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Abstract

This paper investigates why the measured velocity profiles in combined wave–current flows deviate from the log-law. Most of
previous researchers attributed the velocity deviation to the wave Reynolds stress—q~u~v only. However, this study shows that both
the wave Reynolds stress and the momentum �u�v driven by secondary flow and/or non-uniformity are responsible to the velocity
deviation from the log-law. The theoretical investigation starts from the Reynolds equations and uses the simplified mixing-length
hypothesis. The theoretical equation which describes the interaction of velocity distribution and �v in combined wave and current
conditions from the bottom to the free surface is obtained, and the equation states that the non-zero wall-normal velocity �v that
has been ignored in previous studies also plays an important role as the wave Reynolds stress to the velocity profile. By comparing
the model with the available experimental data, it is seen that the model predicted the essential features of the experimental results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The velocity distribution in combined wave–current
flows is important for determination of sediment trans-
port in coastal waters, wave height attenuation, pollu-
tion control, wave–current interactions, and so on.
There are as yet limited number of experimental and
theoretical studies on the velocity distribution in the
combined wave–current conditions probably because
experimental equipment of unsteady flows and the mea-
surement techniques are much more difficult than those
of steady flows. The observed velocity distribution in the
combined wave–current flows and other flows such as
the boundary layer flows, steady and non-uniform open
channel flows are such that the measured Reynolds
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shear stress and velocity distribution are different from
those in circular pipe flows ([3,8], etc.), and the classic
log-law that has been well accepted by many researchers
from Keulegan�s [11] era. The experimental results in the
combined wave–current flows ([1,9,19,23], etc.) show
that the current velocity increases logarithmically from
the seabed, reaches the maximum value and then
decreases towards the free surface when the waves and
current propagate in the same direction. The converse
was observed by Kemp and Simons [10] in the flows in
which the waves propagate against the current.

In short, the velocity distribution in the wave–current
flows follows the log-law near the seabed and the relative
directions of flow do not influence the interaction near
the bed. In the upper layer mean velocities are either lar-
ger or smaller than that predicted using the log-law, and
are dependent on the direction of wave propagation. One
difficulty for anyone attempting to model the interaction
of wave and current is that there are relatively fewer
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Nomenclature

a coefficient
b 1� ghðsin hþ SÞ=u2

� � ah=u2
�

c integration constant
g gravitational acceleration
h water depth
H wave height
k wave number
m coefficients
n coefficients
N number of wave
p pressure
Q(y) total energy at elevation y

S energy slope
T wave period
u* shear velocity
u, v and w velocities in x, y and z directions, respec-

tively
ur reference current velocity at yr

V depth mean velocity
V depth-averaged velocity
x streamwise direction
y distance to channel bed
ymax distance from the level of maximum velocity

to the bed
y0 reference level

y0 D/30 for a rough wall
y0 m/(9.9u*) for smooth wall
z lateral direction
~v2

h oscillatory vertical velocity at free surface
u0v0 Reynolds shear stress
�u�v shear stress caused by mean velocities
~u~v shear stress caused by waves
�p0 time-averaged pressure at the bed
�ph water pressure at free surface
�u and �v time-averaged velocities
u 0 and v 0 velocity fluctuation caused by turbulence
~u and ~v velocity fluctuation caused by waves
D boundary roughness height
�vy¼h and �uy¼h wall-normal and streamwise velocities

at the free surface
a coefficients
b momentum correction factor
h angle of the channel bed to the horizontal

axis
j Karman constant
m kinematic viscosity of the fluid
n y/h
q fluid density
s0 bed shear stress
x angular wave frequency
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measurements for this type of flow. Although consider-
able research has gone into the study of waves and cur-
rents as separate and independent process, little is
known about the way in which they interact with each
other.

