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The stability of oscillatory two-layer flows is investigated with a linear perturbation
analysis. An asymptotic case is considered where the oscillation amplitude is small
when compared to the perturbation wavelength. The focus of the analysis is on
the influence of viscosity and its contrast at the interface. The flows are unstable
when the relative velocity of the layers is larger than a critical value. Depending
on the oscillation frequency, the flows are in different dynamical regimes, which
are characterized by the relative importance of the capillary wavelength and the
thicknesses of the Stokes boundary layers developed on the interface. A particular
regime is found in which instability occurs at a substantially lower critical velocity. The
mechanism behind the instability is studied by identifying the velocity- and shear-
induced components in the disturbance growth rate. They interchange dominance
depending on the frequency and the viscosity contrast. Results of the analysis are
compared with the experiments in the literature. Good agreement is found with
the experiments that have a small oscillation amplitude. The validity condition of the
asymptotic theory is estimated.

Key words: boundary layer stability, multiphase flow, pattern formation

1. Introduction
The stability of the interface between fluid layers subjected to parametric excitation

has attracted research interest (Davis 1976). A well-known example of such a system
is a fluid layer that is vertically vibrated. Faraday instability can develop standing
waves on their interface (Miles & Henderson 1990). In inviscid approximation, the
linear stability of this system is analysed by the Mathieu equation (Benjamin & Ursell
1954). Harmonic and subharmonic parametric resonances are expected to occur here.
A linear stability analysis for viscous fluids shows a damping of higher resonance
modes (Kumar & Tuckerman 1994). Although many studies have been devoted to
Faraday instability, an analogous problem with horizontal vibration has been studied
less.

Horizontal vibrations applied to a container of two superposed fluid layers generate
a horizontal pressure gradient that induces oscillatory shear flows. In the inviscid
approximation, the stability of this flow is analysed by the Mathieu equation (Kelly
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1965). However, an additional unstable mode should be taken into account in addition
to the parametric resonances. This mode is not a standing wave; it results in the
interface waves oscillating in the horizontal direction. The marginal stability curve of
this mode was derived for flows with a small oscillation amplitude in thick layers of
identical thickness (Lyubimov & Cherepanov 1987):

ρ1ρ2

2 (ρ1 + ρ2)
�U 2 =

2πγ

λ
+

(ρ1 − ρ2) g

2π/λ
, (1.1)

where ρ1 and ρ2 are the densities of the lower and upper fluids, flowing with a velocity
U1max cos (ωt) and U2 max cos (ωt), respectively. The velocity difference �U is defined
by �U =U2 max − U1 max . The density difference, ρ1 − ρ2, is supposed to be positive.
Unstable superposition of fluids will not be considered in the present paper. The
interfacial tension is denoted by γ , g is the gravitational acceleration, and λ is the
wavelength. The phase velocity c0 of the growing waves is identical to the velocity of
the centre of mass:

c0 =
ρ1U1 max + ρ2U2max

ρ1 + ρ2

cos (ωt). (1.2)

Results (1.1) and (1.2) are the same as those of the classical Kelvin–Helmholtz (K–H)
instability, when �U/

√
2 is regarded as the velocity difference in the classical case. The

influence of the finite layer thicknesses (Lyubimov & Cherepanov 1987; Lyubimov,
Lyubimova & Cherepanov 2003) and finite oscillation amplitude (Yoshikawa 2006)
on this K–H mode instability in the oscillatory flows was also examined.

Viscous flows are considered in the case of a thin liquid layer on a horizontal
plate. Linear stability analyses were performed with use of Floquet theory for plate
oscillation with a small oscillation amplitude compared to the wavelength (Yih 1967)
and with a finite amplitude (Or 1997). Wave formation was found beyond an instability
onset. Superposed thin layers shearing each other were also considered with the use
of similar mathematical methods (Coward & Papageorgiou 1994; King, Leighton &
McCready 1999).

The linear stability of flows in thick fluid layers was investigated for long waves, i.e.
waves of λ much longer than the layer thicknesses (Kamachi & Honji 1982). Waves
with a finite wavelength were considered with numerical resolutions of the stability
problem for a small viscosity contrast (Khenner et al. 1999) and for a large viscosity
contrast (Talib & Juel 2007). A strong viscous damping of parametric resonance
modes was found. The K–H mode instability was found to be hardly influenced
by the viscosity for fluid layers with a small viscosity contrast, while a substantial
decrease of the instability threshold was found in fluid layers with a large viscosity
contrast. Linear stability analysis for fluids of infinite depth also showed a substantial
threshold decrease for fluids with a large viscosity contrast within a certain oscillation
frequency range (Yoshikawa 2006). This frequency range is associated with a certain
relationship between characteristic length scales, as shown in the present paper (see
§ 4).

Experiments performed with thin and thick liquid layers. All the experiments
concerned only an instability leading to the formation of oscillating waves. To the
authors’ knowledge, no observation of parametric resonances has been reported.
King et al. (1999) investigated the stability of thin layers. They confined two density-
matched fluids in the small gap of two concentric cylinders. The interface of the fluids
was in the middle of the gap and parallel to the cylinder walls. Fluids were sheared
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Figure 1. Oscillatory flow in semi-infinite fluid layers. Lower fluid is assumed to be less
viscous throughout the paper (ν1 � ν2).

by oscillatory rotation of the outer cylinder wall. They found wavy patterns on the
interface perpendicular to the motion.

Shyh & Munson (1986) used a vertically installed cylindrical tank, in which two
thick fluid layers with very different viscosities were superposed. They drove flows
by turning it periodically around its centre axis. The layers were then in oscillatory
relative motion in the azimuthal direction. They found that the formation of waves
was perpendicular to the motion. In our experimental paper which is coupled with
the present one (Yoshikawa & Wesfreid 2011, referred to herein as Part 2), our set-up
utilized the same principle.

Wolf (1969), Beysens et al. (1998), Ivanova, Kozlov & Evesque (2001a) and Talib,
Jalikop & Juel (2007) used the horizontal vibration of a fluid container to drive flows
with a horizontal pressure gradient. Cylindrical and parallelepiped containers were
used. Similar experiments with miscible fluids were performed in a parallelepiped
container by Legendre, Petitjeans & Kurowski (2003). Ivanova, Kozlov & Tachkinov
(2001b) applied a circularly polarized vibration in the horizontal plane to a cylindrical
container. The horizontal oscillatory motion of observed waves is typically small.
These waves look static and are often referred to as ‘frozen waves.’

Although experimentally observed patterns seem to result from the K–H mode
instability, the inviscid theory (1.1) was found to be unable to predict the interface
behaviour correctly (Beysens et al. 1998; Ivanova et al. 2001a, b). In the experiments,
the critical velocity and wavelength of the patterns depended significantly on the
oscillation frequency, while they are constant according to the theory.

The present paper aims at clarifying the influence of viscosity and its contrast at
the interface on the K–H mode instability. Insights into the underlying mechanism
will also be obtained. We consider flows in superposed semi-infinite layers with a
linear perturbation analysis. This configuration is wall-free and enables us to study
essential features of the instability.

The dynamics of an interface disturbance of wavelength λ is determined by
the physical properties of fluids (ρ1, ρ2, γ and viscosities ν1 and ν2, where we
will assume throughout the paper that the lower fluid is less viscous, ν1 � ν2), the
relative velocity �U , the frequency ω/2π and the gravitational acceleration g (see
figure 1). After the Buckingham Π theorem, the dynamics depend on only six
dimensionless parameters. They can be the density and viscosity contrasts ρ = ρ2/ρ1

and κ =
√

ν2/ν1 (�1), a dimensionless amplitude K = 2ω−1�U/λ, a dimensionless
frequency Ω = λ2

capω/2ν2 (λcap is the capillary wavelength: λcap = 2π
√

γ /(ρ1 − ρ2)g),
a dimensionless wavenumber q = λcap/λ and the parameter B , which is hereafter
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referred to as the velocity parameter:

B =
πρ1ρ2

2
(
ρ2

1 − ρ2
2

) �U 2

gλcap

. (1.3)

Any other possible dimensionless groups can be expressed by these six parameters.
As seen in §§ 4 and 5, our choice is convenient for distinguishing different dynamical
regimes in the instability and to compare the viscous theory with the inviscid one.

