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ABSTRACT: The paper presents a combined numerical–deep learning (DL) approach for improving wind and wave
forecasting. First, a DL model is trained to improve wind velocity forecasts by using past reanalysis data. The improved
wind forecasts are used as forcing in a numerical wave forecasting model. This novel approach, used to combine physics-
based and data-driven models, was tested over the Mediterranean. The correction to the wind forecast resulted in ∼10%
RMSE improvement in both wind velocity and wave height over reanalysis data. This significant improvement is even
more substantial at the Aegean Sea when Etesian winds are dominant, improving wave height forecasts by over 35%. The
additional computational costs of the DL model are negligible compared to the costs of either the atmospheric or wave
numerical model by itself. This work has the potential to greatly improve the wind and wave forecasting models used
nowadays by tailoring models to localized seasonal conditions, at negligible additional computational costs.

SIGNIFICANCE STATEMENT: Wind and wave forecasting models solve a set of complicated physical equations.
Improving forecasting accuracy is usually achieved by using a higher-resolution, empirical coefficients calibration or better
physical formulations. However, measurements are rarely used directly to achieve better forecasts, as their assimilation
can prove difficult. The presented work bridges this gap by using a data-driven deep learning model to improve wind
forecasting accuracy, and the resulting wave forecasting. Testing over the Mediterranean Sea resulted in ∼10% RMSE
improvement. Inspecting the Aegean Sea when the Etesian wind is dominant shows an outstanding 35% improvement.
This approach has the potential to improve the operational atmospheric and wave forecasting models used nowadays by
tailoring models to localized seasonal conditions, at negligible computational costs.

KEYWORDS: Forecasting; Forecasting techniques; Hindcasts; Numerical weather prediction/forecasting;
Operational forecasting; Statistical forecasting; Neural networks; Numerical analysis/modeling; Ocean models;
Optimization; Postprocessing; Reanalysis data; Artificial intelligence; Deep learning; Machine learning; Regression

1. Introduction

Wind velocity accuracy has been established as one of the
most significant factors in achieving an accurate ocean waves
forecast (Bidlot et al. 2002). For this reason, operational wave
forecasting models aim to use the most accurate wind fields
available, with a high resolution in both space and time. The
models producing these wind fields are highly computation-
ally expensive, simulating many layers in the atmosphere.
These atmospheric models are assimilated with data acquired
by measurement instruments to create reanalysis results. The
reanalysis data are used to assess, study, and improve the
wind forecast ability (Hersbach et al. 2020).

Wave forecasting models, such as WAM (Hasselmann et al.
1988) or WAVEWATCH III (Tolman 1991), use wind fore-
cast as an input. Although the driving force for wave genera-
tion is surface wind, the parameter used by most models is
wind velocity at 10 m above the sea surface (U10), as this
property is easier to measure and predict. This means only a

single property at a single level of the atmospheric model ac-
tually affects the wave model. A semiempirical source term is
used by wave models to convert U10 to wave action forcing.
Optimizing atmospheric models is highly complex, both in
terms of computational costs and in terms of improved physi-
cal equations accounting for multiple flow parameters. Thus,
a model which can optimize U10 independently, decoupled
from the physics-based model and with low computational
costs, is very desirable.

In the last few years, deep learning (DL) models have been
used in multiple fields to solve complex, highly nonlinear
problems (Wang et al. 2019; Brunton et al. 2020). These DL
models are data-driven, meaning they generally do not pos-
sess any prior physical knowledge, but are instead trained to
predict a given “ground truth” data. After the model is
trained using a training dataset to achieve good performance,
it is verified over an independent test dataset. The training
process usually requires significant computational resources,
though it is still relatively small compared to numerical mod-
els. Afterward, the resulting model can be used to produce ac-
curate predictions at very minimal computational cost for
specific problems.