Many attempts have been made to express the velocity
in the combined wave–current flows, most previous mod-
els have assumed that wave-induced turbulence has sim-
ilar characteristics to that of a steady flow. Therefore the
eddy viscosity and mixing length obtained from the
steady flows can be directly applied to combined wave–
current flow. Lundgren [14] and many later researchers
had developed models based on the ideas that the current
profile is logarithmic along the wave boundary layer.
However, the observed increase or decrease of the cur-
rent velocity relative to a logarithmic profile cannot be
explained fully using the existing analytical models, such
as those proposed by Grant and Madsen [5], Fredsoe [4],
Christoffersen and Jonsson [2], Sleath [20], Groeneweg
and Klopman [6] and Groeneweg and Battjes [7].

A number of models have included velocity distortion
in the upper flow layer. You [30] stressed that the wave
Reynolds shear stress plays a significant role on the
deviation of measured velocity from that given by the
classical log-law. You�s model gives reasonably good
match of the velocity profile from the seabed to the free
surface. Sleath [20], on the other hand, argued that
the wave-induced turbulence is similar to those of
grid-generated turbulence and he suggested that the tur-
bulence fluctuation in the vertical direction v02 plays an
important role for the velocity distribution. Yang [28]
reanalyzed the velocity profiles in sediment-laden flows,
steady open channel flows as well as the zero-pressure-
gradient boundary layers flows and concluded that all
phenomenon of velocity deviation from the log-law
can be attributed to the non-zero wall-normal velocity.

The objectives of the present study are (1) to establish
the momentum equation in the combined wave–current
flows; (2) to investigate the influence of wall-normal
velocity on the streamwise velocity, and (3) to put for-
ward a new model of velocity profile under combined
wave and current.
2. Governing equations for fluid motions

The velocity distribution in unsteady flows is of great
interest in practice. The governing equations for flows in
coastal waters are the conservation of mass and Navier–
Stokes equations as follows:
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where u, v and w are velocities in x, y and z directions,
respectively; q is the fluid density; p is the pressure;
and m is the kinematic viscosity of the fluid; x is the
streamwise direction; y is perpendicular to the channel
bed and z is the lateral direction; g is the gravitational
acceleration; h is the angle of the channel bed to the hor-
izontal axis as shown in Fig. 1.

The following equations are obtained by adding the
continuity equation to the momentum equations
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Similar to the classical Reynolds equations for a steady
turbulent flow in which the instantaneous velocity is
expressed as the sum of mean velocity and velocity fluc-
y v

w u

h

xθ

Fig. 1. Coordinate system in unsteady flows.
tuation, the velocity in a wave–current flow includes a
steady mean velocity, a periodic component and a ran-
dom velocity (primed term) fluctuation, i.e.,

ðu; v;wÞ ¼ ð�uþ ~uþ u0;�vþ ~vþ v0; �wþ ~wþ w0Þ ð8Þ
The periodic component is the phase-average over N

number of wave periods minus the time-averaged value,
i.e.,

~u ¼ 1

N

XN

j¼1

½uðt þ jT Þ � �u� ð9Þ

where T is the wave period. Substituting Eq. (8) into
Eqs. (5) and (6), noting that �~x ¼ �x0 ¼ ~x0 ¼ 0, and
�x~y ¼ �xy 0 ¼ ~xy 0 ffi �x~x0 ¼ f~xy 0 ¼ 0, while f~x~y ¼ ~x~y � ~x~y, one
obtains the governing equation for time-averaged veloc-
ities �u and �v as follows:
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For simplicity, this study only discusses the two-dimen-
sional (o/oz = 0) wave–current flow with constant water
depth. Considering the boundary conditions at the bed
where y ¼ y0; �u ¼ �v ¼ u0v0 ¼ ~u~v ¼ 0 and mo�u=oy ¼ s0=q ¼
u2
�, in which s0 is the bed shear stress and u* is shear

velocity, the integration of Eq. (10) with respect to y

from y0 to y yields:
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at the free surface where y = water depth = h, �v ¼ 0 and
the friction on the air–liquid interface is negligible, i.e.,
u0v0 � 0, mo�u=oy � 0. On the other hand, �u2 � u02 and
the viscous effect in the main flow region is negligible,
or oðu02 � mo�u=oxÞ=ox � 0, thus the boundary shear
stress can be determined using Eq. (12).