The velocity parameter compares hydrodynamic pressures to capillary pressures
exerted at the interface. We will consider it as a primary control parameter. The
coefficient in (1.3), composed of the densities, has been multiplied in order to transform
the marginal curve (1.1) into its simplest form:

B =
q + q−1

2
. (1.4)

The corresponding instability threshold Bcr and critical wavenumber qcr are given by

Bcr = 1, qcr = 1. (1.5)

The dimensionless amplitude K is twice the ratio of the oscillation amplitude �U/ω

to the wavelength and is identical to the Keulegan–Carpenter number. This number
characterizes oscillatory flows over a curved boundary, comparing the advection (u · ∇)
with the local variation (∂/∂t) (see, e.g. Rousseaux et al. 2004). In a typical experiment
with thick layers, the wavelength λ is of the order of λcap (≈5 mm) and the amplitude
varies from 0.5 mm to 3 mm. The value of K is typically between 0.3 and 10. The
dimensionless frequency Ω can be considered as a square-ratio of λcap to the Stokes
boundary layer thickness δ2 =

√
2ν2/ω in the more viscous fluid: Ω = (λcap/δ2)

2. As
seen in § 2.1, the Stokes boundary layers develop in both fluids on the interface, and
their thicknesses give unique length scales that are involved in the velocity profiles of
the basic flows. In § 4, it will be shown that the relationships of these length scales
with λcap characterize different regimes in the two-layer flows. In the experiments, the
oscillation frequency varies typically from 10 Hz to 50 Hz and the values of δ2 are
between 1 mm and 6 mm. The typical range of Ω is between 1 and 20.

The theoretical result (1.1) or equivalently (1.4), was derived using inviscid
approximation with the assumption of a small oscillation amplitude relative to the
wavelength. These hypotheses correspond to the limits Ω−1 → 0 and K → 0. The
discrepancies with the experiments reported in the literature are due to the breaking
of these hypotheses. Indeed, the values of Ω−1 and K are not always small in the
experiments. Nevertheless, one of these parameters typically takes a small value.
Figure 2 shows the range of these parameters as examined in the experimental
works. Most of the experiments were performed either with small Ω−1 or small K .
The asymptotic consideration for the cases Ω−1 � 1 and K � 1 is worthwhile in
predicting the stability under practical conditions. In the present paper, we will tackle
the linear stability problem by asymptotic expansion about a small K .

The basic flow for perturbation analysis is presented in the next section. The linear
stability problem is then formulated in dimensionless form. In non-dimensionalization,
all the lengths involved in a fluid layer are scaled by the thickness of the Stokes
boundary layer developed on the interface in order to capture the dynamics inside
this layer. This is in contrast with the preceding viscous theories, where the thickness
of the layers was chosen as the scaling length. The K–H mode instability, however,
has an interface origin and the latter scaling seems to hide a clear understanding
of the instability. The formulated problem is solved in § 3 by the asymptotic
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Figure 2. Parameter ranges of existing experiments. The inviscid theory for small amplitude
oscillatory flows (1.1) is valid in the limit K → 0 and 1/Ω → 0.

expansion about K = 0. Results are presented in § 4 with a focus on the viscosity
influence. In § 5, wave motion and time-averaged flow patterns are discussed to
characterize different dynamical regimes of oscillatory two-layer flows. Examination
of different origins of perturbation flow is also performed to bring insights into the
mechanism of the instability. The validity of the theory is shown through comparison
with the existing theoretical and experimental results. The conclusions are given
in § 6.

2. Mathematical formulation
Semi-infinite fluid layers are considered (see figure 1). The lower fluid, Fluid 1, is

assumed to be less viscous than the second fluid, Fluid 2, like most of the experiments
in the literature. The fluids are stably stratified with an immiscible interface at y = 0.
Imposing oscillatory flows uj = Uj max cos (ωt) x̂ (j = 1, 2; x̂ is the unit vector in the
horizontal direction) far from the interface in each fluid, we first determine the basic
flow established on a plane interface. After discussing different flow configurations in
which this basic flow can arise, we formulate the linear stability problem.

2.1. Basic flow

One-dimensional velocity fields uj =Uj (y, t) x̂ in Fluid j (j = 1, 2) are determined by
the Navier–Stokes equations:

ρ1

∂U1

∂t
= −∂P1

∂x
+ ρ1ν1

∂2U1

∂y2
, 0 = −∂P1

∂y
− ρ1g (2.1)

for y < 0, and

ρ2

∂U2

∂t
= −∂P2

∂x
+ ρ2ν2

∂2U2

∂y2
, 0 = −∂P2

∂y
− ρ2g (2.2)

for y > 0. The pressure field is denoted by Pj (j =1, 2) in Fluid j . The velocities
match the imposed velocities far from the interface:

U1 → U1 max cos (ωt) as y → −∞,

U2 → U2 max cos (ωt) as y → ∞,

}
(2.3)
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and obey velocity continuity and stress balance at the interface (y = 0):

U1 = U2, ρ1ν1

∂U1

∂y
= ρ2ν2

∂U2

∂y
, P1 = P2. (2.4)

The basic flow is the time-periodic solution of these equations. They are

U1 = Ui (t) + W1 (t, y), (2.5)

U2 = Ui (t) + W2 (t, y), (2.6)

with

W1 = − ρκ�U

1 + ρκ

[
cos (ωt) − ey/δ1 cos

(
ωt +

y

δ1

)]
, (2.7)

W2 =
�U

1 + ρκ

[
cos (ωt) − e−y/δ2 cos

(
ωt − y

δ2

)]
, (2.8)

where δ1 is the Stokes boundary layer thickness in Fluid 1: δ1 =
√

2ν1/ω. The other
component Ui (t) is the velocity at the interface level (y = 0). It is given by

Ui =
U1 max + ρκU2 max

1 + ρκ
cos (ωt) . (2.9)

The above basic flow can arise in different experimental configurations. Among
those of importance are the flow in a horizontally vibrated container, the duct flow
generated by a pulsating pressure gradient and the oscillatory Couette flow. (Talib &
Juel 2007 called the first configuration ‘counterflowing layers’. The third configuration
includes the case of ‘co-flowing layers’ considered in Talib 2006.) Under certain
conditions, these flows are identical to the flow (2.5)–(2.8) in the neighbourhood
of the interface, with different Ui and �U in different flow configurations (for more
details, see Appendix A). When both fluid layers are thick, i.e. H1 � δ1 and H2 � δ2 (H1

and H2 are the thicknesses of Fluids 1 and 2, respectively), the flow in a horizontally
vibrated container is given by equations (2.5)–(2.8) near the interface, with

Ui =
ρ(1 + κ)(H1 + H2)

(1 + ρκ)(ρH1 + H2)
Ucont cos ωt and �U =

(1 − ρ)(H1 + H2)

ρH1 + H2

Ucont, (2.10)

where Ucont is the container velocity. This velocity difference �U agrees with the result
obtained by Khenner et al. (1999) in inviscid approximation. Fluid layers are thick
in many practical situations, e.g. a 10 mm layer of a fluid of viscosity 10 mm2 s−1 will
be thick for a frequency higher than 1 Hz (the Stokes boundary layer thickness is
1.8 mm). The flow generated by a pulsating pressure difference, �P sin ωt per unit
length, is also given by equations (2.5)–(2.8) near the interface, when both layers are
thick. The velocities Ui and �U for this flow are

Ui =
ρ(1 + κ)�P

(1 + ρκ)ρ2ω
cosωt and �U =

(1 − ρ)�P

ρ2ω
. (2.11)

The Couette flow is induced by the horizontal oscillatory motion of the bottom
and top walls bounding the fluids. When the less viscous layer (Fluid 1) is thick:
H1 � δ1 and the more viscous layer (Fluid 2) is thin: H2 � δ2, the Couette flow near
the interface is given by U1 =U2,wall e

y/δ1 cos (ωt + y/δ1) and U2 = U2,wall cosωt , where
U2,wall is the velocity of the wall bounding Fluid 2. This flow is identical to the basic
flow (2.5)–(2.8) in the limit of large viscosity contrast (κ � 1).



Oscillatory Kelvin–Helmholtz instability. Part 1 229

Another realisation of the basic flow (2.5)–(2.8) is the flow in a vertical cylindrical
tank rotated alternately around its centre axis, as the experiments of Shyh & Munson
(1986) and in Part 2. The motion of the tank wall induces an oscillatory flow in the
azimuthal direction. A complete analysis of this flow is presented in Part 2. According
to the analysis, if the less viscous layer is thick and the viscosity contrast is large,
the flow near the interface is given by equations (2.5)–(2.8) with radially varying Ui

and �U , except in a layer of thickness around 5δ1 on the tank wall. The K–H mode
instability concerns the maximum �U . It occurs near the wall and is given by the
following equation for a large tank radius R( � δ1):

�U = RωΦ0, (2.12)

where Φ0 is the rotation amplitude of the tank in radians. Centrifugal effects
have been neglected in the analysis. This assumption will be valid, as long as
0.79ν1/R � RωΦ0 �

√
8(ρ1−ρ2)gR/ρ1 (for more details, see Part 2).

