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ABSTRACT

In their derivation of the lognormal probability density function for volume-averaged dissipation rates, Gurvich
and Yaglom assumed explicitly that these dissipation rates are statistically homogeneous and that the averaging
scale is small compared to the domain scale of the turbulent flow and large compared to the Kolmogorov scale.
Estimates of dissipation rates in the oceanic thermocline reported by various researchers do not, in general,
distribute lognormally because these datasets are often not homogeneous, nor is the averaging scale small
compared to the scale of the turbulent patches. The conventional method of computing dissipation rates, a
spectral technique, is incompatible with the assumptions for a lognormal distribution. Dissipation rates do
distribute lognormally when they are computed with an alternative method that is consistent with the assumptions
made by Gurvich and Yaglom. The shortest averaging scale that produced a lognormal distribution is three

Kolmogorov length scales.

1. Introduction

The rate of dissipation of kinetic energy, e, is fun-
damental to our understanding of mixing in the ocean.
The rate of dissipation is used to estimate a variety of
parameters that characterizé turbulent mixing includ-
ing the vertical eddy diffusivity (Osborn 1980) and
length scales such as the Kolmogorov scale, 7
= (¥3¢")/4, and the Ozmidov scale, L, = (eN3)!/2,
where v is the kinematic viscosity and N is the buoyancy
frequency. Although values of N change moderately
with depth in the thermocline, dissipation rates can
change by several orders of magnitude over scales of a
meter and, consequently, parameters that depend on
¢ have a wide range of values. It is clear from past
reports that dissipation rates have significant spatial
and temporal variations, and choosing an appropriate
value from a set of observations is rarely simple. For
a finite set of observations spanning a region in space
and time, should one choose the mean, or the mode,
or a high-percentile value of ¢? The statistical distri-
bution of e should be a guiding factor. Dissipation rates
are close to lognormal in surface and benthic mixing
layers (Osborn and Lueck 1985a; Shay and Gregg 1986;
Crawford and Dewey 1990) and above the core of the
Pacific Equatorial Undercurrent (EUC) (Crawford
1982). However, dissipation rates deviate noticeably
from a lognormal distribution in the thermocline
(Lyubimtsev 1976; Osborn 1978; Osborn and Lueck

Corresponding author address: Dr. Hidekatsu Yamazaki, Chesa-
peake Bay Institute, The Johns Hopkins University, The Rotunda,
Suite 315, 711 W. 40th Street, Baltimore, MD 21211.

© 1990 American Meteorological Society

1985b; Lueck 1988; Yamazaki et al. 1990) and recent
observations in the Pacific EUC are also not lognormal
(Peters and Gregg 1988; Moum et al. 1989).

The discrepancy between the distribution of e in the
thermocline and the lognormal distribution predicted
by Gurvich and Yaglom (1967, hereafter GY') raises
the question, “Is the lognormal theory of GY not ap-
plicable to a stratified fluid, or is the current method-
ology of computing ¢ not consistent with the assump-
tions of GY?” We will argue for the latter case using
two sets of data. We will show that conventional esti-
mates of e in the thermocline form datasets that violate
the important assumption of statistical homogeneity
in the GY theory of lognormality (sections 2 and 3b),
and that dissipation rates do follow a lognormal dis-
tribution when they are estimated with an alternative
method that is consistent with the assumptions of GY
(section 3¢). Although our main concern is the log-
normality of ¢ in the thermocline the alternative
method is applicable to other types of data. Further
support for our alternative method is presented in the
Appendix where we examine data from the Mediter-
ranean outflow.