s0

q
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� ¼ �~u~vjy¼h �
Z h
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The time-averaged pressure at an arbitrary level can be
obtained from Eq. (11) with the boundary condition at
the bed, y = y0, �v ¼ v0 ¼ ~v ¼ 0 and �p ¼ �p0,
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in which �p0 is the time-averaged pressure at the bed and
it can be determined from Eq. (14) using the free surface
conditions at y = h, �p ¼ �ph, �v ¼ 0, v02 � 0. The viscous
effect near the free surface is also negligible, i.e.,
mo�v=oy � 0
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where �ph and ~v2
h are water pressure and oscillatory verti-

cal velocity at free surface, respectively. Substituting Eq.
(15) into (14) leads to
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Substituting Eq. (16) into (12) and ignoring the viscous
shear stress, one gets
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where Q(y) is the total energy at elevation y and can be
expressed as follows:

QðyÞ ¼
�ph

q
þ gðh� yÞcoshþ~v2

hþ �u2��v2þ u02� v02þ ~u2�~v2

ð18aÞ
where �ph is the time-averaged pressure on the mean
water level, and it is caused by atmospheric pressure
as well as wave action, for combined wave–current flows
�ph is greater than the atmospheric pressure due to the
additional wave pressure, and �ph depends on the wave
period and wave height. It is obvious for steady flow
without waves superimposed that �ph = atmospheric
pressure = constant; all parameters related to waves
vanish; and notice that �u2 � �v2 þ v02 � u02, therefore
the second term on right-hand-side (RHS) of Eq. (17)
becomesZ y
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where b = momentum correction factor; V = depth mean
velocity and S = energy slope. Similarly, for combined
wave–current flows the term of �oQ/ox represents
the energy loss along the streamwise direction. Thus the
second term on the RHS of Eq. (17) can be written as:

�
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Obviously, for Airy waves, S mainly relys on the varia-
tion of water depth because the discharge Vh is constant
and the discharge from the wave trough to the wave
crest is negligible relative to the total discharge.

The third term on the RHS of Eq. (17) is the wave-
induced Reynolds stress that is related to the velocities
driven by waves. Its maximum value generally occurs
at the free surface. Nielsen and You [16] derived the dis-
tribution of the expression outside the laminar wave
boundary layer, Rivera and Arcilla [17] obtained the
wave Reynolds stress distribution based on the concept
of vorticity and the continuity equation. Experimental
data [18] show that the wave Reynolds stress distribu-
tion is linear. You [30] analyzed the measured wave Rey-
nolds stress and concluded that the measured wave
Reynolds does not follow Longuet-Hinggins [13] equa-
tion, but a linear function, i.e.,

~u~v ¼ ay ð20aÞ
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where j = 0.4; H = wave height; x = angular wave fre-
quency; u* = shear velocity; ur = reference current veloc-
ity at yr, k = wave number.

The last term in RHS of Eq. (17) is negligible [30].
Therefore, inserting Eqs. (18)–(20) into (17), one obtains
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Eq. (21) can be rewritten as follows:
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where b is independent of vertical distance y and b ¼
1� ghðsin hþ SÞ=u2

� � ah=u2
�.

Although Eq. (22) is derived from the combined wave–
current flows, its application covers steady and uniform
flows, steady and non-uniform flows and unsteady flows,
for example: in circular pipe flows b = 0 and v = 0; in
steady, uniform and fully developed straight channel
flows, a = 0.

