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V. V. YEFIMOV

ON THE STRUCTURE OF THE WIND VELOCITY FIELD lN THE

A TMOSPHERIC NEAR-W A TER LA YER AND THE TRANSFER

OF WIND EN ERG Y TO SEA WAVES*

A theoretical model is proposed for the wind velocity field in the atmospheric near-water layer
above waves. The turbulent character of the motion is taken into account by introducing a co-
efficient ofturbulent viscosity. The equations ofmotion for air are considered within the frame-

work of a plane problem. A stream function is lntroduced, and numerical solutions for it (ob-
tained on a computer) are given. The transfer of wind energy to sea waves is discussed. Graphs

showing the relationship between the amount of energy transferred to waves and the parameters
of the mean wlnd velocity are presented.

Surface wind wave motion is one of the fundamental
phenomena of atmosphere-ocean interaction. Wind waves
lead to a feature that is characteristic of the turbulent
structure of the boundary layers between atmosphere and
ocean-the wave perturbations of the velocity field ln the
near-water layer of the atmosphere and upper layer of
the ocean, which determine the energy and momentum
transfer across the air-water boundary.

The investigation of energy transfer from wind to
ocean waves is a basic task in the study of small-scale
interaction between atmosphere and ocean and pre-
supposes a detailed study of the velocity field in the
atmospheric near-water layer. Although attempts to de-
scribe the mechanism of transfer of wind energy to ocean
waves have been undertaken for a long time, it is only ln
the last few years that theoretical studies have produced
notable results. Among such studies, prime mention
should be made of the theoretical models of Philips,
Miles and Benjamin, where both the transfer of energy
from wind to waves and related problems of the velocity
field structure in the near-water atmospheric layer over
waves have been discussed. These models have been
analyzed in detail in (1). There, in addition, the

Philips-Miles model, which has been accepted at the
present time by a number of authors as a working theory,
is formulated and generalized.

However, the assumption as to the decisive role of the
turbulent fluctuations for the more developed wave com":
ponents is rather more hypothetical. Thus Philips ¡U)
postulates that in a turbulent flow of air the correlation
between vorticity and vertical velocity differs from zero
not only in the critical area, but outside it as well. ln

order to allow for turbulence, a formula is introduced,

by analogy with Miles' expression, which contains a cer-
tain coefficient determined by Miles from empirical data.
The data used were the results of Motzfeld (2) on air-

, flow over solid wave models in wind tunnels.
ln this paper, perturbations introduced in the veloc ity

field of the air flow in the near-water atmospheric layer
by surface waves are calculated and the results obtained
are applied to a calculation of the energy transferred by
the wind to the waves. Here our principal attention wil
be focussed on the particular features to which allowing

for the wind's turbulent structure leads.

FORMULA TION OF THE PROBLEM

Consider the two-dimensional problem in which a wave
of amplitude a, wave number k and frequency CC is

*Izv. , Atmospheric and Oceanic Physics, Vol. 6,
No. 10, 1970, PP. 1043-1058, translated by J. D. L.
Mclntosh.

propagated along the water surface in the direction of the
x-axis. We assume that the flow of air above the waves
is turbulent. Let us write out the initial Reymolds equa-
tions for air:

d6it +'U d'U +W~=_.. dp
dt dx dz P dx
Ô 'U + d ( ") d ( ,.)+ Vm -- - u + dz - u w (1)

dW dW dW 1 dp , d -,
- + 'U- + W-= - - - + vmÔ W + - (- it w)dt dx dz P dz dx

+ :z (-U12). (2)

Here p is the density of air; z is the axis directed verti-
cally upwards from the mean surface level; p is the pres-
sure, without taking hydrostatic pressure into account; t
is the time; U and W are the horizontal and vertical com-
ponents of velocity; v m is the coefficient of molecular
viscosity; u' and w' are the turbulent velocity fluctuations,

having a time scale much less than the period of a surface
wave.

Further, let us introduce the following assumptions:

a) Assume that the turbulent fluctuations u' and w' have
a dual nature. First, they are 'generated by the gradient

of the mean velocity U (z) in the near-water layer and
second, by the wave-caused perturbations of the velocity.
Then the tangential Reynolds wind stress which enters into

the right side in the equations of motion can be represented
in the form of two terms which, in accordance with the
generally accepted method of introducing coeffcients of
turbulent exchange, we shall express by means of the
corresponding deformation rate tensors

- dU ( du dw )
-u'w' = K-- + v --+7f' (3)

where u and w are the horizontal and vertical .components
of wave caused velocity perturbations.