The stability of these different flows can therefore be investigated by considering the
basic flow (2.5)–(2.8) with relevant Ui and �U . We will formulate the linear stability
problem of this basic flow in § 2.2. As seen in equations (2.5)–(2.8), the velocity field
in Fluid j (j = 1, 2) varies significantly over the Stokes boundary layer developed on
the interface. Its thickness δj is a unique length scale involved in the velocity profile.
To take into account the influence of the flow inside this layer, we will adopt δj as the
length scale in the non-dimensionalization of the linear stability problem. It is also
seen that the velocity profiles in both fluids are similar to each other in the interface
reference frame, i.e. the reference frame moving at the velocity Ui x̂. When the viscosity
contrast is large (κ � 1), it moves with the more viscous layer (see (2.9)). At the other
limit (κ =1), it moves with the centre of mass at velocity (1.2). We will formulate
the problem in this reference frame to simplify the mathematical treatment with the
similarity.

2.2. Perturbation flows

A small interface disturbance η and its associated perturbation flow are analysed
by linearized vorticity equations and boundary conditions. To describe the flow in
Fluids 1 and 2, we use stream functions ψ1 and ψ2, respectively. They are related to
the perturbation velocity field uj in Fluid j (j =1, 2) by uj = ∇×(ψj ẑ). The governing
equations are partial differential equations with coefficients varying periodically with
time. The stability governed by such equations can be determined using Floquet theory
(Yih 1967). The interface disturbance and stream functions of wavelength λ are then
decomposed into their net exponential growth eσ t and time-periodic variations:

η = ei(2π/λ)x eσ t
∑

m

η̃m eimωt + c.c., (2.13)

ψ1 = ei(2π/λ)x eσ t
∑

m

ψ̃1,m (y) eimωt + c.c., (2.14)

ψ2 = ei(2π/λ)x eσ t
∑

m

ψ̃2,m (y) eimωt + c.c., (2.15)

where c.c. denotes the complex conjugate of its preceding term. These decompositions
are substituted in the linearized governing equations to formulate a linear stability
problem.
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For non-dimensionalization, we adopt the time scale ω−1 and the velocity scale
�U . The lengths in Fluids 1 and 2 are scaled by δ1 and δ2 respectively, for the reason
explained earlier. Due to different length scales in different fluids, the dimensionless
spatial coordinates are denoted as xj and yj in Fluid j (j = 1, 2). The governing
equations, decomposed with use of (2.13)–(2.15), are written in dimensionless form:

vorticity equation in Fluid 1 (y1 < 0)

(�1 − 2σ − i2m)�1ψ̃1,m = i2πK
[(

W̃1,1�1 − W̃ ′′
1,1

)
ψ̃1,m−1 +

(
W̃1,−1�1 − W̃ ′′

1,−1

)
ψ̃1,m+1

]
,

(2.16)

vorticity equation in Fluid 2 (y2 > 0)

(�2 − 2σ − i2m)�2ψ̃2,m = i2πK
[(

W̃2,1�2 − W̃ ′′
2,1

)
ψ̃2,m−1 +

(
W̃2,−1�2 − W̃ ′′

2,−1

)
ψ̃2,m+1

]
,

(2.17)

perturbation decay far away from the interface

ψ̃1,m → 0 as y1 → −∞, ψ̃2,m → 0 as y2 → ∞, (2.18)

velocity continuity (tangent to the interface)

ψ̃ ′
1,m − ψ̃ ′

2,m +
ρκ2 − 1

ρκ2

(
W̃ ′

1,1η̃m−1 + W̃ ′
1,−1η̃m+1

)
= 0 at y =0, (2.19)

velocity continuity (normal to the interface)

ψ̃1,m − κψ̃2,m = 0 at y = 0, (2.20)

stress balance (tangent to the interface)

ψ̃ ′′
1,m +

4π2q2

κ2Ω
ψ̃1,m − ρκ

(
ψ̃ ′′

2,m +
4π2q2

Ω
ψ̃2,m

)
+

κ + 1

κ

(
W̃ ′′

1,1η̃m−1 + W̃ ′′
1,−1η̃m+1

)
= 0 at y = 0, (2.21)

stress balance (normal to the interface)

ψ̃ ′′′
1,m −

(
12π2q2

κ2Ω
+ 2σ + i2m

)
ψ̃ ′

1,m + i2πK
(
W̃ ′

1,1ψ̃1,m−1 + W̃ ′
1,−1ψ̃1,m+1

)
− ρ

[
ψ̃ ′′′

2,m −
(

12π2q2

Ω
+ 2σ + i2m

)
ψ̃ ′

2,m + i2πK
(
W̃ ′

2,1ψ̃2,m−1 + W̃ ′
2,−1ψ̃2,m+1

)]

− i
π2ρK(1 + q2)

κ(1 + ρ)B
√

Ω
η̃m = 0 at y = 0, (2.22)

kinematic equation of a material interface

iπKψ̃1,m + (σ + im) η̃m = 0 at y = 0, (2.23)

for the mode m (= 0, ±1, ±2, . . .). The basic velocities Wj (j = 1, 2) are decomposed

into frequency components: Wj = W̃j,1 eit +W̃j,−1 e−it . A prime on a function associated
with Fluid j (j = 1, 2) means differentiation with respect to yj . The operators �1 and
�2 are two-dimensional Laplacians:

�1=
d2

dy2
1

− 4π2q2

κ2Ω
, �2=

d2

dy2
2

− 4π2q2

Ω
. (2.24)
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In the above formulation, dimensionless groups resulting from non-dimensionalization
have been transformed into expressions in terms of the dimensionless parameters
introduced in § 1. The terms 4π2q2/κ2Ω and 4π2q2/Ω in (2.24) are, for example,
the squares of the dimensionless wavenumbers 2πδ1/λ and 2πδ2/λ, which appear
naturally during non-dimensionalization. The last term in the left-hand-side of (2.22)
represents contributions from gravity and capillarity. It is written as, in dimensional
form, (4π/λ)[(ρ1−ρ2)g + γ (2π/λ)2] η̃m/ρ1ω�U .

The equation set (2.16)–(2.23) defines a linear stability problem for arbitrary values
of the dimensionless parameters ρ, κ , q , B , Ω and K . In the next section, we will
solve this problem for the asymptotic case of K � 1.

3. Asymptotic consideration for small oscillation amplitude flows

We perform formal expansions of η̃m, ψ̃j,m (j = 1, 2) and σ about a small parameter
2πK:

η̃m = η̂(0)
m + 2πKη̂(1)

m + (2πK)2 η̂(2)
m + · · · , (3.1)

ψ̃j,m = ψ̂
(0)
j,m + 2πKψ̂

(1)
j,m + (2πK)2 ψ̂

(2)
j,m + · · · , (3.2)

σ = σ (0) + 2πKσ (1) + (2πK)2 σ (2) + · · · . (3.3)

Inserting these expansions into equations (2.16)–(2.23), we separate the stability
problem according to the order with respect to K for a resolution, order by order.

3.1. First-order problem

For the first order, i.e. O(K0), the kinematic equation (2.23) is reduced to

(σ (0) + im)η̂(0)
m = 0 (m = 0, ±1, ±2, . . .). (3.4)

It follows that the interface wave has no unsteady component:

η̂(0)
m = 0 for m = ± 1, ±2, . . . . (3.5)

For the steady mode, (3.4) implies that σ (0) = 0 or η̂
(0)
0 = 0. The latter case means

no interface disturbance and is inconsistent with the K–H instability scenario: small
interface disturbances grow through dynamical positive feedback. We will therefore
consider only the former case and set

η̂
(0)
0 = 1 and η̂

(n)
0 = 0 for n= 1, 2, . . . , (3.6)

without any loss of generality.
The vorticity equations (2.16) and (2.17) and the boundary conditions (2.18)–(2.22)

are reduced to

(�1 − i2m) �1ψ̂
(0)
1,m = 0, (3.7)

(�2 − i2m) �2ψ̂
(0)
2,m = 0, (3.8)

ψ̂
(0)
1,m → 0 as y1 → −∞,

ψ̂
(0)
2,m → 0 as y2 → ∞,

}
(3.9)

ψ̂
′(0)
1,m − ψ̂

′(0)
2,m = −ρκ2 − 1

ρκ2

(
W̃ ′

1,1η̂
(0)
m−1 + W̃ ′

1,−1η̂
(0)
m+1

)
, (3.10)

ψ̂
(0)
1,m − κψ̂

(0)
2,m = 0, (3.11)
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ψ̂
′′(0)
1,m +

4π2q2

κ2Ω
ψ̂

(0)
1,m − ρκ

(
ψ̂

′′(0)
2,m +

4π2q2

Ω
ψ̂

(0)
2,m

)
= −κ + 1

κ

(
W̃ ′′

1,1η̂
(0)
m−1 + W̃ ′′

1,−1η̂
(0)
m+1

)
,

(3.12)

ψ̂
′′′(0)
1,m −

(
12π2q2

κ2Ω
+ i2m

)
ψ̂

′(0)
1,m − ρ

[
ψ̂

′′′(0)
2,m −

(
12π2q2

Ω
+ i2m

)
ψ̂

′(0)
2,m

]
= 0, (3.13)

for the mode m ( = 0, ±1, ±2, . . .). Equations (3.10)–(3.13) are boundary conditions
at the interface (y1 = y2 = 0). These equation sets are homogeneous for any mode m,
except for the fundamental unsteady modes m = ± 1, as the interface wave has no
unsteady component (see (3.5)). It follows that

ψ̂
(0)
1,m = 0, ψ̂

(0)
2,m = 0 for m =0, ±2, ±3, . . . . (3.14)

For the mode m =1, the solutions of the vorticity equations (3.7) and (3.8) with the
boundary conditions (3.9) are:

ψ̂
(0)
1,1 = a

(0)
1,1 e(2πq/κ

√
Ω)y1 + b

(0)
1,1 e

√
(4π2q2/κ2Ω)+i2 y1,

ψ̂
(0)
2,1 = a

(0)
2,1 e−(2πq/

√
Ω)y2 + b

(0)
2,1 e−

√
(4π2q2/Ω)+i2 y2 .