The Reynolds shear stress is often modeled by the
mixing-length hypothesis as follows:

�u0v0 ¼ ðjyÞ2 d�u
dy

� �2

ð23aÞ
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where j = Karman constant � 0.4. Note that experi-
mental results show that Eq. (23a) is only valid near
the boundary [15]. The modified Reynolds shear stress
is often expressed by the following empirical equation
[27, p. 202]

�u0v0 ¼ ju�yð1� nÞ d�u
dy

ð23bÞ

where n = y/h. In this study, Eq. (23b) is used to model
the Reynolds shear stress.
3. Analytical solutions of velocity distribution in

non-uniform and unsteady flows

By inserting Eq. (23b) into (22), the following equa-
tion is obtained:

�u
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¼ exp

Z
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� 1
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dnþ c

�
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where c is the integration constant, and is determined by
the non-slip boundary condition, i.e., at y = y0, �u ¼ 0.

If �v ¼ 0, Eq. (24) gives

�u
u�
¼ 1

j
ln

y
y0

� b
j

lnð1� nÞ ð25Þ

Eq. (25) is similar to the formula developed by You [30]
who obtained it using a different approach in wave–
current combined flows, assuming that a 5 0. The clas-
sical log-law can be derived if b = 0. This indicates that
the log-law is valid only when b and �v are negligible, viz.

�u
u�
¼ 1

j
ln

y
y0

ð26Þ

For a smooth wall, y0 = m/(9.9u*) and m = kinematic vis-
cosity; for a rough wall, y0 = D/30 and D = the bound-
ary roughness height.

Eq. (25) shows that the maximum velocity appears
below the free surface. At the point of maximum veloc-
ity, the velocity gradient is zero, i.e., d�u=dy ¼ 0, thus,
one gets the following equation from Eq. (25):

b ¼ 1� h
ymax

ð27Þ

where ymax = the distance from the level of the maxi-
mum velocity to the bed. Obviously, if the maximum
velocity occurs on the free surface, i.e., ymax = h, then
b = 0 and Eq. (26) states that the velocity profiles follow
the log-law, otherwise ymax < h or b < 0, Eq. (26) indi-
cates that the predicted velocity is less than the value
of log-law [29]. In other words, Eq. (27) states that for
a velocity profile with the maximum velocity below the
free surface, the unknown parameter b can be deter-
mined from the elevation of the maximum velocity,
i.e., ymax/h.

The depth-averaged velocity can be obtained by inte-
grating Eq. (25) with respect to y from the bed to the
free surface,

b
j
¼ 1

j
ln

h
y0

� 1

� �
� V

u�
ð28Þ

where V is the depth-averaged velocity. The first term of
right-hand-side in Eq. (28) is the theoretical depth-aver-
aged velocity as predicted by the classical log-law. Thus
Eq. (28) states that the unknown parameter b can be
evaluated by the velocity defect between the measured
mean velocity (V/u*) and the depth-averaged velocities
as given by the classical log-law.

Strictly speaking, the vertical velocity �v is not zero
even in steady and uniform flows. The non-zero vertical
velocity �v in steady channel flows has been detected since
Prandtl�s era. The experimental results by Nezu and
Nakagawa [15] show that �v 6¼ 0 due to the secondary
currents which, for narrow channel (channel width/
water depth < 5) are initiated by the sidewall effect, free
surface effect or the variation of bed topology, for shal-
low-wide channel or 2-D flow, the non-zero �v or second-
ary currents can be generalized by the variation of
lateral bed topology and the corner secondary currents
[26]. It is natural that the wall-normal velocity in the
non-uniform and unsteady flows can be further induced
by many factors, such as the unsteadiness, non-unifor-
mity, sediment concentration, and temperature gradient
[28] etc. It is worthwhile to investigate the impact of
wall-normal velocity �v on the streamwise velocity. In
practice any type of wall-normal velocity profile is pos-
sible, and numerical integration may be necessary to
obtain the streamwise velocity distribution using Eq.
(24) if the profile of �v is given. This study only provides
simple examples to demonstrate how one could assess
the influence of wall-normal velocity on the streamwise
velocity by assuming the wall-normal velocity in the fol-
lowing form:

�v
u�
¼ ajnnð1� nÞm ð29Þ

where a, n and m are coefficients to be determined. Eq.
(29) states that at the bed where n = 0, �v ¼ 0; at the
mean surface level where n = 1, Eq. (29) gives �v ¼ 0.
By substituting Eq. (29) into (24), one can obtain a sim-
ple velocity distribution for any given values of a, n and
m. For simplicity, we assume n = m = 1.