As is customary, assume for the boundary layer that
K, the coefficient of turbulent exchange, which is related
to the generation of turbulent fluctuations by the mean
velocity gradient, is

K="U.,,,

which lncreases -linearly with height and corresponds to
the undisturbed mean velocity profie

U zU =--ln-,
?( ,zo
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where U * is the dynamic velocity and lt "" 0.4 is von
Kármán's constant. Assume that j), the coefficient of
turbulent exchange, which is related to the generation of
turbulence by the wave-caused velocity fluctuations, is
constant, although further numerical solutions may be
calculated with v designated as a certain function of the
coordinate z. Assume that v ;:;: j) m everywhere except
in the thin laminar sublayer in which we shall neglect the
effect of turbulent viscosity.

b) ln relation to normal Reynolds stresses, let us
assume that

-u/~ = -ii (4)

c) Assume that the slope of the waves is small, so
that the expressions for the velocities on the boundary
predicted by the theory of waves of small slope can be
applied.

Let us formulate the boundary conditions. At infinity
we require an attenuation of the periodic wave-caused
velocity perturbations. On the air-water boundary we
specify continuity of the horizontal and vertical compo-
nents, which in accordance with the assumed theory of
small waves are

U, = aro cos(kx -rot), W, = aro sin(le - rot) (5)

where z = 1) for a wave which has a surface of the form

'' = a cos'(kx - rot).

Thus, boundary conditions have been specified at infinity
and on the surface of the wave. Earlier we presupposed
a two-layer model of the atmospheric near-water layer,
i. e., a thin laminar sublayer in which turbulent effects

may be neglected and an external main turbulent layer.
- Generally speaking, this requires that a solution be found

for each sublayer and each transition. ln the analysis
carried out by Benjamin (3), in which these two layers
differed only in the appearance of the mean velocity pro-
file (the coefficient of viscosity was taken to be the molec-
ular viscosity everywhere), the complete solution was
found in the form of the sum of two functions, one of
which described the velocity within the viscous frictional
boundary layer, and the other outside it. Let us make
use of his conclusion that, fir stly , the "viscoUS" solution
plays a part only within the boundaries of a very thin
layer, beyond which it is negligibly sman, and secondly,
that viscous molecular effects in this layer make a small
contribution to the total energy relations.

This wil be all the more correct in our case, for
which the main features are related to the turbulent na-
ture of the motion. According to (3), it can be assumed
that within the limits of the viscous frictional layer,
there occurs a change in phase of the horizontal compo-
nent of perturbation velocity by 7r relative to the phase
on the surface. Tt follows from the solution of Miles (4)
that there is an analogous condition on the lower boundary
of the atmospheric near-water layer, in which the phase
of the horizontal component differs by 7r from the phase
of the horizontal component on the surface of the water.
This conclusion also follows from general considerations
relating to the fact that molecular viscosity plays a part
only Ina thin viscous frictional sublayer of thickness Ô1
= (2v ml w)1/2, while outside this sublayer the velocity
field approximates a nonviscous field (5) . For air, Ô1
is of the order of 1 mm. Thus, assuming the thickness
of the laminar sublayer to be much greater than ô l' let
us write the boundary conditions for the lower boundary
of the main turbulent boundary layer:

U = -aro cos(kx - rot), w = ao sin(kx - wt). (6)

ln view of the thinness of the laminar sublayer and the
assumption that the wave slope is small, we apply these

conditions to the level z = 0 (6), by doing so we introduce
an error of the same order of magnitude as the error
committed in putting u1) and w1) in the form of (5).

Making use of the continuity equation and the assumed
two-dimensionality of the motion, we change, in the equa-
tions of motion (1) and (2), from the velocity components
OU = U + u, W = w to the stream function of the perturba-
tions, where u and w are wave perturbations of the veloc-
ity of air flow with a mean undisturbed horizontal velocity
component U (z) and a vertical component equal to zero.
Let us assume that

diDU=-dz '
diDw=---.

Then, after ellminating the pressure and taking into ac-
count assumptions lia Il and "b ", we obtain an equation for
the stream function which, after separation into stationary
and nonstationary parts (6, 10), break down into twofunctions, .
Qi + iDzQ", - $",Qz + (q);Q", - q)",Qz)- + UQ", + U zzq)",

rd2 d2)- ~= v \ dz' - dX2 (iDzz - iDxx),

(iDz Q", - q)",Qz), = ,v$,m'

(7)

(8)

Here the following notation is introduced. The vorticity
is Q = q, zz + q,xx; the stationary part of each variable is
indicated by a straight line above it and the nonstationary
part by a wavy line; ()s and () are respectively the sta-

tionary and nonstationary quantlties in parentheses, the
subscript indicating differentiation with respect to the
given variable.

