1(0) A2J2Q2(0) B]

⎡⎣v1

v2

η

⎤⎦ = C. (4.8)

v1 and v2 computed by the inversion of the latter equation determine the flow ψ1

and ψ2 through (4.6) and (4.7).
In general, the determined flow has a steady component of vertical velocity at the

interface, which yields a net growth or decay of interface disturbance. The growth
rate is calculated by the kinematic equation for the steady mode:

σ = − iπKψ̃1,0(0) . (4.9)

Figure 8 shows the dispersion relation computed by (4.9). In the calculation, the
truncation of higher modes has been done typically at M = 20. The boundary layer
thickness has been set typically as D = 14. It was confirmed that further increases
of M and D did not change the calculation results. In the figure, it is seen that an
increase of the control parameter B at a given frequency Ω leads to instability at a
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finite wavenumber q . At small and large wavenumbers, the system is stable due to the
stabilizing effect of gravity and capillarity, respectively. The instability threshold and
critical wavenumber are determined by the dispersion curve tangent to the q-axis.

4.2. Results and discussion

In figure 6(a), the determined instability thresholds are shown by dashed lines on
both the amplitude–frequency and the velocity–frequency planes. For frequencies
larger than 1 Hz, the result is coincident with the prediction of the small-amplitude
theory, reproducing a constant critical velocity that is lower than the inviscid
prediction (1.1). At small frequencies, where the small-amplitude theory failed to
explain the experimental results quantitatively, a rapid divergence with decreasing
frequency is predicted. It is quantitatively comparable with the experiments, implying
that this diverging behaviour is due to finite K . As mentioned in § 3, the out-of-phase
component of the perturbation vorticity generated by the velocity continuity at the
interface would be responsible for the present instability. This mechanism could imply
stabilization by overly strong advection, as the advected vorticity is in-phase again.

In figure 6(b), the predictions of the finite-amplitude analysis for the critical
wavenumber are shown by dashed lines. For frequencies higher than 1.6 Hz, the
predictions are coincident with the results of the small-amplitude theory and
approximately equal to the capillary wavenumber, as in the experiments. For lower
frequencies, the finite-amplitude theory predicts a decrease in k with a decrease in
frequency, in quantitative agreement with the experiments, while the small-amplitude
theory succeeded only in a qualitative explanation of this behaviour. The difference
between both viscous theories becomes significant for frequencies smaller than 1 Hz.

The theory presented here provides good quantitative predictions on the threshold
and the critical wavenumber over the entire frequency range examined experimentally.
Failure of the preceding small-amplitude theory in quantitative predictions for small-
frequency experiments is due to the neglect of finite-amplitude effects. Their inclusion
is essential for flows with a frequency lower than 1 Hz. It is interesting to calculate the
Keulegan–Carpenter number for predicted waves at this frequency. From figure 6(a),
�U/ω=13 mm and, according to figure 6(b), the wavelength is equal to around λcap .
It follows that K ≈ 2�U/ωλcap =0.67. This confirms the validity condition K � 0.5
of the small-amplitude theory, which was proposed in Part 1.

5. Conclusion
Experiments were performed to study the stability of two-layer oscillatory flows

with a large contrast in viscosity at the immiscible interface. The evolution of
interface waves in the case of instability was observed in detail, and different
evolution stages were distinguished. The instability threshold and the most unstable
wavenumber mode were determined and compared with the viscous small-amplitude
theory (Part 1). The theory reproduces the frequency-dependent behaviour of both
threshold and wavenumber. For large-frequency experiments (ω/2π>1 Hz), it also
provided good quantitative predictions. This suggests that the observed waves are
formed through a velocity-driven instability similar to the short wave instability
of steady two-layer Couette flows (Hooper & Boyd 1983; Hinch 1984). For small
frequencies (ω/2π<1 Hz), inclusion of the finite amplitude into the stability analysis
is essential for correctly predicting the stability. The experiments agree well with the
finite-amplitude theory over the entire frequency range.
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Appendix A. Boundary conditions at the interface for an arbitrary K