By substituting Eq. (29) into Eq. (24), one has
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The first and second terms in the bracket of Eq. (30) can
be approximately calculated using the Taylor series and
only the first three terms are used:
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Using the non-slip boundary condition at n = n0, and
n0	 1, �u ¼ 0, the integration constant c can be deter-
mined as follows:

c ¼ b
j

e�a a2

4
� a

� �
� 1

j
ln n0 ð33Þ

therefore, it can be seen that all parameters, such as the bed
roughness (D), the channel bed slope ðsin hÞ, the non-uni-
formity (dh/dx), the Reynolds shear stress caused by
velocity fluctuations ð�u0v0Þ, the shear stress caused by
mean velocities ð�u�vÞ as well as the shear stress induced
by waves ð~u~vÞ jointly influence the velocity profile. These
parameters can be included or reflected in the following
equation of velocity distribution by substituting Eqs.
(31)–(33) into Eq. (30).
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It is obvious that Eq. (34) becomes Eq. (25) if a = 0, and
Eq. (34) becomes Eq. (26) if b = a = 0.
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Fig. 2. Comparison of measured velocity profiles with Eqs. (25), (
4. Comparison with Kemp and Simons� experimental

data

Several laboratory measurements of velocity profiles
are available. One of the widely cited measurements
was that of Kemp and Simons [9,10], who measured
velocities in laboratory channels with rough and smooth
beds using LDA. The mean velocity profiles were mea-
sured in a square channel 10.06 m long and 0.475 m in
width and depth. The bed roughness was represented
by 5 mm high triangular wooden strips placed at
18 mm intervals along the channel bed. The incident
wave is set to propagate against the direction of the cur-
rents. The flow depth at the test section was kept at
200 mm for all tests. Regular waves were generated with
a constant wave period of 1 s. The wave height varied
from 27.9 to 59.1 mm, and the wave length varied from
1053 mm to 1055 mm. The measured and computed
velocities are shown in Fig. 2. The measured velocity
profiles of waves propagating with the current over a
smooth bed are shown in Fig. 3. Eqs. (25), (26) and
(34) are included for comparison. All basic parameters
are listed in Table 1.

In Table 1, the shear velocity u* and y0 are obtained
by best fitting the near bed velocity with the classical
log-law. The coefficients a and b are determined by best
fitting the measured over-all velocity with Eqs. (25) and
(34).

It can be seen from Fig. 2 that Eqs. (25) and (34) yield
similar results and both are very close to the measured
data. Eq. (26) or the universal log-law is only valid near
the bed. Fig. 3 shows that the maximum velocity
appears below the free surface, and Eq. (34) represents
4 5 6 7 8

 In
y
y0

26) and (34) for waves opposing currents over a rough bed.
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Table 1
Parameters for velocity profiles shown in Figs. 2 and 3

WDR1 WDR2 WDR3 WDR4 WDR5 WCA1 WCA2 WCA3 WCA4

Wave height (mm) 27.9 33.4 39.7 50.5 59.1 20.7 30.7 39.4 44.4
Wave length (mm) 1053 1055 1055 1055 1055 1426 1425 1430 1433
Wave period (s) 1.003 1.003 1.003 1.003 1.003 1.006 1.006 1.006 1.006
Water depth (mm) 200 200 200 200 200 200 200 200 200
u