Then we change to dimensionless variables, choosing
as a scale the length k-1, the time w-l, the nonstationary
velocity aw and the stationary velocity of perturbations
kaaw (6). For convenience in solving for the dimension-
less variables we shaH keep to the previous notations.
As a result,

~ - l'd2 d2)~!1IXX+iDlzZ-R(dZ2 --- (!1zz

- $xx) + E i U (q)xxx+ iìxzz)-U zzq)x i

= E (ÍÌzÍÌx= + iDzq)""z - ÍÌxiDzxx

- iîx$zzz) - E2 (iizÍÌx= - eDziîxzz

- iìxeD zzz). (9)

(10)(iîzÍÌ",xx + ÍÌzq)"zz - q)"ÍÌzxx - ;¡"ÍÌzzz), = R-ieDzzzz

where the slope € = ka and the parameter R = wlvk2.
The characteristic feature of Eq. (9) is the term in

square brackets on the left side, which characterizes the'
interaction of the waves with the average undisturbed air
flow having a mean velocity profie given by U.

ln conformity with the chosen boundary conditions, the
boundary conditions for the stream function wil bewritten
in the following form:~ - 1
iD.(O) = sin S, iD,(O)=-cosS, ~,(O)=O, S=x-t'(11)

if.(oo) =$.(00) = 0, I~.(oo) 1 .:'00. (12)

SOLUTION OF THE PROBLEM

An analytic solution to the Eqs. (9) and (10) by the

method of successive approximations for theparticular
case U = 0 has been considered in r6). ln this case the
series of successive approximations converged ìf the re-
lation €2Rs!2 ~ 0 (1) was satisfied. There is no apparent
reason to expect this limitation not to apply also to Eqs.
(9) and (10), which differ in our case only by terms

WlilJJJJJllJ11IlJ11il- .. ~--"-.£--..L--.i..L"-...L.i..-".I_l_.LLi-".~...'- .L--~..Li_--d..",-J-,i.i--..I...-, ..~
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containing the function U. Here the main features were
already obtained in the zeroth approximation. Subse-
quent approximations contributed only to the magnitude

of the mean velocity.
As the zeroth approximation, let us use Eq. (9) with

the right side equal to zero. Note that, although on the

left side of the equation terms containing U have the
small quantity E as coefficient, the mean velocity U for
the wind waves is of a higher order of magnitude than
the wave perturbations u and w, i. e. in the dimensionless
case, of order greater than one. These same terms are
of most interest to us. As all functions which enter into

the right-hand side of the equation are of order 1 and are

multiplled by E or E2, this enables us to neglect them
when finding the zeroth approximation.

Let us look for a solution for the stream function for
the perturbations in the following form:

iD(z,S) ='P.(z) +!Pi(Z) cosS+'P,(z) sin S, (13)

where tpo(z) specifes the stationary velocity, which is
independent of the time t and the x coordinate; tpi (z) and
tp2(z) are wave velocity fluctuations in the near-water
layer. Then for the stream function from (9) and (10)

we obtain the following equations:

(u - + ) ('Pl" - 'Pl) - U"'Pi = - (RE)-l ('P.IV -/ 2'Po" + 'P2), (14)

(u - -+ ) ('P2" - 'P2) - U"'P2 = (RErl ('PiIV + 2'P¡" + 'Pi), (15)

i (' ') R-i iv
- 2' 'Pl 'Po - 'P2 'Pl = 'Po. (16)

Equation (16) serves for the calculation of the stationary
perturbation velocity ii = 8tpo/8z. For the sake of
clarity, it can be rewritten

(uw)/J = R-tu"', (17)
whence it is obvious that the reasons for the appearance
of a stationary addition to the mean undisturbed velocity
U are the nonzero Reynolds wave stresses uw (for con-
venience we shall not include p, the density of air, when
determining the Reynolds wave stress).

Equations (14) and (15) determine the wave-caused
velocity perturbations. ln essence they amount to a form

of a well-known equation in the theory of hydrodynamic
instabilty, the Orr-Sommerfeld equation. ln fact, by
introducing the complex function tpk = tp2 + itpi, we ob-
tain an equation which differs from the complete Orr-
Sommerfeld equation only in the sign preceding the term
2tpk" on the right-hand side. Clearly, this difference,

which is related to the introduction of the coefficient of
turbulent viscos ity Il, is very important. ln addition, 1t
is also significant that in our case the parameter R is
substantially less than the Reynolds number which enters
into the On-Sommerfeld equation and which is deter-
mined by means of the coefficient of molecular viscosity.

These equations, according to Miles and Benjamin,
for example, could have been obtained somewhat more
easily from the equations of motion for the boundary
liiyer, (1) and (2), using the method of small perturba-
tions and neglecting small quadratic terms; howeves at
the same time, Eq. (16) for the stationary velocity u is
left out.

Equations (14) and (15) are the basic equations for
solving the problem. The presence of terms which in-
clude the mean undisturbed velocityU, ,deS'cribed by the
logarithmic law, prevents one from finding an analytical
solution which has to be found numericaly. The function
of mean undisturbed velocity has been assumed in the
following form:

u ( Z :) ( Z )U =-!ln - + 1 = Uoln - + 1?( Zo Zo (18)

everywhere except in the thin layer ó of the lower bound-
ary, z = O. ln the layer Ô, the quantity U (z) is approxi-

mated by a llnear function of height so as to exclude
physically unreally large values of the slope for the mean
velocity profie U" in direct proximity to z = O. Actually,
the thickness of ô in the calculations was of the order of
1 cm. Generally speaking, it was only essential to set
U" = 0 at the boundary itself; a further increase in the
thickness of ô to 10-i (in terms of nondimensional height,
i. e., normalized to k-i) had practically no effect on the
results of the calculations.