DL methods are highly relevant for geophysical problems
(Reichstein et al. 2019) and can be used for various functions.
First, DL is used for making forecasts of various atmospheric
variables directly, which are data-driven and independent of
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physical equations and numerical models (Weyn et al. 2020;
Rasp and Thuerey 2020; Arcomano et al. 2020). Second, these
methods are used in hybrid numerical–DL models, where the
DL model usually replaces some functions or parameteriza-
tion of the numerical model in order to increase computa-
tional efficiency (Schneider et al. 2017; Gentine et al. 2018;
Brenowitz and Bretherton 2019; Wikner et al. 2020). Finally,
machine learning (ML) and DL methods are used for post-
processing and measurement assimilation (Vannitsem et al.
2020; Haupt et al. 2021). These usually use an ensemble of at-
mospheric models with different initial conditions as an input
to an ML model based on random forest or a fully connected
neural network (NN) (Zjavka 2015; Rasp and Lerch 2018),
while recently some work has been done using convolutional
NN (Grönquist et al. 2021; Veldkamp et al. 2020).

The presented paper uses a DL model with U10 wind ve-
locity forecasts as the input and predicts the U10 reanalysis
data, considered as ground truth. This is a form of postpro-
cessing and is intended to improve wind prediction used as an
input to a numerical wave model. Unlike previous works, the
current model focuses on using advanced DL architecture to
improve forecasts using only the predicted variable as input
(e.g., only wind velocity). This allows the DL model to be
used in wave forecasting as a wind preprocess source term as
the wind input, which has the strongest effect on wave model-
ing. Improving the wind input is a common way of improving
the quality of wave forecasting. This is done either by improv-
ing the equation of the physical interaction source term or by
adjusting the wind values directly to better fit measurements
(Ardhuin et al. 2007). To the best of our knowledge, this is
the first attempt to create such an integrated numerical–deep
learning process to improve wind forecasting that can be used
to improve operational wave forecasting directly.

2. Model database: ECMWF wind velocity

The datasets used in this paper are ECMWF ERA5 reanal-
ysis (REAN) and the forecasts (FC) that were used as initial
model for the reanalysis (Hersbach et al. 2020). ERA5 was
chosen as it was found to be a very accurate reanalysis for sur-
face winds (Ramon et al. 2019). The parameters of wind ve-
locity in the zonal and meridional directions at 10-m height
(u10, y10) were used, where FC data were used as the deep
learning models (DLM) input and the REAN as the ground
truth.

The FC is initiated from a wind analysis every 12 h at 0600
and 1800 UTC, and consists of 18 hourly steps. This means
there is an overlap between consecutive forecasts. In this
work the time steps 7–18 were used in the training and eval-
uation, as these were furthest from the initial analysis and
had the largest errors. The REAN data are an hourly high-
resolution model incorporated with measurements.

The spatial grid chosen was of the Mediterranean region,
with latitude between 30.28 and 45.78N and steps of 0.58, and
longitude between 2.18W and 36.08E and steps of 0.38. This re-
sults in a power of two grid dimensions 323 128, making it ef-
ficient for processing with a DLM.

3. Recurrent-convolutional model

In Roitenberg and Wolf (2019) a general DLM architecture
for spatiotemporal forecasting problems was introduced and
tested for public transportation demand. This model was used
as a base for a new DLM by removing the encoder and mak-
ing several adjustments to the decoder part (Fig. 1). The new
DLM begins with an input sequence of FC instances. Next is
an encoder comprised of convolutional layers with gradually
increasing width and dilation. Increasing the width allows
each layer to capture more information, while larger dilation
allows a wider receptive field, taking into account the effects
of further spatial information. Using dilation instead of more
traditional approaches of strided convolution or pooling
layers keeps the original input dimensions and thus prevents
spatial information loss (Yu and Koltun 2015).

Following the encoder, convolutional gated recurrent unit
(CGRU) (Ballas et al. 2015) layers were used. These layers
combine the ability of the GRU layer (Chung et al. 2014) to
learn temporal connections with the convolutional layer capa-
bility of spatial modeling. This is done by replacing the matrix
multiplication of a GRU with a convolution, and the parame-
ter matrices and vectors with smaller kernels. The CGRU is
governed by a set of equations:

zt 5 s(Wz ⊗ Xt 1 Uz ⊗ ht21)
rt 5 s(Wr ⊗ Xt 1 Ur ⊗ ht21)
ht 5 tanh[W ⊗ Xt 1 U ⊗ (rt � ht21)]
ht 5 (1 2 zt)ht21 1 zth t

, (1)

where ⊗ is the convolution operation; � is the Hadamard
product; s is the sigmoid nonlinearity function; and W, Wz,
Wr, U, Uz, Ur are the convolutional kernels that can be
trained. Parameter ht is called the hidden state, a tensor that
is both the cell’s output at time t and is used as an input to the
next time the cell is used, in a recurrent operation. Parameter
rt is called the reset gate, which controls what information is
“remembered” from the previous hidden state ht21 to the
current cell’s candidate hidden state h t. Parameter zt is
called the update gate, and it sets a relative importance be-
tween the previous hidden state and current candidate hid-
den state.