*
(mm/s) 8.52 9.52 10 10 14.3 15 17 17.5 18.5

y0 (mm) 1.9 1.9 1.9 1.9 4.2 0.1 0.12 0.12 0.12
b (Eq. (25)) 1.6 1.4 1.4 1.4 1 �0.5 �0.9 �1 �1.7
a (Eq. (34)) 0.8 0.65 0.65 0.7 0.5 �0.19 �0.28 �0.38 �0.65

Remarks Waves opposing current, rough bed Waves following current, smooth bed

1
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the velocity profiles slightly better than Eq. (25) when
the simple distribution of vertical velocity is given in
Eq. (29). More precise measurements are needed to iden-
tify whether b 5 0 or �v 6¼ 0 causes the deviation of the
measured velocity from the classical log-law. Table 1
shows that b and a are positive when waves propagate
against the current, but they become negative when
waves propagate in the direction of the current.
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Shift by 4

y
h

u
u0

Fig. 4. A comparison between Van Rijn et al. [23] experimental data
(mean velocity = 0.2 m/s) and predicted results: waves following
currents.
5. Comparison with other experimental data

Van Rijn et al. [23] measured the velocity distribution
in a channel 45 m long, 0.8 m wide and 1.0 m deep. A
horizontal sand bed was installed (length 25 m, thick-
ness 0.1 m). Fine sand of 0.2 mm median grain size
was used. The water-level variations were measured
using a resistance probe near the test section. The veloc-
ities were measured using an electromagnetic velocity
meter with a measuring volume of about 3 · 3 · 3 mm3

below the probe. The water depth was about 0.5 m,
wave period was about 2.5 s. The measured velocities
are shown in Figs. 4–7 in which Hs is the significant
wave height; b and a are determined by best fitting
the measured velocity profile near the free surface (see
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Table 2). The figures show good agreement between Eq.
(34) and the measured results.

Figs. 4–7 show the velocity profiles under waves in
combination with co-flowing and opposing currents. It
can be seen that in some cases b and a are zero, but in
some cases non-zero values are obtained. To demon-
strate the influence of wave–current angle on velocity
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distributions, Van Rijn and Havinga [25] carried out
experiments in a wave–current basin, in which the water
depth was about 0.4 m in all tests. Three different wave
conditions were performed with significant wave height
of 0.07 m, 0.1 m and 0.14 m for three wave direc-
tions—60�, 90� and 120� between wave orthogonal
and current direction. Irregular waves with a single-
topped spectrum and peak period of 2.5 s were gener-
ated. Instantaneous fluid velocities were measured by
an acoustical probe and an electromagnetic probe.
Fig. 8 displays good agreement between the measured
and calculated velocity profiles using Eq. (34).

The present model has also been compared with the
laboratory measurements of Van der Kaaij and Nie-
uwjaar [22]; Kampen and Nap [24] and Klopman [12]
in Figs. 9–12, in which S1510, T1210, T1810 and CMP
refer to the waves following the currents and S15-10,
T12-10, T18-10 and CMP refer to the waves opposing
currents.
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Fig. 8. Influence of wave–current angle on velocity profile.
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Fig. 10. Comparison of Eq. (34) with Van der Kaaij and Nieuwjaar�s
[22] experimental data.
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6. Discussion on the non-zero wall-normal velocity

and Reynolds shear stress

When the present model is applied to estimate the
velocity distribution in combined wave–current flows,
two parameters i.e., b and a should be determined.
The former indicates that the Reynolds shear stress in
the wave–current flows deviates from the standard linear
distribution in the circular pipe flows (2-D flows); the
latter actually expresses the magnitude of vertical
velocity. Therefore, it is necessary to analyze (i) why
the momentum equation shown in Eq. (22) differs
from the well-known standard-linear relationship; (ii)
whether the wall-normal velocity is zero, and (iii) the
validity of the Reynolds stress model, i.e., Eq. (23b).