Numerically, the problem was solved with the follow-
ing boundary conditions, which result from (11) and (12):

'P,(O) = 1, (PI'(O) = -1, q),(O) ='P,'(O) = 0, (19)

CPt (H) = q¡/ (H) = !p, (H) = 'P,' (H) = O. (20)

Thus in the calculations, the boundary layer was
limited to a certain height H, where the wave-caused
velocity perturbations were set equal to zero. The upper
limit of the boundary layer H was chosen suffciently high
so that it was possible to assume that the wave-caused
perturbations at the upper boundary had fully disappeared.

For practical reasons H was chosen to be greater than 10,
i. e., greater than one and a half wave lengths. Analysis
showed that starting with H = 10 and higher, a st.ationary
solution was obtained. (For a wavelength of 25 m, for
example, a height of H = 0 corresponds to 40 m. Ob-
viously, starting from such a height, wave-caused per-
turbations of the air velocity are negligible.) The ma-
trix distilation method was used to obtain a numerical

solution.
As a result, the functions tpi and tp2' which satisfy

Eqs. (14) and (15) and the boundary conditions (19) and
(20) and which characterize the periodic perturbations of
air flow velocity, were found. Then by means of tpi and
tp2' those characteristics of the velocity field in a bound-
ary layer which have a clear physical meaning were cal-
culated. Among them are the dispersions of the hori-
zontal (au) and vertical (aw) com,jonents of the fluctuation
velocity, the stationary addition u to the undisturbed

velocity, and the Reynolds wave stresses T = -uw. From
expressions (13) and (17), taking boundary conditions (11)
and (12) into account, it follows that

au = -. = 2-'¡'(cp/z + 'P,")'¡', aw = ýi = 2-'¡'(ipt' + 'P,') 'l"

't= -uw= _1!'('P,''Pi - 'P/ip,) ,

u = R ~ uw dz.

(21)

(22)

(23)

Note that the quantities determined by (21)-(23) are
written in dimensionless variables. To find the true
values of the dispersions, they should be multiplled by

aw, of the wave stresses, by (aw)2, and of the velocities,
by (akaw).

ANALYSIS OF RESULTS

a) Field of perturbation velocity in the atmospheric

boundary layer. Equations (14) and (15), which determine
the functions tpi and tp2' contain dimensionless parameters:
the wave slope E and the wave number R. Clearly they are
determined by the characteristics of the wave motion a,
w, and k and by Il, the coefficient of turbulent viscosity.
Allowing for the fact that the wave motion is assumed to
be subject to the consequences of the theory of waves of
small slope, it is possible, on the basis of the dispersion

relation w2 = gk (where g is the acceleration due to
gravity), to reduce the number of independent parameters
to a, w and v. ln addition, the mean undisturbed velocity

U is determined by two more parameters: the velocity Uo
and, the roughness parameter zOo As a result, the solution
of the problem depends on the vå1ues a, w, v, Uo and zo,
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with the only unknow parameter among them being v ,
the coefficient of turbulent exchange.

ln this connection it is natural to adopt the following

scheme for analyzing the solutions obtained for various
interrelations of the indicated parameters: for the given
parameters of wave motion, i. e., constant values of
amplitude a and frequency w, we investigate the solution
for various profiles of mean velocity U(z). One can vary
the mean velocity profile by changing, for example, Ua
or zOo These calculations were carried out for several
values of v which exceeded the coeffcient of molecular
viscosity by three to five orders of magnitude. A second
method of analysis is possible: for the given mean veloc-
ity profile, we vary the parameters of wave motion, for
example the wave slope of the wave frequency. How-
ever, in using this method of systematization of solu-
tions, a difficulty arises relating to the coefficient v.

Tt is known that the coeffcient of turbulent viscosity

characterizes not the physical properties of a llquid, but
the statistical properties of the fluctuations. Therefore,
generally speaking, it do es not have to be constant, and
in our case can vary depending on the wave parameters.
ln the first case it can be assumed to be a constant since
the parameters are constant: in the latter case, with a
given profile and varying wave parameters, additional
assumptions have to be made concerning the coefficient
of turbulent viscosity. '

Before proceeding with a detailed analysis of the wind
velocity field in the boundary layer, let us note some
characteristic features of the solution of the problem
which are evident in the particular case Ua = O. This
case corresponds to swell waves propagating in initially
calm air. For this case, Eqs. (14) and (15) can be
solved analytically, and the solution is considered in de-
tail in (6). Numerical calculation of the same equations

yields results which coincide with the analytical solution,
which, in particular, enables us to test the method for

solving the equation numerically and to choose an opti-
mal upper limit H for the calculations. An analysis of

the solutions shows that, beginning with H = 10 and

higher, the numerical treatment gives values of au,
aw, andT which differ very little fromth~ir accurate
values obtained analytically. '