Each instance of the input sequence is introduced sepa-
rately to the encoder and to the following CGRU, and the
last output of the CGRU is concatenated with the last input
instance into it. This forms a skip connection over the CGRU,
allowing both to bypass it where needed and to improve it by
adding a residual. Using residual connections was shown to be
extremely effective in improving the learning ability of the
neural networks compared to modeling absolute values (Littwin
andWolf 2016).

Finally, the new decoder consists of convolution layers mir-
roring the structure of the encoder in width and dilation. The
output of the decoder was summed with the last input in-
stance to the model, forming another residual connection.
This last residual connection helps the model by providing it
with a prior model (the original forecast). It means the model
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is actually learning to correct the original forecast input, in-
stead of learning to make an independent prediction.

4. Deep learning wind prediction experiments

Four types of wind input to the DLM were tested for effec-
tiveness in producing a more accurate wind input for wave
forecasting. The input data for all experiments consisted of
12 consecutive hourly time steps from the FC dataset. The tar-
get was the REAN at the time of the last input. This effec-
tively means improving the wind field at a given time t by
using time steps (t 2 11, t). The network hyperparameters
were initially set to those of Roitenberg and Wolf (2019).
A short training period of the years 2010/11 and validation pe-
riod of the year 2012 was used to test changes to the architec-
ture. The chosen architecture (shown in Fig. 1) consisted of a
four convolutional layers encoder with (8, 16, 64, 128) filters
and a dilation of (1, 2, 4, 8), followed by a single CGRU layer
with input and output dimensions of 128. The decoder con-
sisted of four convolutional layers with (128, 32, 16, 2) filters
and (8, 3, 2, 1) dilations. The datasets were split into a training
set between the years 2001 and 2016, a validation set of the
year 2000, and a test set of the year 2017. The validation set
was used for hyperparameter tuning and internal model verifi-
cation. It was separated from the test set to prevent similari-
ties between the two. The presented results refer only to the
test set. The DLM was trained and evaluated using an NVidia

GeForce GTX 2080 Ti GPU with a 12 GB memory. The Fastai
API (Howard and Gugger 2020) was used with Pytorch API as
a base. The model was optimized using Adam (Kingma and Ba
2015), an adaptive moment estimation algorithm using per-
parameter learning rates based on second moments for mini-
mizing the loss function. Weight decay was set to 1023, and the
minibatch size was 16. A changing learning rate with the one-
cycle approach of Smith (2018) was used, and each model was
trained for eight cycles of two epochs. The max learning rate
started at 1023, and was divided by the cycle number as learn-
ing progressed. After training, the validation set was used to
identify the cycle with best performance. The weights of this
cycle defined the new DLM, and its performance was evalu-
ated on the test set. The resulting RMSEs (see supplemental
material) in space and time of all wind input types are shown
in Table 1 and compared to the original FC data. Additional
statistics and figures are available in the supplemental material.

a. Input type 1: Wind velocity magnitude

The first experiment optimized prediction of wind velocity

magnitude (UMag), defined as U 5
������������
u210 1 y 2

10

√
. The magni-

tude was chosen as it seemed easier to predict, being always
positive, nondirectional, and independent property in space.
This resulted with input and output tensors with dimensions
of (time5 12, c5 1, lat5 32, lon5 128). The resulting U was
also transformed back to the form of u10 and y10 using the

FIG. 1. Model architecture from bottom left: input (purple) in the form of a sequence of FC instances with c channels (variables) is
passed one at a time to the encoder (orange), comprised of convolutional layers with increasing filters and dilation. The output of the en-
coder is fed to a CGRU (blue). The last output of the resulting sequence is concatenated with the last input into it, and introduced to the
decoder (green), comprised of convolutional layers mirroring the encoder. The final result is summed with the last instance of the input
sequence to form a residual connection (purple).
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original FC direction. As expected, U improved significantly,
as it is the main objective of the UMag DLM. It is interesting
that the resulting u10 and y10 are improved by a much smaller
percentage.