⎫⎬⎭ (3.15)

The constants, a
(0)
1,1, b

(0)
1,1, a

(0)
2,1 and b

(0)
2,1, are determined by the linear algebraic equation

set, which is obtained by substituting (3.15) into the boundary conditions (3.10)–(3.13).
The equation set is written

L1

[
a

(0)
1,1 b

(0)
1,1 a

(0)
2,1 b

(0)
2,1

]tr
= d(0)

1 . (3.16)

The subscript 1 on the matrix L and the vector d means that they consider the mode
m =1. Explicit definitions of L1 and d(0)

1 are given in Appendix B. The flow of the other
mode m = − 1 is determined by the symmetry of the considered system. It requires
ψ̂

(0)
1,−1 = ψ̂

∗(0)
1,1 and ψ̂

(0)
2,−1 = ψ̂

∗(0)
2,1 , where the asterisks indicate a complex conjugate (see

Appendix C).
The second-order growth rate, σ (1), is determined by the first-order flow. The

kinematic equation (2.23), reduced at the second order, is written

1
2
ψ̂

(0)
1,m − iσ (1)η̂(0)

m + mη̂(1)
m = 0. (3.17)

By using (3.14) this gives, for the steady mode,

σ (1) = − i

2
ψ̂

(0)
1,0 (0) = 0. (3.18)

The system is neutrally stable up to the second order, as expected. Indeed, the first-
order flow ψ̂

(0)
1,0 is the solution in the Stokes limit, as K = 0 means that there is no

inertial term in vorticity equations. No net evolution of the system is possible due to
the reversibility of Stokes flows. The growth rate (3.18), given by the first-order flow,
should therefore be equal to zero.

From (3.17), the second-order interface disturbance is also deduced:

η̂
(1)
1 = −

ψ̂
(0)
1,1

2
, η̂

(1)
−1 =

ψ̂
(0)
1,−1

2
and η̂(1)

m = 0 (m = 0, ±2, ±3, . . .). (3.19)

In order to determine the stability, the third-order growth rate σ (2) should be
calculated, as shown in the second-order problem below. The results of the above
consideration are used there as inputs.
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3.2. Second-order problem

In § 3.1, we saw that the growth rate σ (1) is determined by the steady component
of the previous order flow. This is also the case for σ (2), as we will see below. We
therefore consider only the steady components of flow for the second order, i.e. O(K).

Using the previous results (3.18) and (3.19), the vorticity equations (2.16) and (2.17)
and the boundary conditions (2.18)–(2.22) for the steady mode are reduced to the
following:

�2
1ψ̂

(1)
1,0 = i

[
W̃1,−1�1 − W̃ ′′

1,−1

]
ψ̂

(0)
1,1 − c.c., (3.20)

�2
2ψ̂

(1)
2,0 = i

[
W̃2,−1�2 − W̃ ′′

2,−1

]
ψ̂

(0)
2,1 − c.c., (3.21)

ψ̂
(1)
1,0 → 0 as y1 → −∞,

ψ̂
(1)
2,0 → 0 as y2 → ∞,

}
(3.22)

ψ̂
′(1)
1,0 − ψ̂

′(1)
2,0 =

ρκ2 − 1

2ρκ2

(
W̃ ′

1,−1ψ̂
(0)
1,1 − c.c.

)
, (3.23)

ψ̂
(1)
1,0 − κψ̂

(1)
2,0 = 0, (3.24)

ψ̂
′′(1)
1,0 +

4π2q2

κ2Ω
ψ̂

(1)
1,0 − ρκ

(
ψ̂

′′(1)
2,0 +

4π2q2

Ω
ψ̂

(1)
2,0

)
=

κ + 1

2κ

(
W̃ ′′

1,−1ψ̂
(0)
1,1 − c.c.

)
, (3.25)

ψ̂
′′′(1)
1,0 − 12π2q2

κ2Ω
ψ̂

′(1)
1,0 − ρ

(
ψ̂

′′′(1)
2,0 − 12π2q2

Ω
ψ̂

′(1)
2,0

)
= −

(
iW̃ ′

1,−1ψ̂
(0)
1,1 − c.c.

)
+ ρ

(
iW̃′

2,−1ψ̂
(0)
2,1 − c.c.

)
− iπρ(1 + q2)

2 (1 + ρ) κB
√

Ω
. (3.26)

Equations (3.23)–(3.26) are boundary conditions at the interface (y1 = y2 = 0). The
right-hand-sides of (3.20) and (3.21) are the advections associated with the m = ± 1
components of the first-order flow. The terms c.c. are contributions from the flow of
m = − 1. (Remember that ψ

∗(0)
1,1 = ψ

(0)
1,−1 and ψ

∗(0)
2,1 =ψ

(0)
2,−1, due to symmetry.)

The vorticity equations (3.20) and (3.21) and the boundary conditions (3.22) require
solutions in the following form:

ψ̂
(1)
1,0 = a

(1)
1,0 e(2πq/κ

√
Ω)y1 + b

(1)
1,0

2πq

κ
√

Ω
y1 e(2πq/κ

√
Ω)y1 + ϕ1 (y1),

ψ̂
(1)
2,0 = a

(1)
2,0 e−(2πq/

√
Ω)y2 + b

(1)
2,0

2πq√
Ω

y2 e−(2πq/
√

Ω)y2 + ϕ2 (y2),

⎫⎪⎪⎬⎪⎪⎭ (3.27)

where ϕ1 (y1) and ϕ2 (y1) are particular solutions reflecting the advection terms. They
are

ϕ1 =
[
F1a

(0)
1,1 e((2πq/κ

√
Ω)+1−i)y1 + G1b

(0)
1,1 e

√
(4π2q2/κ2Ω)+i2y1 + H1b

(0)
1,1 e(

√
(4π2q2/κ2Ω)+i2+1−i)y1

]
−c.c., (3.28)

ϕ2 =
[
F2a

(0)
2,1 e−((2πq/

√
Ω)+1−i)y2 + G2b

(0)
2,1 e−

√
(4π2q2/Ω)+i2y2 + H2b

(0)
2,1 e−

(√
(4π2q2/Ω)+i2+1−i

)
y2

]
−c.c. (3.29)

The coefficients Fj , Gj and Hj (j =1, 2) can be derived from the substitution of these
equations in (3.20) and (3.21). They are given in Appendix D.
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Regime Marginal curve Critical values Validity condition

(i) High frequency B =
q−1 + q

2
Bcr = 1, qcr = 1 Ω > 104

(ii) Moderate frequency B =
ρ

1 + ρ

q−1 + q

2
Bcr =

ρ

1 + ρ
, qcr = 1

560

κ2
< Ω < 10ρ, κ > 100

(iii) Low frequency (no instability) (no instability) Ω � q2

κ2

Table 1. Stability in particular cases.

Inserting (3.27) into the boundary conditions (3.23)–(3.26), one will find a linear
algebraic equation set with respect to the constants a

(1)
1,0, b

(1)
1,0, a

(1)
2,0 and b

(1)
2,0. It is written

L0

[
a

(1)
1,0 b

(1)
1,0 a

(1)
2,0 b

(1)
2,0

]tr
= d(1)

0 . (3.30)

The subscript 0 on the matrix L and on the vector d means that they consider the
steady mode m = 0. The vector d(1)

0 is a function of the first-order flow. Explicit

definitions of L0 and d(1)
0 are given in Appendix B.

The third-order growth rate, σ (2), is determined through the kinematic equation of
the third order for the steady mode: iψ̂ (1)

1,0 + 2σ (2) = 0. By using (3.27) and (3.28), it
follows that

σ (2) = −
iψ̂ (1)

1,0 (0)

2
= − i

2

[
a

(1)
1,0 +

(
F1a

(0)
1,1 + G1b

(0)
1,1 + H1b

(0)
1,1

)
− c.c.