The solution shows that for values of the turbulent
viscosity coefficient v which exceed the magnitude of the
turbulent viscosity'coefficient for air by no more than
five orders of magnitude, ((20(0( ((i' When this coeffi-
cient decreases, ((2 - 0, ((i - e-z, and uw - O. This
means that the motion of the air in the boundary layer
approximates the simple potential wave motion for which
the velocity perturbations are described by the formulas

u = -e-' cos (x - t), w= e-'sin (x - t). (24)

For this case (UO = 0) it is interesting to trace the
difference in the effect of turbulent viscosity as com-
pared to molecular viscosity. Neglecting turbulent
velocity fluctuations in the equations of motion (1) and

(2), we obtain, instead of Eqs. (14) and (15), the follow-
ing system of equations, which describes wave-caused
perturbations of the velocity for laminar motion:

( U - +) (¡Pl" - ¡Pl) - U"¡Pi = (RmErl (¡P2IV - 2¡p2" + ¡P2),
(25)

( u - L ) (¡p;' - ¡P2) - U"¡P2 = (RmErl (¡pP - 2¡pi" + ¡Pl),

where the number Rm is expressed by me ans of the
molecular viscosity coefficient in the form Rm
= w/vmk2.

As wc recalled earlier, these equations are in the

exact form of the Orr-Sommerfeld equation, and they
difer from (14) and (15) in the sign before the terms
2((2" and 2((i" on the right side of these equations. This

difference turns out to be signifcant. For example, if
we formally set v = v m, so that for the given wave mo-
tion R = Rm, then the solution of Eqs. (14), (15) and (25)

is of a different form. This difference is not great for
the velocities u and w themselves, which in both cases
are close to the for,m of (24); however, the difference is
substantial for quantities of a higher order of smallness,
such as the Reynolds wave stress T.

J:

~o

-10-' l' -2,/0-'

Fig. 1. Distribution of wave-

caused stresses with height for
Ua = 0 and Rand Rm equal to,

respectively:
1) R = 100, 2) R = 10, 3) Rm

= 100, 4) Rm = 10.

Figure 1 shows the behavior of the stress T with re-

spect to height for two values of the parameters R. There
also are shown the values of T, for the same values of the
parameter Rm, obtained as a result of solving system
(25). Obviously, both the magnitudes and the behavior of
Tare completely different for these two cases; i. e., a
formaI increase in the molecular viscosity coefficient by
several otders of magnitude does not lead to the results
which are obtained for the same values of the turbulent
velocity coefficient;-the mechanisms for the action of
molecular and turbulent viscosity are different.

Consider the structure ofwave-caused perturbations of
the near-water atmospheric layer in the case Ua = 0,
i. e., in the case of wind waves. Let us assume a
logarithmic form of the profile of mean undisturbed air
velocity, where Ua and Zo are expressed in dimensionless
Iorm. Let a and w, the parameters of surface wave mo-
tion, be given. Consider the behavior of the solution as

the velocity gradually increases from zero while zo, the
roughness parameter, remains constant. Tt is known that
the logarithmic function describing the mean velocity
profile increases rapidly at first and then changes in-

significantly. When the values of Ua are not large, the
mean wind velocity U is less than c, the phase velocity of
the wave, over the whole atmospheric boundary layer.
When Ua is gradually increased, the mean velocity U in-
creas es, so that at a certain height it becomes equal to
the wave velocity c, and for stil higher values of Ua' the

wind velocity U exceeds the wave velocity c over practi-
cally the whole boundary layer with the exception of the
thin layer near the lower boundary where, as before, U
0( c.

Tt is obvious from physical considerations that for
small velocities Ua the structure of the near-water layer
must differ from the case when the velocities are high.
In the former case, waves attenuate, and in the latter,
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velocity c, it is difficult to come to any definite conclu-
sions in advance.

Let us cite the results of a numerical solution accord-
ing to this scheme of analysis for several values of the co-
efficient of turbulent viscosity. For convenience in the
following description, we select characteristic param-
eters for the wind waves and for the mean wind velocity
profile. We take as a typical case of a gravitational wind

wave a wave with a wave number k = 0.25 m-i and am-
plitude a = 0.4 m, so that for this wave, f, the small
slope parameter equals 0.1. For the mean velocity pro-
file, let us take the roughness parameter Zo to be equal to
3 '10-4 m and the friction velocity U*to 0.25 m/sec. As-
sume that the values of Rare 103, 102 and 10, which, for
the characteristic parameters of wave motion chosen,

correspond to coefficients of turbulent viscosity equal to
0.024, 0.24 and 2.4 m22sec, respectively.