Theoretically, b is determined by the following
equation:

b ¼ 1� ghðsin hþ SÞ
u2
�

� ah
u2
�

ð35Þ

In order to assess the parameter b, flows with the pres-
ence of wave in the steady and uniform open channels
(time-averaged velocities kept constant in the stream-
wise direction, i.e., oQ/ox = 0 or dh/dx = 0) are dis-
cussed first. From Eq. (19), S = 0, then

b ¼ 1� g sin hþ a
u2
�

h ð36Þ

If the experiments were conducted in horizontal chan-
nels or basins where sin h ¼ 0, the kinetic energy must
be dissipated along x-direction to maintain the flow
movement. Then dh/dx must be greater than zero or
S > 0. Eq. (35) becomes

b ¼ 1� gS þ a
u2
�

h ð37Þ

Eqs. (36) and (37) indicate that the parameter b can be
affected by the channel slope sin h. In order to determine
b, one has to know the channel bed slope, unfortunately
this parameter was not measured in the experiments
shown in the literature. Also, according to Eq. (22) the
wall-normal velocity also plays an important role to
the deviation of Reynolds shear stress from the standard
linear relationship. Even in the steady and uniform
flows, it is well known that the secondary currents are
formed in open channel flows, and it is widely agreed
that the secondary currents result in the distortion of
velocity profiles from the classical log-law [15]. It is also
expected that the secondary currents in the combined
wave–current flow differ from that in flows without wave
presence.

On the other hand, the experiments shown in the
above section were virtually conducted in the non-uni-
form flows (dh/dx 5 0) in which the wall-normal veloc-
ity and the parameter b are closely related because the
vertical velocity on the free surface is non-zero and is
given by

�vy¼h ¼ �uy¼h
dh
dx

ð38Þ

where�vy¼h and �uy¼h are wall-normal and streamwise veloc-
ities at the free surface. For accelerating flows dh/dx < 0,
then �vy¼h < 0; for decelerating flows, dh/dx > 0, then
�vy¼h > 0. Substituting the free surface boundary condi-
tion at n ¼ 1; u0v0 ¼ 0 into Eq. (22), one gets

b ¼ � �un¼1�vn¼1

u2
�

ð39Þ

for uniform flows where dh/dx = 0 or �vn¼1 ¼ 0, then
b = 0, Eq. (22) states that the influence of wave on the
velocity profile vanishes, which differs from previous
studies, such as the work done by You [30] who claimed
that the influence of wave on the velocity profile always
exists regardless of flow uniformity, and according to
their theory it is impossible that, in any cases the mea-
sured velocity in wave–current flows follows the log-
law.

However, Figs. 6 and 7 confirm that the measured
velocity profiles still follow the log-law, this indicates
clearly that the shear stress induced by wave (or ~u~v) is
not the sole factor that causes the deviation of measured
velocity profiles from the log-law, the flow�s non-unifor-
mity is also responsible for this deviation. The latter can
be seen clearly from the measured results [21] in a non-
uniform flow without surface waves.

Song [21] measured the velocity and turbulent struc-
ture of non-uniform flows using the acoustic doppler
velocity profiler (ADVP). The typical mean-velocity �v
and Reynolds shear stress are shown in Figs. 13 and
14. It can be concluded from Figs. 13 and 14 that in
non-uniform flows, �v 6¼ 0 and the non-zero wall-normal
velocity �v can also result in significant deviations of the
measured Reynolds shear stress shown in Fig. 14, i.e.,



Fig. 14. Reynolds shear stress distributions in accelerating and decelerating flows based on Song�s experimental data (accelerating flow AS00-Q145;
decelerating flow DS75-Q60).
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�u0v0

u2
�
¼ 1� n ð40Þ

Fig. 14 plots the distribution of ð�u0v0 � �u�vÞ=u2
� against

y/h, in which the measured u0v0, �u and �v are used. A lin-
ear relationship between ð�u0v0 � �u�vÞ=u2

� and y/h can be
found and it indicates that b > 0 for accelerating flows
and b < 0 for decelerating flows. Thus, it can be con-
cluded from Figs. 13 and 14 that in non-uniform flows,
the coefficient b and wall-normal velocity are non-zero.
Therefore, we may conclude that the theoretical deter-
mination of non-zero b and a in the model will be more
difficult for flows with the combination of wave and cur-
rent than that in pure non-uniform flows.