]
. (3.31)

This predicts a net growth (σ (2) > 0) and decay (σ (2) < 0) of the disturbance. In the
next section, we will investigate the stability by computing σ (2) using this equation.

4. Stability
Calculations necessary to obtain the growth rate σ (2) by (3.31) are the inversions of

the linear equation sets (3.16) and (3.30). In general, these are performed numerically.
In particular cases with certain assumptions about the frequency Ω , analytical
calculations are carried out. Simple analytical dispersion relations are derived. We first
consider the particular cases and then proceed to the general consideration. The
particular cases are (i) the high frequency regime where Ω � q2, (ii) the moderate
frequency regime where q2/κ2 � Ω � q2 and (iii) the low frequency regime where
Ω � q2/κ2. In dimensional terms, these relationships are equivalent to (i) δ2 � ˘,
(ii) δ1 � ˘ � δ2 and (iii) λ� δ1, respectively. Note that case (ii) is possible only in
fluid layers with a large viscosity contrast, i.e. κ � 1. It should also be noted that
the relationships δ1 � ˘ and λ� δ2 are implied in case (i) and case (ii), respectively.
Fluid 2 is always assumed to be more viscous than Fluid 1 (ν1 � ν2). The results
obtained below for these cases are summarized in table 1.

4.1. High frequency regime: Ω � q2

We describe only the outline of the derivation of the dispersion relation because
algebraic procedures to calculate σ (2) are straightforward. The matrix L1 in (3.16)
includes the small parameter εa =2πq/

√
Ω . The inverse matrix, determined by

Cramer’s formula, can be expanded in a power series of εa: L−1
1 = ε−1

a l(−1)+l(0)+O (εa).

The first-order coefficients are given by [a(0)
1,1 b

(0)
1,1 a

(0)
2,1 b

(0)
2,1]

tr = l(0)d(0) + O (εa) (the

product l(−1)d(0) yields a zero vector). These results are used to calculate d(1)
0 in
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the second-order problem. The inverse matrix of L0 is also expanded similarly:
L−1

0 = ε−3
a m(−3)+ε−2

a m(−2)+O(ε−1
a ) and is used to calculate the second-order coefficients

a
(1)
1,0, b

(1)
1,0, a

(1)
2,0 and b

(1)
2,0. Finally, injection of these results into (3.31) yields the dispersion

relation:

σ (2) = ε−2
a

ρκ2

16(1 + ρ)(1 + ρκ2)

(
1 − q−1 + q

2B

)
+ O

(
ε−1
a

)
. (4.1)

The corresponding marginal curve, instability threshold Bcr and the critical
wavenumber qcr , are given in table 1. This recovers the result of the inviscid
theory (1.4). This suggests that, for the inviscid approximation, the hypothesis made
for the present regime should be satisfied, i.e. Ω � q2. This requirement for the inviscid
approximation will be estimated more precisely in § 4.4.

4.2. Moderate frequency regime: q2/κ2 � Ω � q2

The small parameters included in matrices L1 and L0 are εb = κ−1 and εc =
√

Ω/2πq

with the relationship εb � εc. The inverse matrices of L1 and L0 are expanded in power
series of εb and then in power series of εc. The result is L−1

1 = ε−2
b l(−2) + O(ε−1

b ), where
l(−2) = εcl

(−2,1) + O(ε2
c ). Using these expansions as inversions of (3.16) and (3.30) and

injecting the results into (3.31), one will derive the dispersion relation:

σ (2) = ε2
c

1

16ρ

(
1 − ρ

1 + ρ

q−1 + q

2B

)
+ O

(
max

(
ε3
c , εb

))
. (4.2)

The corresponding marginal curve, instability threshold and critical wavenumber are
given in table 1. The instability threshold is characterized by a constant critical value
of the control parameter B , and the most unstable mode has the wavenumber q ,
which is equal to unity, as in the inviscid theory.

However, the critical value of B is smaller by a factor of ρ/(1 + ρ). It is interesting
to note that the same results were obtained in stability analyses of steady flows with
infinitely large viscosity contrast at the interface (Lindsay 1984; Hogan & Ayyaswamy
1985). The validity condition of the moderate frequency theory will be discussed and
estimated more precisely in § 4.4.

4.3. Low frequency regime: Ω � q2/κ2

The inverse matrices of L1 and L0 are expanded in power series of εd = κ
√

Ω/2πq:
L−1

1 = l(0) + O(εd) and L−1
0 = m(0) + O(εd). The growth rate computed under these

approximations is always negative:

σ (2) = −ε2
d

ρ(q−1 + q)

32(1 + ρ)(1 + ρκ2)B
+ O

(
ε3
d

)
. (4.3)

Neither marginal stability nor instability is expected. Any wave much shorter than
the Stokes boundary layer thicknesses is therefore stable.

4.4. General case

Marginal curves obtained by numerical computations of σ (2) are shown in figure 3.
The linear equation sets (3.16) and (3.30) are numerically inverted and used as input
in (3.31). The velocity parameter B is varied at a given q to determine the condition
giving the neutral stability σ (2) = 0. In figures 3 (a) and 3 (b), fluids of small and large
viscosity contrasts are considered, respectively. The density contrast is fixed at 0.9.
Different curves correspond to different values of the frequency Ω .

All the curves have a minimum Bcr at a finite wavenumber q = qcr . When the
viscosity contrast is weak, as shown in figure 3 (a), the minimum Bcr occurs at a
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Figure 3. Marginal curves for two-layer flows of (a) small (κ = 1) and (b) large (κ = 100)
viscosity contrasts with different oscillation frequency values Ω . The density contrast ρ is 0.9
for all the curves.
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Figure 4. Values of the control parameter B and the most unstable mode q on the instability
threshold for different viscosity contrast values: (a) critical control parameter Bcr , (b) critical
wavenumber qcr . The density contrast ρ is 0.9 for all the curves.

qcr smaller than unity. With the frequency increasing, the marginal curve descends
rightwards and approaches the inviscid curve (1.4). For frequency values larger than
Ω = 105, they are almost identical to each other. When the viscosity contrast is
large, the behaviour of the marginal curve is more complex. For small frequencies
(Ω � 0.1), the curve has its minimum Bcr at a qcr smaller than unity. With increasing
frequency, the curve displaces downwards and approaches the marginal curve of
the moderate frequency regime presented in table 1. After coinciding with the
latter, it goes up rightwards and then leftwards, approaching the inviscid marginal
curve (1.4).

In figure 4, Bcr and qcr are plotted against Ω for different values of κ . The density
contrast is fixed at 0.9. For small frequencies, all Bcr curves diverge to infinity. This is
consistent with the results for the low frequency regime. When the viscosity contrast
is small (κ ∼ 1), with the frequency increasing, Bcr and qcr behave monotonically,
approaching unity. For frequencies larger than 104, they are equal to unity within a
precision of 5 per cent, recovering the inviscid results (1.5). When the viscosity contrast
is large (κ � 10), with the frequency increasing until Ω ≈ 40κ−1, Bcr decreases towards
its minimum value, which is smaller than unity, while qcr increases towards unity. The
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Bcr and qcr stay around the minimum value and unity respectively, in the frequency
range 560κ−2 <Ω � 10. With the frequency increasing further, Bcr rapidly approaches
its inviscid value (Bcr = 1), whereas, surprisingly, qcr continues to increase beyond
unity and attains its maximum at Ω ∼ 60. Then, qcr approaches the inviscid value
(qcr = 1). The formation of waves shorter than the capillary wavelength (q > 1) was
reported in the experiments by Talib et al. (2007). Beyond Ω = 104, both Bcr and qcr

are almost equal to their asymptotic values and recover the inviscid results. In the case
of extremely large viscosity contrast (κ > 102), the frequency range 560κ−2 <Ω < 10
is large, so plateaus are found in the behaviour of Bcr and qcr . These plateaus are
at Bcr = ρ/ (1 + ρ) and qcr =1, recovering the earlier analytical results in table 1 for
the moderate frequency regime. The behaviour of Bcr and qcr is similar for different
values of the density contrast. The upper end of the moderate frequency regime,
however, depends on the density contrast as ∼10ρ.

This behaviour of Bcr and qcr can be used to determine, more precisely, the
frequency ranges of the high and moderate frequency regimes, i.e. to determine the
validity conditions of the results for (4.1) and (4.2). The high frequency regime
is expected to be a good approximation when Ω > 104 (or in dimensional form,
100δ2 < ˘cap). The moderate frequency regime will be a good approximation when
560κ−2 <Ω < 10ρ and κ > 100 (or in dimensional form, 24δ1 < ˘cap <

√
10ρ δ2 and

100δ1 <δ2).