Figures 2-4 show the distribution of wave stresses T
with height for three values of R. The individual curves
of the family correspond to different values of Uo indicated

in the caption beneath the figures. The following features

of the behavior of Tare noteworthy:
a) the increase in absolute magnitude of T as R

decreases;
b) the presence of a maximum absolute value of T at

a certain height above the wave surface. This height is,

on the average, around 0.5, which in dimensional terms
corresponds to a height of O. 5 ~-i m;

c) the change in sign of T as Uo gradually increases.
For Uo greater than zero, but less than a certain fixed
quantity that depends on the rest of the solution's param-
eters, T '" 0; when Uo increases still further, T ;: O. ln

the case where the mean wind velocity U is less than the
wave phase velocity c over the whole boundary layer, T
'" O. ln the case where the mean wind velocity in the
upper part of the boundary layer, (1. e., where it does not
chage substantially) is much greater than the wave veloc-
ity c, T ;: 0 everywhere;

d) in the intermediate case where the mean wind veloc-
ity in the upper part of the boundary layer approaches c,
the behavior of T is characteristically complexe This case
is the most interesting one from our point of view, as it

z

J.O

-2 2 a G 3
ID. T

Fig. 2. Distribution of wave-caused stresses with
height for R = 103, E = 0.1, Zo = 10-5 and Uo equal,

respectively, to:
1) 0.4, 2) 0.6, 3) 0.7, 4) 0.8, 5) 0.82, 6) 0.84,

7) 0.86, 8) 0.88, 9) 0.9, 10) 0.95, 11) 1. 0, 12) 1. 1,
13) 1.2,14) 1.6, and 15) 1.8.

8

-8

Fig. 3. Distribution of wave-caused
stresses with height for R = 102, f

= 0.1, Zo = 10-5 and Uo equal, re-

spectively, to:
1) 0.4,2) 0.6,3) 0.7,4) 0.8,5) 0.82,
6) 0.83, 7) 0.84, 8) 0.88, 9) 0.9,
10) 1. 0, 11) 1. 1, 12) 1. 2, and 13) 1. 6.

they increase in size owing to the effect of the wind. A
graphic example of the first case ia shaw by swell
waves; of the second, by the initial period of wave for-
mation under the action of wind. However, for inter-
mediate values of Uo, when the mean wind velocity in the
main part of the boundary layer is close to the wave

625
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-ID -8 -6 a
10~r
ç

Fig. 4. Distribution of wave-caused stresses with height

for R = 10, E = 0.1, Zo = 10-5, and Uo equal, respec-

tively, to:

1) 0.4, 2) 0.7, 3) 0.78, 4) 0.82, 5) 0.85, 6) 0.88, 7) 0.91,

8) 1. 0, 9) 1. 3 and 10) 1. 8.

z
3.0

10

2.0

8 If 3.

-ç Fig. 6. Distribution

of mean perturbation
velocity ü with height

for R = 102, E = 0.1,

Zo = 10-5 and Uo as in

Fig. 3.

Fig. 5. Distribution of wave-
caused stresses over height for
R = 102, E = 0.1, Uo = 0.9 and Zo

equal, respectively, to:
1) 10-3, 2) 10-4, 3) 6 . 10-5,
4) 4.10-5, 5) 3.10-5, 6) 2' 10-5,

7) 10-5, 8) 5. 10-6, 9) 10-8, 10) 10-7

and 11) 10-8.

velocity of waves bearing maximum energy in the spec-
trum of fully developed wave motion is close to the aver-
age wind velocity measured at a height of 10 m.

It is obvious from the diagrams that an important re-
suIt of the solution is that the change of sigu of T as the
velocity Uo increases is not accompanied by a monotonic
increase in T from negative to positive values. Near the
transition of T through zero, its absolute value increases
on both sides, i. e., the dependence of the stresses on the

"
concerns fuly developed wind waves forwhichthe
critical height is not too near the surface. For ex-
ample, it is know from actual experience that the mean

-,._--~--.-------~--------
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Fig. 7. Attenuation with respect to height:

a) dispersions (Tu and b) dispersions (Tw for

R = 10, E = 0.1. For curves 2 and 6, see
Fig. 4.

velocity Uo is resonant and selective in character. As
wil be obvious from what follows, this leads directly
to selectivity in the transmission and absorption of wind
energy by the waves.

An analogous picture is observed when an analysis is
made of the dependence of the stress T on the roughness
parameter Zo for constant values of Uo' ln this case the
increased wind velocity is achieved by a decrease in zOo
Figure 5 shows the family of functions T (z) for various
values of Zo when R = 102. The wave parameters re-
main the same as for Figs. 2-4, and the velocity Uo

= 0.9. As canbe seenfrom Fig. 5, the above-mentioned
features of the behavior of T as the mean wind
velocity increases remain as before. This applies also
to the cases R = 103 and R = 10, As the graphs of the
functions T (z) do not differ in principle from Figs. 2 and
4, we do not show them.

According to Eq. (17), nonzero values of T give rise
to the appearance of a mean horizontal velocity of the
perturbations ü(z). It is clear from (23) and the values

of T shaw in Figs. 2-5 that this addition to the mean un-
disturbed velocity U(z) is on the whole not large, except
in cases where T reaches maximum values near the point
of transition through zero. The dependence of ü on height
can be obtained directly by using the graphs of T (z) (Figs.
2-5) and formula (23).' For example, Fig. 6 shows pro-
files of the mean velocity of pertrbations ü for various
values of Ua when R = 102 (for this case, T (z) is shown
in Fig. 3).