b. Input type 2: Wind velocity vector

The second experiment was performed to test the DLM’s
ability to improve the wind velocity vector (UVec) directly.
The input was set as the FC u10 and y10, and the output as the
matching prediction, resulting with (12, 2, 32, 128) tensors. Al-
though the improvement in the main objective of each DLM
is smaller, the resulting wind vector improvement is almost
3 times as much as that of the UMag model.

c. Input type 3: Wind direction vector

The third experiment was predicting the direction of the
wind velocity vector (UDir). The normalized directional unit
vector (unit vector) was defined as

cosu

sinu

( )
5

u10/U

y10/U

( )
, (2)

and was set as both the input and output of the DLM. The
test set output was multiplied by U to produce a wind velocity
vector. Examining the results of this DLM found it similar to
the UVec model with smaller improvement.

d. Input type 4: Wind friction velocity vector

Finally, an experiment was carried out to try and make a con-
nection between a physical wave forecasting model and the
DLM for wind prediction. The wave model uses the wind input
through a source term (ST) which converts it to wave energy.
Such a ST combines analytical and empirical derivations, with a

varying degree of complexity. The relatively simple wind friction
velocity vector (UFrc) of WAM 3 (Hasselmann et al. 1988)

u* 5
u10

��������������������
0:8 1 0:065u10

√
y10

�������������������
0:8 1 0:065y10

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3)

was used in the DLM cost function, which should make it bet-
ter fitting as an input to the ST. This still lacks the local wave
action spectrum used in the source term, but as they are the
result of an independent model with high computational cost,
such a coupled model was not tested. This DLM’s results
were almost identical to the UVec model.

5. Wave forecasting with deep learning wind prediction

The effects of the new DLM output (the wind velocity pre-
diction) on ocean waves forecasting was examined by using it
as a forcing of the WAVEWATCH III v6.07 (WW3)
model. WW3 ran with an unstructured grid of the eastern
(Levant) area of the Mediterranean Sea, using 36 directions,
36 frequencies in the range 0.04–0.427 Hz and a time step of
dtglobal 5 10 min. The wind forcing source term of Ardhuin
et al. (2010) was used, alongside a linear wind interpolation.
Six input configurations were tested: ECMWFs FC and
REAN, and the four DLM outputs. WW3 ran separately with
each forcing for the year 2017. The resulting wave forecast
mean field parameters of significant wave height (Hs), mean
wave direction (dir) and mean wave period (Tm0,21) are shown
in Table 2. All DLM outperformed the FC, as expected. Sur-
prisingly, UMag had the best performance for both wave
height and period, while UVec results with a better mean di-
rection. UDir was outperformed by the other models and UFrc
was almost identical to UVec with slightly worse results. Thus,
only UMag and UVec are shown in the following analysis.

TABLE 1. Wind velocity RMSE in space and time by wind input types.

Model Property DLM RMSE FC RMSE RMSE improved

UMag, inp. type 1 U (m s21) 0.5999 0.6673 10.1%
u10 (m s21) 0.7075 0.7291 2.97%
y10 (m s21) 0.7065 0.7278 2.88%

UVec, inp. type 2 U (m s21) 0.615 0.6673 7.8%
u10 (m s21) 0.6616 0.7291 9.26%
y10 (m s21) 0.6594 0.7278 9.39%

UDir, inp. type 3 cosu 0.2307 0.2469 6.55%
sinu 0.229 0.2463 7.04%
u10 (m s21) 0.6906 0.7291 5.28%
y10 (m s21) 0.69 0.7278 5.19%

UFrc, inp. type 4 U (m s21) 0.6162 0.6673 7.65%
u10 (m s21) 0.663 0.7291 9.06%
y10 (m s21) 0.6613 0.7278 9.14%

TABLE 2. Model wave mean parameters RMSE in space and time by wind input types. Bold values indicate the best result.