5. Discussion
Besides the net growth due to instability, the interface waves oscillate in the

horizontal direction. Indeed, the interface disturbance is composed of a steady
component η̂

(0)
0 ( = 1) and unsteady components η̂

(1)
±1. The total motion of the interface

is written as follows:

η =
[
1 + 2πK

(
η̂

(1)
−1 e−it + η̂

(1)
1 eit

)]
ei2πx/λ + c.c.

= 2 cos

[
2π

λ

(
x − 1

ω

∫
c (t) dt

)]
, (5.1)

for a small K . The term (1/ω)
∫

cdt represents oscillatory ‘propagation’ of the waves.
The phase velocity c is given by

c = �U
[

− 2η̂
(1)
1 eit + c.c.

]
= �U

[(
a (0)

1,1 + b(0)
1,1

)
eit + c.c.

]
, (5.2)

in dimensional form, where (3.15) and (3.19) have been invoked for deriving the last
term. Computation of c for different frequencies Ω and for different viscosity contrasts
κ shows that the phase velocity is identical to that in the inviscid approximation (1.2)
for Ω > 104, irrespective of the value of κ .

Figure 5 shows the magnitude of c calculated by (5.2) at the instability onset
(B = Bcr , q = qcr ). Its value is normalized by the magnitude of the inviscid phase
velocity (1.2) in the interface reference frame, i.e. c0 − Ui. For Ω < 0.1, the magnitude
is constant for a given κ . It is equal to zero for κ larger than 100. This means that, for
such a large κ , the waves are static in the interface reference frame. Remember that
this reference frame moves with Fluid 2 when κ � 1. The waves are hence ‘frozen’
on the more viscous layer, as observed in the experiments reported in Part 2. After
an increase within a frequency range of 0.1 <Ω < 104, the magnitude converges to
unity for all κ . The phase velocity recovers the inviscid result (1.2) in its magnitude.
The phase of c also recovers the inviscid result (1.2) for frequencies Ω > 104. The
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for all the curves.)

horizontal oscillation of the waves follows the motion of the centre of mass in the
high frequency regime. This behaviour confirms that the high frequency regime is the
inviscid limit of the present stability problem.

As seen in (3.31), the time-averaged flow is directly related to the interface net
evolution. The pattern of the flow is shown in figure 6(a–d ) for different oscillation
frequencies and different viscosity contrasts. In each figure, the time-averaged shape
of the interface wave is also illustrated. The control parameter B is set to be slightly
larger (5 per cent) than the critical value Bcr , and the wavenumber is equal to the
critical value qcr .

For high frequency flow (Ω > 104), the averaged flow consists of two cells per
wavelength, as shown in figure 6 (a). In these cells, there is no flow recirculation. All
the streamlines pass through the interface. The whole time-averaged flow is associated
with net growing motion of interface disturbance. Only the characteristic length seen
in the cells is the wavelength. This indicates that vorticity is insignificant (�ψ ≈ 0)
in the bulk of the flow. Because these are characteristics of inviscid flow, the high
frequency regime is really the inviscid limit of the problem.

For smaller frequencies, two or four cells are found per wavelength in the averaged
flows, as seen in figures 6 (b), 6 (c) and 6 (d ). Flow can recirculate in the cells, implying
the importance of a steady streaming component in the averaged flow. This steady
streaming is an Eulerian mean flow generated in the oscillatory flows through inertia
effects. It is not associated with the interface net growing motion. The recirculation
cells closest to the interface have their centre at a distance of around twice the Stokes
boundary layer thickness from the interface. This length scale, different from the
horizontal extent of the cells, implies that vorticity concentrates in these cells attached
to the interface. We will use this finding later in a discussion on the instability
mechanism. In fluids with a small viscosity contrast, the steady streaming component
is not dominant, as seen in figure 6 (c) where half of the streamlines pass through the
interface. Recirculation cells are only small parts of the time-averaged flow pattern.
In contrast, in fluids with large κ , as in figures 6 (b) and 6 (d ), the flow is concentrated
in Fluid 1 and the steady streaming is its main component. In Fluid 2, all the
streamlines are related with the interface net growing motion (they are too weak and
below the figures’ resolutions in figures 6 (b) and 6 (d )). As seen in (2.8), the basic
flow is almost null in Fluid 2 so that inertia-induced streaming does not exist. The
observed concentration of the flow suggests that the instability is due to flow in the
less viscous fluid for large κ .
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Figure 6. Streamlines of time-averaged flow for different oscillation frequencies and viscosity
contrast values: (a) high frequency (κ = 10, Ω = 105, �ψ = 0.012), (b) moderate frequency
(κ =100, Ω = 0.5, �ψ = 6.2), (c) low frequency with a weak viscosity contrast (κ = 1, Ω = 100,
�ψ = 0.023), (d ) low frequency with a large viscosity contrast (κ = 100, Ω = 0.01, �ψ = 310).
The density contrast ρ is 0.9 for all of the figures.

Steady streaming is generated from the first-order unsteady flow, as seen in
equations (3.20)–(3.26). The latter unsteady flow is induced from two different origins.
The difference between the shear rates ∂U1/∂y and ∂U2/∂y at the interface level (y = 0)
yields a jump in velocity on the perturbed interface. Perturbation flow is induced to
satisfy velocity continuity at the interface, as seen in (3.10). Another origin is the
shear continuity (3.12). The difference between ρ1ν1∂

2U1/∂y
2 and ρ2ν2∂

2U2/∂y
2 at the

interface level leads to a jump in the shear on the perturbed interface, which should
be corrected through perturbation flow. According to these different origins, different
components can be distinguished in the growth rate σ (2). There is a component σ

(2)
velocity

resulting from the unsteady flow induced by the velocity continuity and a component
σ

(2)
shear from the flow induced by the shear continuity. The component σ

(2)
− due to gravity

and capillarity completes the total growth rate: σ (2) = σ
(2)
velocity + σ

(2)
shear + σ

(2)
− . The latter

term is always negative and tends to stabilize the system. A similar distinction of
velocity- and shear-induced destabilization is made in the study of steady thin layer
flows (Smith 1990; Charru & Hinch 2000).

Figure 7 shows these velocity- and shear-induced components for different viscosity
contrasts κ; σ

(2)
velocity and σ

(2)
shear are computed and normalized by |σ (2)

− | at the instability
onset (B = Bcr , q = qcr ). For small κ , the shear-induced component is dominant. In
particular, for fluids of identical dynamical viscosities, the velocity-induced component
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is null because the shear rate of the basic flow is continuous at the interface level. For
large κ , the dominance between σ

(2)
velocity and σ

(2)
shear interchanges with the frequency.

The former is dominant at high frequencies of Ω > 104, the latter is dominant at
frequencies Ω smaller than 10ρ. The transition between these two regimes occurs
within 10ρ <Ω < 104.

This finding implies that the mechanism of instability at frequencies Ω < 10ρ is
different from the mechanism in the high frequency regime, which is the classical K–H
instability. At small frequencies, flow structures of thickness δ1 (δ2) are developed in
Fluid 1 (Fluid 2) on the interface, as seen in figure 6(b–d ). This indicates vorticity
diffusion in the proximity of the interface. Considering the short wave instability
of steady two-layer Couette flows (Hooper & Boyd 1983), Hinch (1984) gave a
simple explanation for the growth of interface disturbance due to velocity-induced
perturbation flow. Vorticity induced at the perturbed interface is advected by the basic
flow to yield an out-of-phase component, which enhances the interface disturbance.
A similar explanation would be applicable to the present instability at Ω < 10ρ.
According to his analysis, the growth rate of disturbance can be estimated by
σ ∼ O(ρ1α

2
1/k2ρ2ν2) for layers with a large viscosity contrast, where α1 is the shear rate

in the less viscous layer and k is the inverse of the extent of flow disturbance in the less
viscous layer due to the vorticity diffusion, rather than the wavenumber (in unbounded
Couette flows, both have the same order of magnitude). Application of this estimate
to the present problem, with use of α1 ≈ �U/δ1, gives σ ∼ O(ρ1�U 2/ρ2ν2). The extent
of the vorticity diffusion layer, k−1, has been estimated by k−1 ≈ δ1, as was indicated
in the time-averaged flow patterns. On the other hand, according to the dispersion
relation (4.2) obtained in the moderate frequency regime, the growth rate is scaled
by σ = (2πK)2σ (2)ω (the factor ω has been multiplied for the dimensional equation).
It follows that σ =2ρ1�U 2/ρ2ν2. This agrees with the above estimate, indicating that
the instability at small frequencies is due to the same mechanism as the short wave
instability of the steady Couette flows.