Clearly, the velocity ü has diferent signs for differ-

ent UO' ln the case of Uo being small enough so that the
wave stress T is negative, ü(z) ;: O. ln the case of
larger Uo' when T ;: 0, ü(z) " O. ln the former case the
total mean wind velocity, which is equal to the sum of
the given undisturbed wind velocity U and the stationary
addition Ü, becomes greater than U, and in the latter
case, less than U. As a result, the mean wind velocity
profile in the near-water layer wil differ from the
logarithmic form. This difference becomés greater when
U "" c, and is especially marked in the lower part of the
boundary layer at a height' of the order of 1, i. e. , where
the magnitude of the stress T is maximal. Note that if
the stress T depends significantly on the value of the
turbulent viscosity coefficient, ü varies insignificantly
with 'a change in v. This is qualitatively evident, partic-

ularly from expression (23), if we allow for the fact
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Fig. 8. Dependence of energy on the

velocity Uo for E: = O. 1, Zo = 10-5:

a) R = 103, b) R = 102, c) R = 10.
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Fig. 9. Dependence of energy
on the roughness parameter for

R = 102, E: = 0.1, Uo = 0.9.

that lower values of T correspond to higher values of R.
Two characteristics of the field of perturbations intro-

duced into the air boundary layer by interfacial wave mo-
tion have been considered above: Reynolds wave stresses
and the horizontal component of the mean perturbation
velocity. As indicated, when Uo = 0, the horizontal and
vertical perturbation velocity components themselves are
close to the form of (24). Thisapplies also when Uo -- 0,
with the exception, however, of cases which correspond
to resonance values of T. For such cases, the absence of
components of the fluctuation velocity from the simple
form of expression (24) becomes important.

Figures 7a and 7b show the dispersions of the hori-
zontal and vertical velocity components (Tu and (Tw, cal-

culated according to (21) for R = 10. The remaining
parameters and thenumbering of curves corresponds to
Fig. 4. The case R = 10 is chosen because the charac-
teristic features of the behavior of (Tu and (Tw are more

marked. For higher values of R these features remain,
but are not so weIl defined. The dashed line in Fig. 7
represents the function 2-i/2 exp(-z), which describes the
attenuation of the dispersions (Tu and (Tw with respect to

height for the velocity field described by the expressions
(24). Here, only dispersions which correspond to values
of Uo for which the stress T increases by resonance are
mentioned. For these dispersions, there is an appreciably
slower attenuation of (Tu with respect to height and a more
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rapid attenuation of Uw comp!!red to the exponent in the
lower part of the boundary layer.

Note that Uu and Uw are quantities which change
easily; for that reason it is interestlng to compare the
results obtained with the available experimental data.
Thus, in (8), spectral density functions of the fluctua-

tions of the horizontal velocity component, measured at
various distances from the interface, are cited. Ob-
viously, the spectral density does not attenuate very

much in the layer extending to 4.5 min thickness. ln
dimensionless coordinates a height of 4. 5 m is ~1. As
can be seen from Fig. 7, the attenuation of Uu in this
layer is in fact not great. Thus there has been some ex-
perimental confirmation of a slower attenuation of the
horizontal component of wind velocity over waves in rela-

tion to the exponent.
The resonance behavior of the solution of Eqs. (14)

and (15) is clearly manifested in the analysis of integral
relations such as the amount of energy transferred
through the interface from wind to waves.

b) Transfer of wind energy to the waves. Wave per-
turbations of the velocity in the near-water atmospheric
layer interact with the average motion of the air. From
the equation for the turbulent energy balance, it is
know that if the tangential Reynolds wind stress and the
mean velocity gradient differs from zero, there occurs
an exchange of energy between the average and fluctua-
tion-motions. The direction of the energy transfer is
determined by the signs of the mean velocity gradient
and the Reynolds stress. Here the rate of energy trans-
fer per unit volume is (7):

-dUe = - p UW--. (26)

The energy transferred by the average motion of the air
to the wave fluctuations (or vice versa) calculated per
unit area of the interface, can be written as follows:

rr - dUE = - P j uW-- dz.

o
(27)

When E;: 0, wave perturbatioIIs in the air are main-
tained due to the aver!!ge motion. E ~ 0 means that the
wave perturbation energy is being transferred to the
average motion. From the equation for the balance of
fluctuation energy, integrated with respect to z from 0
to 00, it iiso follows that if we neglect viscous dissipa-
tion of fluctuation energy in the boundary layer, Eq.
(27) wil represent the energy transferred acrossthe
interface, i. e., the energy transferred from the wind
to the waves. Note that this expression for the energy
has been used in a number of papers (see (9), for
example) .