These conditions are written in the interface reference frame. ψ̃1,m and ψ̃2,m are the
frequency components eimt of the stream functions in water and in oil, respectively. ηm

is the same frequency component of the interface disturbance. A prime on a function
means differentiation with respect to the vertical coordinate. The conditions are as
follows:

velocity continuity (tangent to the interface):

ψ̃ ′
1,m − ψ̃ ′

2,m +
ρκ2 − 1

ρκ2

(
W̃ ′

1,1η̃m−1+W̃ ′
1,−1η̃m+1

)
=0 at y =0, (A 1)

velocity continuity (normal to the interface):

ψ̃1,m − κψ̃2,m =0 at y = 0, (A 2)

stress balance (tangent to the interface):

ψ̃ ′′
1,m+

4π2q2

κ2Ω
ψ̃1,m − ρκ

(
ψ̃ ′′

2,m+
4π2q2

Ω
ψ̃2,m

)
+

κ + 1

κ

(
W̃ ′′

1,1η̃m−1+W̃ ′′
1,−1η̃m+1

)
= 0 at y = 0, (A 3)

stress balance (normal to the interface):

ψ̃ ′′′
1,m −

(
12π2q2

κ2Ω
+2σ +i2m

)
ψ̃ ′

1,m+i2πK
(
W̃ ′

1,1ψ̃1,m−1+W̃ ′
1,−1ψ̃1,m+1

)
− ρ

[
ψ̃ ′′′

2,m−
(

12π2q2

Ω
+2σ +i2m

)
ψ̃ ′

2,m+i2πK
(
W̃ ′

2,1ψ̃2,m−1+W̃ ′
2,−1ψ̃2,m+1

)]
− i

π2ρK(1 + q2)

κ(1 + ρ)B
√

Ω
η̃m = 0 at y = 0, (A 4)

kinematic equation of a material interface:

iπKψ̃1,m + (σ +im) η̃m = 0 at y = 0, (A 5)

for m =0, ±1, ±2, . . .. W̃1,±1 and W̃2,±1 are the frequency components e±it of the basic

flows W1 and W2, i.e. W1 =W̃1,1 eit +W̃1,−1 e−it and W2 =W̃2,1 eit +W̃2,−1 e−it .

Appendix B. Definitions of matrices
For simple mathematical expressions, the following α1, α2, Z1 and Z2 are introduced:

α1 =
2πq

κ
√

Ω
, α2 =

2πq√
Ω

, Z1 =
ρκ

1 + ρκ
and Z2 =

1

1 + ρκ
. (B 1)

A factor εj also used in the matrix definitions is εj = 1 for j = 1 and εj = − 1 for
j =2.
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The K-matrix in the vorticity equation (4.2) has a size of (8M+4) × (8M+4). It is
defined for flows in Fluid j (j = 1, 2) as

Kj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

kj,−M k+
j,−M O O · · · O O

k−
j,−M+1 kj,−M+1 k+

j,−M+1 O · · · O O

O k−
j,−M+2 kj,−M+2 k+

j,−M+2 · · · O O

...
...

...
... · · ·

...
...

O O O O · · · k−
j,M kj,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B 2)

with

kj,m =

⎡⎢⎢⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

−α2
j

(
α2

j +i2m
)

0 2α2
j +i2m 0

⎤⎥⎥⎥⎥⎦ , (B 3)

k−
j,m = εj iπKZj eεj (1+i)yj

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

−(α2
j +i2) 0 1 0

⎤⎥⎥⎥⎥⎦ (B 4)

and k+
j,m = −(k−

j,m)∗ for m=0, ±1, ±2, . . . . The asterisk denotes the complex conjugate.
The Q-matrix associated with the flow in the outer layer is defined for Fluid j

(j = 1, 2) as

Q∞
j =

⎡⎢⎢⎢⎢⎢⎣
qj,−M O O · · · O

O qj,−M+1 O · · · O

...
...