As mentioned in § 2.1, the basic flow considered in the present paper can arise
in thick fluid layers (H1 � δ1, H2 � δ2) in a horizontally vibrated container and in
a duct with a pulsating pressure gradient. As the perturbation flow extends over a
wavelength (see figure 6a, c), the thicknesses of the layers should also be larger than
the wavelength for application of the present stability theory: H1 > λ and H2 > λ.



Oscillatory Kelvin–Helmholtz instability. Part 1 241

100 101 102 100 101 102
0.2

0.4

0.6

0.8

1.0

1.2
(a) (b)

data I
data II

Small amplitude
for data I

Finite amplitude

for data II

Viscosity contrast, κ Viscosity contrast, κ

Bcr

0.5

1.0

1.5

2.0

2.5

qcr

Figure 8. Comparisons with a finite-amplitude theory for the flow in a horizontally vibrated
container: (a) critical control parameter Bcr , (b) critical wavenumber qcr . Markers shown as
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However, when the viscosity contrast is very large (κ > 100), the latter condition
on H2 can be omitted, since the flow concentrates only in the less viscous fluid
(see figure 6b, d ). The basic flow can also arise with fluids of large κ in Couette
configuration and in a rotated cylindrical tank. To apply the stability theory to these
flows, the less viscous layer should be thicker than a wavelength for the same reason.

It is interesting to compare the present small amplitude theory with the numerical
stability determination by Talib and her co-workers for finite-amplitude flows in a
horizontally vibrated container. In figures 8(a) and 8(b), the instability thresholds
and most unstable wavenumbers reported in figure 11 of Talib et al. (2007, hereafter
referred to as data I) and in figure 10 of Talib & Juel (2007, referred to as data II)
are shown, with the results of the small amplitude theory. Values of Bcr shown in
figure 8 (a) have been calculated from the reported critical amplitudes of container
vibration, Ucont/ω (Ucont is the container velocity), with use of the relationship (2.10).
Data I is for fluid layers of thicknesses H1 =H2 = 20 mm, vibrated at 20 Hz. The
physical properties of the fluids are ρ1 = 1752 kg m−3, ρ2 = 966 kg m−3, ν1 = 1 mm2 s−1

and γ = 7 mNm−1. These values correspond to their experiments. The viscosity of
the more viscous layer, ν2 = κ2ν1, is varied from κ = 1 to κ = 245. Data II is for fluid
layers with a large interfacial tension. Dimensionless parameters for these data are
given in the caption of figure 8. If we chose the same ρ1, ν1, H1 and H2 as data I, these
parameter values correspond to fluid layers of ρ2 = 859 kg m−3 and γ = 210 mN m−1,
vibrated at 6.29 Hz. The viscosity ν2 = κ2ν1 is varied from κ = 1 to κ = 160. As seen in
figure 8 (a), the finite amplitude theory predicts non-monotonic behaviour of Bcr with
κ increasing. It increases slightly towards 1.2 at small κ (κ < 5), decreases towards
0.3 at intermediate κ (5 < κ < 100) and increases again at large κ (κ > 100). The
predictions of the small amplitude theory recover well this behaviour for both data I
and data II, except the increase at large κ . This discrepancy is due to the fact that
the more viscous layer is no longer thick compared with the Stokes boundary layer
thickness δ2. Since the viscosity ν2 increases with κ , the Stokes boundary layer becomes
thicker with κ increasing and comparable with the layer thickness H2( ∼ 1.5δ2) at
κ = 100. The basic flow (2.5)–(2.8) will not approximate well the flow in the vibrated
container. Both theories also predict non-monotonic behaviour of qcr , as seen in
figure 8 (b). The small amplitude theory reproduces qualitatively the predictions of
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the finite amplitude theory over the whole κ range, with excellent agreements at large
κ (κ > 20 for data I, κ > 50 for data II). For both data I and data II, the predictions
of the small amplitude theory do not agree quantitatively with the results of the finite
amplitude theory. The small amplitude theory underestimates and overestimates the
instability threshold at κ � 40 and at 40 � κ � 100, respectively. It also overestimates
qcr at κ < 20 for data I and κ < 50 for data II. These discrepancies will be due to
the breaking of the small amplitude hypothesis. The Keulegan–Carpenter number K

is not small in the considered fluid configurations: K > 0.52 for data I and K > 0.75
for data II, according to the results of the finite amplitude theory. These values are
beyond the validity limit of the small amplitude theory, which will be estimated later.

In figure 9, the instability threshold and critical wavenumber predicted by the
small amplitude theory are compared with carefully conducted experiments by Talib
et al. (2007). They drove flows by horizontal vibration in a parallelepiped fluid
container. Reported critical values of the vibration amplitude Ucont/ω of the container
are transformed into the amplitude �U/ω of the relative oscillatory motion between
fluid layers by (2.10). Figure 9 also includes comparisons with the experiments reported
in Part 2, in order to show the applicability of the present theory to flows arising in
another configuration. Flows were driven by alternate rotation of a cylindrical tank,
as mentioned in § 1.

In figure 9 (a), comparisons show that the theory correctly takes into account
the influence of the density and viscosity contrasts to successfully predict
the instability threshold. Excellent quantitative agreements for two experimental
systems over the whole frequency and amplitude ranges (0.1 Hz <ω/2π < 50 Hz,
0.6 mm<�U/ω < 103 mm), except for the experiments of Talib et al. (2007) with
the largest viscosity contrast (κ =110). This is due to the small thickness of the
more viscous layer. The ratio H2/δ2 is smaller than 1.9 for these experiments, while
it is larger than 10.5, 7.7 and 3.3 for their experiments with κ = 10.1, 13.7 and
32.0, respectively. As discussed in § 2.1, the flow in a vibrated container is no longer
approximated by the basic flow (2.5)–(2.8) when this ratio is small. In figure 9 (b),
comparisons show that critical wavenumbers are also predicted well by the small
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amplitude theory. Experimentally observed viscosity and frequency dependence is
correctly reproduced. However, comparisons are worse in experiments with smaller
frequencies. This comes from the fact that the small amplitude hypothesis is less
satisfied for them. Indeed, the finite amplitude theory of Talib et al. (2007) predicts
excellently the critical wavenumber for their experiments over the entire frequency
range. For the experiments presented in figure 9, values of K are larger than 0.5
when the frequency is smaller than 32 Hz, 24 Hz, 13 Hz and 1 Hz for experiments with
viscosity contrasts κ = 10.1, 13.7, 32.0 and 100, respectively. Below these frequencies,
the small amplitude theory overestimates the critical wavenumber. This observation
suggests that the present asymptotic theory is valid until a relatively large value of
K . The validity limit would be around K ≈ 0.5.

This validity limit can be transformed to a requirement on fluid properties.
According to the definitions of the dimensionless parameters, the Keulegan–Carpenter

number can be expressed as K =
√

2(ρ2
1−ρ2

2 )gλ
3
capBq2/πρ1ρ2ν

2
2Ω

2. The validity

condition K � 0.5 is rewritten with use of the latter equation:

(ρ1+ρ2)γ
3/2

ρ1ρ2(ρ1−ρ2)1/2g1/2ν2
2

� 0.25
Ω2

16π2Bq2
. (5.3)

This inequality, examined at the instability threshold for the most unstable mode,
gives a requirement on fluid properties for the applicability of the present small
amplitude theory. For realising an experiment in the moderate frequency regime
(560/κ2 <Ω < 10ρ, κ > 100) with fluids of ρ1 = 1752 kg m−3, ρ2 = 966 kgm−3 and
γ = 7 mN m−1 as in the experiments of Talib et al. (2007), for example, the
inequality (5.3) yields ν2 � 1550 Ω−1 mm2 s−1. The critical parameters Bcr and qcr

for the moderate frequency regime in table 1 have been invoked to derive this
relationship. The requirement is therefore ν2 � 280 mm2 s−1 at the upper end of the
moderate frequency regime (Ω = 10ρ = 5.5). This inequality is normally satisfied,
once we chose Fluid 2 under the condition κ > 100. At a smaller frequency Ω =0.1,
however, Fluid 2 should be carefully chosen for ν2 to be larger than 15 500 mm2 s−1.

6. Conclusion
The linear stability of two-layer oscillatory flows was investigated for thick viscous

fluid layers. The stability problem was formulated, with respect to the dynamics
inside the Stokes boundary layers developed on the interface in both layers. The
problem was resolved for the asymptotic case of small K , i.e. a small oscillation
amplitude compared with the wavelength. It was found that this asymptotic theory
predicted a significant influence of the oscillation frequency and viscosity contrast
on the instability threshold and the critical wavenumber, as reported in preceding
experimental and theoretical works (Beysens et al. 1998; Ivanova et al. 2001a ,b;
Talib & Juel 2007). Competition between different length scales (δ1, δ2 and λcap) was
shown to accompany this influenced behaviour in the threshold and wavenumber.
Different instability mechanisms were suggested: the same mechanism as in the
classical K–H instability for high frequency flows and a mechanism similar to the
short wave instability in steady Couette flow for small frequency flows. Comparisons
of the theoretical predictions with another theory and experiments in the literature
justify the present asymptotic theory and enabled us to estimate the validity condition
of the theory (K � 0.5). For larger K , a theory for finite oscillation amplitude should
be employed. A numerical resolution of the stability problem formulated in § 2 is
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Figure 10. Two-layer oscillatory flows with bounding walls.

performed and reported in Part 2 for explaining experiments with large oscillation
amplitudes.