Property FC UMag (%improved) UVec (%) UDir (%) UFrc (%)

Hs (m) 0.0765 0.0676 (11.6%) 0.0698 (8.7%) 0.0762 (0.4%) 0.0705 (7.8%)
Dir (8) 44.4 42.8 (3.4%) 42.2 (4.9%) 43.8 (1.3%) 42.5 (4.3%)
Tm0,21 (s) 0.309 0.283 (8.4%) 0.286 (7.4%) 0.307 (0.05%) 0.287 (7.1%)
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A spatial map of Hs time-mean RMSE differences can be
seen in Fig. 2. The RMSE difference was taken as RMSEFC 2

RMSEDLM, meaning the new DLM has better performance
where positive and vice versa. It is immediately apparent that
both DLMs outperform the original FC in the eastern part of
the basin, especially in the Aegean Sea where the local im-
provement is ∼20%. The FC slightly outperforms the DLM at
the southwestern part. This spatial difference is correlated to
a much higher RMSE in the original FC data at the eastern
half, specifically in the Aegean Sea (see Fig. S8 in the online
supplemental material). The large RMSE results in larger gra-
dients while training the DLM, and thus greater improve-
ment. The improved performance of UMag can be attributed
to more accurate results over the western half, including im-
proved performance along the coastal area.

A temporal comparison of spatial-mean RMSE of the
DLM and FC is given in Fig. 3. This shows that the main im-
provement of both DLM was during the spring to autumn pe-
riod, most prominently during the summer months, implying
correction of the Etesian wind. Examining the Aegean Sea
during the Etesian results in a staggering 35% RMSE im-
provement. This examination was done by looking at the
RMSE of the Aegean Sea from mid-May to mid-September.
The current model can be used as is, or as a seasonal model,
alongside a separate seasonal model trained specifically for
the winter season or even for stormy conditions. Such models
can work as an ensemble to produce better results by using lo-
calized seasonal models.

6. Summary and discussion

In this work a novel deep learning model for wind velocity
postprocessing was presented. The model allows to improve

wind and waves numerical, physics-based models’ accuracy by
using a deep learning, data-driven model (DLM). The DLM’s
input were the forecasts (FC) which were used in ECMWF
ERA5 reanalysis (REAN), and the ground truth was the
REAN data themselves. Several input types were tested, and
the best performance was achieved by using the wind magni-
tude (UMag), disregarding the wind direction. This model
consisted of a convolutional encoder and decoder, with a con-
volutional gated recurrent unit in between. The DLM’s out-
put was used as a forcing for a wave forecasting model
(WAVEWATCH III), and the resulting significant wave
height, mean wave direction and mean wave period were ex-
amined. The new model showed significant improvement in
all wind and wave parameters.

The model can be deployed to operational atmospheric
models as a postprocess of the wind forecast, or to a wave
model as a preprocess of the wind input source term. In both
cases the DLM has to be trained to match the grid of the de-
sired model and use recent wind forecast and reanalysis to
fine-tune and improve the results. This fine-tuning process
might also have to be repeated as data or model drifts might
occur, for example, due to climate change. This periodic fine-
tuning process is a common practice in operational deep
learning, and it helps to “future-proof” the model by allowing
it to learn from the most recent and relevant data available.

The presented DLM was used to improve wind velocity but
could easily be trained to improve any other parameter of the
atmospheric model, such as geopotential height or tempera-
ture. It could also be trained over different locations, or as a
global model. Furthermore, another very interesting usage is
training toward seasonal localized models. These could be op-
timized over specific time periods and locations where

(a)

(b)

FIG. 2. Time-mean RMSE difference map of significant wave heightHs for (a) FC RMSE2

UMagRMSE and (b) FCRMSE2 UVec RMSE. FC with larger error is in red, and DLM is in blue.
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weather conditions are hard to predict and result in significant
improvement. One such example is shown in this work at the
Aegean Sea, where the Etesian wind is dominant from mid-
May to mid-September. Even without training specifically for
this task, the presented model improves the significant wave
height forecast over the Aegean Sea at this period by ∼35%.

The new model has very minimal computational costs,
which are negligible when compared to either the numeri-
cal wind or wave forecasting models. Running the entire
Mediterranean Sea over an entire year as was done in this
work took the numerical model the equivalent of over
4000 CPU hours, while the DLM postprocessing took less
than 1 CPU hour. Furthermore, it could easily be imple-
mented, as it does not require any adjustment to any of the
currently used operational models, while providing significant
improvement in forecasting results.
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