In this model, the Reynolds shear stress is modeled
using an empirical equation (Eq. (23b)). It is useful to
discuss the validity of Eq. (23b). Unfortunately, we
also did not find any relevant measurement/data in
the literature. Fig. 15 shows the measured dimension-
less Reynolds shear stress u0v0

u2
�
=ðd�u=u�

dn Þ against n for differ-

ent flow cases including the accelerating/decelerating
flows based on Song�s [21] experimental data, and the



Fig. 15. Measured dimensionless Reynolds shear stress distributions.
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steady and uniform flows based on Ishigaki�s experi-
mental data.

It is seen from Fig. 15 that the Reynolds shear stress
in steady and uniform channel flows can be roughly
modeled by the following equation:

u0v0

u2
�

d�u=u�
dn

� �
¼ jnð1� nÞ

�
ð41Þ

Fig. 15 shows that the measured dimensionless Reynolds
shear in the middle zone (0.25 < n < 0.75) tends to be
constant rather than a peak value at n = 0.5. For accel-
erating flows (Song, AS-25-Q100), the dimensionless
Reynolds shear stress is constant in the middle zone
(0.25 < n < 0.75), but the decelerating flow (Song,
DS75-Q60) displays good agreement with the model.
All data shown in Fig. 15 indicate that the model pro-
vides good agreement in two end cases: one is near the
boundary and the other near the free surface. Thus,
Fig. 15 states that the Reynolds shear stress used in this
study, i.e., Eq. (41) or Eq. (23b) is only a first-order-
approximation. It is recommended that further investi-
gation be focused on refining the model for Reynolds
shear stress under different conditions.

In this study, the empirical parameters b and a are
estimated by best-fitting technique, no attempt is made
to estimates priorly these values or to generalize the
results because b and a involve in the non-uniformity
of the mean flow (dh/dx) and bed slopes (sin h), in liter-
ature the basic information was not measured. Thus,
the writers are unable to develop empirical equations
to estimate b and a, but it is clear from this study that
the velocity deviation from log-law in combined wave–
current flows can be ascribed to the shear stresses �u�v
and ~u~v caused by mean velocities and waves, respectively.
7. Conclusions

The Reynolds equations in the combined wave–cur-
rent flows are derived from Navier–Stokes equations,
and the simplified form of Reynolds shear stress in the
2-D flows is established. The theoretical results show
that the Reynolds shear stress in the combined wave–
current flow differs from that in steady channel flows
for the former is influenced by the flow�s uniformity,
wave-induced Reynolds shear stress as well as the non-
zero wall-normal velocity. The theoretical velocity dis-
tribution in wave–current flows is obtained by solving
the Reynolds equation using the simplified mixing-
length hypothesis. The model is compared with mea-
sured velocity profiles available in the literature and
good agreement is achieved. Finally, the investigation
shows that secondary currents, flow�s uniformity, waves
greatly affect the velocity profile, and then lead to the
deviation of the measured velocity from the classical
log-law, this conclusion is quite different from the pre-
vailing view that the wave Reynolds shear stress is a sin-
gle factor for the velocity deviation from the log-law.

However, due to lack of the exact geometrical and
flow information in the published papers, such as the
bed slope, variation of water depth, etc., it is impossible
for the writers to develop empirical equations to
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estimate the parameters b and a involved in terms of
independent flow and wave parameters, thus further sys-
tematical experiments are needed in next stage.
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