... · · · O

O O O · · · qj,M

⎤⎥⎥⎥⎥⎥⎦ (B 5)

with

qj,0 =

⎡⎢⎢⎢⎢⎣
eεj αj yj αjyj eεj αj yj

εjαj eεj αj yj αj (1 + εjαjyj ) eεj αj yj

α2
j eεj αj yj α2

j (2εj +αjyj ) eεj αj yj

εjα
3
j eεj αj yj α3

j (3+εjαjyj ) eεj αj yj

⎤⎥⎥⎥⎥⎦ (B 6)

and

qj,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

eεj αj yj eεj

√
α2

j +i2myj

εjαj eεj αj yj εj

√
α2

j + i2m eεj

√
α2

j +i2myj

α2
j eεj αj yj (α2

j + i2m) eεj

√
α2

j +i2myj

εjα
3
j eεj αj yj εj (α

2
j + i2m)3/2 eεj

√
α2

j +i2myj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(m= ± 1, ±2, . . .). (B 7)
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The transformation matrix J j (j = 1, 2) is

J j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

J0(ξ )E J1(ξ )E · · · J2M (ξ )E

J−1(ξ )E J0(ξ )E · · · J2M−1(ξ )E

J−2(ξ )E J−1(ξ )E · · · J2M−2(ξ )E

...
...

...
...

J−2M (ξ )E J−2M+1(ξ )E · · · J0(ξ )E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with ξ =

⎧⎪⎪⎨⎪⎪⎩
− πKρκ

1+ρκ
for j = 1

πK

1+ρκ
for j = 2

(B 8)

where E is a unit matrix of size 4.
The definitions of the matrices A1, A2 and B and the vector C in the boundary

condition (4.8) are the following:

Aj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

aj,−M a+
j,−M O O · · · O O

a−
j,−M+1 aj,−M+1 a+

j,−M+1 O · · · O O

O a−
j,−M+2 aj,−M+2 a+

j,−M+2 · · · O O

...
...

...
... · · ·

...
...

O O O O · · · a−
j,M aj,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B 9)

with

a1,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

α2
1 0 1 0

0 −(3α2
1 + i2m) 0 1

iπK 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(B 10)

and

a2,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

−κ 0 0 0

−ρκα2
2 0 −ρκ 0

0 ρ(3α2
2 + i2m) 0 −ρ

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (B 11)

a−
1,m and a−

2,m have sizes of 5 × 4 for m 
= 0 and of 4 × 4 for m = 0. All their

elements are null except their (4, 1) elements. These elements are i2πKW̃ ′
1,1 for a−

1,m

and −ρi2πKW̃ ′
2,1 for a−

2,m. The matrices a+
1,m and a+

2,m are given by a+
1,m = −(a−

1,m)∗ and

a+
2,m = −(a−

2,m)∗.
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−M b+
−M O · · · O O O O O O O O

b−
−M+1 b−M+1 b+

−M+1 · · · O O O O O O O O

...
...

... · · ·
...

...
...

...
...

...
...

...

O O O · · · b−
−2 b−2 b+

−2 O O O O O

O O O · · · O b−
−1 b−1 O O O O O

O O O · · · O O b−
0 b+

0 O O O O

O O O · · · O O O b1 b+
1 O O O

O O O · · · O O O b−
2 b2 b+

2 O O

...
...

... · · ·
...

...
...

...
...

...
...

...

O O O · · · O O O O O O b−
M bM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B 12)

with

bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

−i
π2ρK(1 + q2)

κ(1 + ρ)B
√

Ω
im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B 13)

The matrices b−
m have sizes of 5 × 1 for m 
= 0 and of 4 × 1 for m =0. Their elements

are null except the first and third ones. The first element is (ρκ2 − 1)W̃ ′
1,1/ρκ2 and the

third one is (κ + 1)W̃ ′′
1,1/κ . The matrices b+

m are given by b+
m = (b−

m)∗.

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

c−1

c0

c1

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with c0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

i
π2ρK(1 + q2)

κ(1 + ρ)
√

ΩB

⎤⎥⎥⎥⎥⎥⎥⎦ , c1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρκ2 − 1

ρκ2
W̃ ′

1,1

0

−κ + 1

κ
W̃ ′′

1,1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B 14)

and c−1 = (c1)
∗. The first and last 5(M − 1) elements of C are null.
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