The authors would like to thank Dr A. Juel and Professor T. Mullin for fruitful
discussions.

Appendix A. Two-layer oscillatory flows in different configurations
The generic configuration of (i) the flow in a horizontally vibrated container, (ii) the

duct flow generated by a pulsating pressure gradient and (iii) the oscillatory Couette
flow is illustrated in figure 10. The wall velocities U1,wall and U2,wall are equal to the
container velocity Ucont for the flow (i) and null for the flow (ii). The periodic solutions
of the Navier–Stokes equations (2.1)–(2.2) are:

U1=
(
C1 e(1+i)y/δ1+D1 e−(1+i)y/δ1+E1

)
eiωt + c.c.,

U2=
(
C2 e−(1+i)y/δ2+D2 e(1+i)y/δ2+E2

)
eiωt + c.c.

}
(A 1)

The boundary conditions determining the constants {C1, D1, . . . , E2} are those at the
interface (2.4) and the no-slip conditions on the walls:

U1 = U1,wall cos ωt at y = − H1 and U2 = U2,wall cosωt at y = H2. (A 2)

Another condition completing the determination is specific to each flow configuration.
For the flow (i), the specific condition concerns the total volume flux. Due to the

presence of the container end walls, the flux should be equal to the volume swept by

an end wall per unit time:
∫ 0

−H1
U1dy+

∫ H2

0
U2dy = (H1+H2)Ucont cos ωt . Invoking this

specific condition with the boundary conditions (2.4) and (A 2), one can calculate
the constants to determine the flow (A 1). Analytical expressions of the solution
can be found in Talib & Juel (2007). For thick layers, neglecting corrections of the
order of O(max (δ1/H1, δ2/H2)), one can derive the following approximative velocity
fields:

U1=Ui−
ρκ�U

1 + ρκ

[
cos ωt − ey/δ1 cos

(
ωt+

y

δ1

)]
+

H2�U

H1+H2

e−(H1+y)/δ1 cos

(
ωt−H1 + y

δ1

)
,

U2=Ui+
�U

1 + ρκ

[
cos ωt − e−y/δ2 cos

(
ωt− y

δ2

)]
− H1�U

H1+H2

e−(H2−y)/δ2 cos

(
ωt−H2 − y

δ2

)
,

⎫⎪⎪⎬⎪⎪⎭
(A 3)

where Ui and �U are those given by (2.10). The third term on the right-hand-sides
is flow component generated by shear at the wall and negligible near the interface.
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The flow (A 3) is identical to the basic flow (2.5)–(2.8) considered in the present
paper.

For the flow (ii), the specific condition concerns the imposed pressure gradient
�P sinωt (per unit length): ∂P1/∂x = ∂P2/∂x =�P sinωt . Making use of this
condition as well as the boundary conditions (2.4) and (A 2), one can determine
the flow (A 1). For thick layers, the flow is given by the same expressions as (A 3),
but with Ui and �U given by (2.11) and with different third terms in the right-
hand-sides the coefficients H2�U/(H1 + H2) and H1�U/(H1 + H2) are replaced by
−ρ�U/(1 − ρ) and �U/(1 − ρ), respectively. Near the interface, this flow is identical
to the considered basic flow.

For the flow (iii), the specific condition is a zero pressure gradient ∂P1/∂x =
∂P2/∂x = 0. Such flows can be realised in a vertically installed cylindrical Hele-
Shaw cell with shearing top and/or bottom walls. When both walls have the same
velocity, this flow configuration is equivalent to the ‘co-flowing layer’ considered
in Talib (2006). Assuming a large viscosity contrast as well as H1 � δ1 and
H2 � δ2, one can derive the following approximate expressions of the velocity
fields:

U1 = −U2,wall e
y/δ1 cos

(
ωt +

y

δ1

)
+U1,wall e

−(H1+y)/δ1 cos

(
ωt − H1 + y

δ1

)
,

U2 = U2,wall cos ωt.

⎫⎬⎭ (A 4)

In the neighbourhood of the interface, this is identical to the considered basic flow
(in the limit of large κ), as mentioned in § 2.1.

Appendix B. Matrices
Explicit definitions of the matrices and vectors used in the present paper are given

here. The functions appearing in these definitions, ϕj and W̃j,±1 (j = 1, 2), mean their
values at the interface level (y = 0).

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2πq

κ
√

Ω

√
4π2q2

κ2Ω
+ i2

1 1

8π2q2

κ2Ω

8π2q2

κ2Ω
+ i2

− 2πq

κ
√

Ω

(
8π2q2

κ2Ω
+ i2

)
−8π2q2

κ2Ω

√
4π2q2

κ2Ω
+ i2

2πq√
Ω

√
4π2q2

Ω
+ i2

−κ −κ

−ρκ
8π2q2

Ω
−ρκ

(
8π2q2

Ω
+ i2

)
−ρ

2πq√
Ω

(
8π2q2

Ω
+ i2

)
−ρ

8π2q2

Ω

√
4π2q2

Ω
+ i2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B 1)
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d(0)
1 =

⎡⎢⎢⎢⎢⎢⎣
−ρκ2 − 1

ρκ2
W̃ ′

1,1

0

−κ + 1

κ
W̃ ′′

1,1

0

⎤⎥⎥⎥⎥⎥⎦, (B 2)

L0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2πq

κ
√

Ω

2πq

κ
√

Ω

2πq√
Ω

− 2πq√
Ω

1 0 −κ 0
8π2q2

κ2Ω

8π2q2

κ2Ω
−ρκ

8π2q2

Ω
ρκ

8π2q2

Ω

−16π3q3

κ3Ω3/2
0 −ρ

16π3q3

Ω3/2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B 3)

d(1)
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϕ′
1 + ϕ′

2 +
ρκ2 − 1

2ρκ2

[
W̃ ′

1,−1

(
a

(0)
1,1 + b

(0)
1,1

)
− c.c.

]
−ϕ1 + κϕ2

−ϕ′′
1 − 4π2q2

κ2Ω
ϕ1 + ρκ

(
ϕ′′

2 +
4π2q2

Ω
ϕ2

)
+

κ + 1

2κ

[
W̃ ′′

1,−1

(
a

(0)
1,1 + b

(0)
1,1

)
− c.c.

]
−Q1 + ρQ2 − i

πρ(1 + q2)

2κ(1 + ρ)B
√

Ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(B 4)

with

Q1 = ϕ′′′
1 − 12π2q2

κ2Ω
ϕ′

1 +
[
iW̃ ′

1,−1

(
a

(0)
1,1 + b

(0)
1,1

)
− c.c.

]
,

Q2 = ϕ′′′
2 − 12π2q2

Ω
ϕ′

2 +
[
iW̃ ′

2,−1

(
a

(0)
2,1 + b

(0)
2,1

)
− c.c.

]
.

⎫⎪⎪⎬⎪⎪⎭ (B 5)

Appendix C. Symmetry
Due to the left–right symmetry of the considered system, the time-periodic part of

a velocity field at a given time is the mirror image of that after half a period with
respect to the y axis. The time periodic parts of the perturbed flows should therefore
satisfy the following conditions:

ψ̃j,−m = (−1)m−1 ψ̃∗
j,m (j = 1, 2), (C 1)

where the asterisk denotes the complex conjugate. Similar conditions are also imposed
on the periodic interface disturbances:

η̃−m = (−1)m η̃∗
m. (C 2)

Appendix D. Coefficients Fj , Gj , and Hj (j = 1, 2)

F1 = −

ρκ

1 + ρκ(
2πq

κ
√

Ω
+ 1 − i

)2

− 4π2q2

κ2Ω

, (D 1)
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G1 =
ρκ

i2 (1 + ρκ)
, (D 2)

H1 = −

2ρκ

1 + ρκ(√
4π2q2

κ2Ω
+ i2 + 1 − i

)2

− 4π2q2

κ2Ω

, (D 3)

F2 =

1

1 + ρκ(
2πq√

Ω
+ 1 − i

)2

− 4π2q2

Ω

, (D 4)

G2 = − 1

i2 (1 + ρκ)
, (D 5)

H2 =

2

1 + ρκ(√
4π2q2

Ω
+ i2 + 1 − i

)2

− 4π2q2

Ω

. (D 6)
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