The energy E was calculated using (27). Calcula-
tions of the mean velocity were made, allowance being
made for the fact that the magnitude of the stationary
addition u(z) to the mean undisturbed velocity U(z) is
small, by using the undisturbed velocity U(z) from (18).

Figure 8 shows the values of E. as they depend on the
velocity ti, and Fig. 9, as they depend on the roughness

parameter zo0 AIl the other parameters apply to cases
for which the behavior of the stress T as the height

changes was show in Figs. 2-5, respectively. ln order
to obtain the dimensional values of the energy, these
values have to be multiplled by p (aw)3. As is clear from
the graphs, E ~ 0 for low mean wind velocities, i. e.,
the wave energy is transferred to the averaged motion
in the near-water layer. For large mean wind velocities
one has E ;: 0, and energy is transferred from the wind
to the waves.

The transition from negative to positive energy values
is accompanied by two resonance maxima. At these
maxima, the amount of energy transferred by the wind

rr~-fT~~i~~~C~;:;1l'3?~-- =-T':!;'.,~'" -C"=~o'=;:'r~" -

to the waves or vice versa reaches maximum values.
This, result, generally speaking, is not physically evident,
as it may seem that the larger the difference between the
mean wind velocity and the velocity of wave propagation,
the greater is the amount of energy transferred. From
Figs. (8) and (9), it follows that the energy is maximal
when U "" c (U is the mean wind velocity in the upper re-
gion of the boundary layer), i. e., where it increases

ins ign ific antly .
For the time being it is difficult to propose a quantita-

tive formula for an approximate calculation of the energy
transferred from the wind to the waves on the basis of the
numerical solution obtained. Firstly, the magnitude of
the coefficient of turbulent viscosity v is unknown. Sec-
ondly, there exists, in 'principle, no method for solving
the equations numerically on a computer with accuracy
comparable to the accuracy of analytical solutions. ln
spite of the introduction of dimensionless variables, the
number of parameters which determines the solution is
rather large:, Uo, zo, R, w, and c. Therefore the in-
vestigation of the way the solution depends on the change
of aIl parameters is an extremely laborious process.
Above, we traced the behavior of the solution for various
mean wind velocities and three values of R under the con-
dition that the other parameters remained constant. The
relations obtained apply to the given parameters. ln the
case of other values, the solution wil be different. How-
ever the general features, such as the change in sign of

E in the case of low and high wind velocities or the res-

onance behavior of E, apparently remain. Note that
those energies transferred by the wind to the waves, as
can be easily seen from Figs. 8 and 9, have reasonable
values. At least for R = 10 and R = 100 they coincide in
order of magnitude with values that are recorded in the
literature.

CONCLUSION

To a first approximation, the basic characteristics of
the perturbation-velocity field in the atmospheric near-
water layer above waves have been obtained as a result
of a numerical solutiõn of the equations of motion, taking
into account the effect of turbulent viscosity. Among these
characteristics are the dispersions of the horizontal and

vertical components of the velocity fluctuations, the
Reynolds wave stress, and the stationary horizontal com-
ponent of the perturbation velocity. From these was cal-
culated the energy transferred from wind to waves. An
analysis of the solution showed that allowing for the turbu-
lence structure accounts for a number of particular fea-
tures of the wind velocity field in the atmospheric near-
water layer. These features already become important
for turbulent viscosity coefficients that exceed the molec-
ular viscosity coefficient by three orders of the magnitude
or more.

As a result, the wave-caused motion of the air in the
near-water layer is essentially nonpotential; a nonzero
vorticity of the veloçity and related Reynolds wave
stresses appear over the whole boundary layer. The
horizontal and vertical perturbation-wave velocity compo-
nents have a phase shift which differs from 90°. Attenu-
ation of these components with respect to height differs
from an exponential decay.

lnteracting with the avérage air motion, the Reynolds
wave stress gives rise to an exchange of energy between
the wave-caused fluctuation-motion and the average mo-
tion. For low mean wind velocities, the energy of the
wave-caused fluctuations becomes the energy of the aver-
age motion; in the case of higher velocities, the wind
energy maintains the wave fluctuations, signifying a trans-
fer of energy from the wind to the waves.

Other parameters being equal, the difference between
the motion of the air and the potential motion increases
as the mean wind velocity in the upper part of the boundary
layer, where it changes insignificantly, approaches the
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velocity of wave propagation. As a result, the transition
from negative to positive energies as the mean wind
velocity increases, is not monotonic. Near the point of
transition, the absol\ite energy increases on either side.

Thus, for example, the energy will be greatest when
the wave velocity is close to the mean wind velocity.
This result is important, as it is well known, that in the

case of developed wave motion, for example, the velocity
of waves bearing maximum energy in the energy spec-
trum is close to the mean wind velocity. ln order to

explain this, it is assumed that such developed waves are
maintained due to the direct effect of turbulent fluctuations
of wind pressure on the surface. The solution enables us

to explain this by taking into account the turbulent nature
of the motion of air in the near-water layer of the atmos-
phere above the ocean.
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