2. Lognormal theory: A review

The assumptions made by GY in their original der-
ivation of the lognormal probability density function
(pdf) for dissipation rates are crucial to understanding
why estimates of ¢, particularly from the thermocline,
frequently fail to follow a lognormal distribution. Be-
cause the details of the lognormal theory are rarely
discussed in the context of oceanic observations, a brief
summary is presented here.
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Yaglom (1966) applied the theory of breakage
(Kolmogorov 1941a) to the energy cascade of turbu-
lence, and GY introduced the scale-similarity law for
e. A discussion of breakage and its relation to the log-
normal pdf can be found in Crow and Shimizu ( 1988,
ch. 3). The idea of breakage is the following. Let €(x)
be a non-negative quantity defined only by local prop-
erties and let ¢; be a volume average given by

o= 0! fQ xdx (1)

where Q; oc /2 is the averaging volume characterized
by the length scale /;. The quantity ¢; is considered to
successively break down into a smaller and similarly
shaped volume Q;., contained within the volume Q;
and characterized by the length scale /;.,. Successive
values of ¢; are related by the random breakage coef-
ficient

K (2)

up to some stage K at which the values of ¢; no longer
fluctuate because of some physical limitation. The av-
erage value of «(x) in the entire domain Q, oc L3 con-
taining the breakage process is

(& =0 fQ (x)dx.

There are no restrictions on L other than that it must
contain a breakage process, and L should not be con-
fused with the scale of the energy containing eddies,
to be discussed later. If there exists a range of length
scales /x < /; < L in which the random variables ¢; with
different index j are mutually independent and identi-
cally distributed (11D) then the value of ¢; in any par-
ticular volume Q; is given by

€= <6>1:11ai

o= €f€-y, =1,

(3)

(4)
and by

J
log.e; = log.( ey + 2 log.a;. (5

i=1

Finally, if log .« satisfies the conditions of a stable dis-
tribution, ¢; is lognormal by virtue of the central-limit
theorem (Feller 1968 ). Gulovich and Yaglom implic-
itly assume that log .«; is a Gaussian. This assumption
causes some physical inconsistency in higher order
moments of turbulence statistics; but lower order mo-
ments, mean, and variance are predicted well by the
GY model (Yamazaki 1990a). As it is with most sta-
tistical hypotheses, the critical condition is IID. The
condition of mutual independence ultimately becomes
invalid at some small scale because of the physical lim-
itations to any breakup. “Identically distributed”
means that the random variables log .; must be drawn
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from a single population and if, for some reason, the
domain Oy o L* contains breakages caused by more
than one process, log.«; may not be identically dis-
tributed. This condition is frequently called statistical
homogeneity, although its usage tends to be less rig-
orous than “identically distributed.”

At an advanced state of the breakage process, that
is, when j > 1, the length scales /; form a nearly con-
tinuous set that is small compared to the domain scale
L. Thus, one can associate any averaging scale r < L
with a length scale /; (j > 1) and, using (5), express
the volume average ¢, by

j
log.e, = log.(ey + 2 logea;. (6)

i=1

Researchers making estimates of dissipation rates from
microstructure profiles attempt to make r as small as
possible, but computational considerations lead to val-
ues ranging from 0.5 m (Shay and Gregg 1986) to 4.0
m (Osborn 1978).

Gurvich and Yaglom’s contribution is the applica-
tion of the ideas of breakage to the theory of turbu-
lence, and for convenience we will associate ¢, with the
volume-average rate of dissipation of kinetic energy.
They were a little vague about the definition of the
domain scale L and refer to it as “the typical scale of
the mean motion.” However, from their reliance on
Kolmogorov’s (1941b) notions of the inertial subrange,
we take it that GY considered L to be the length scale
of a single turbulent flow. In particular, GY considered
€(x) to be isotropic and statistically steady in domains
with scales small compared to L. They argued that at
large Reynolds numbers there is a wide range of length
scales satisfying the condition L > r > 5, = (#3/¢,)!/*
and that by “accepted hypothesis” the breakage coef-
ficients in this range of length scales are mutually in-
dependent and identically distributed random vari-
ables. Their motivation for restricting the length scale,
r, of the averaging volume was so that “the domain is
small in comparison with a typical scale of inhomo-
geneities of the mean flow” and that “the domain is
large as compared to the distances at which the mo-
lecular viscosity begins to be significant.” Lastly, GY
assumed that the probability of ¢; = 0 is zero, i.e., that
the entire domain characterized by L contains dissi-
pation. Yamazaki (1990a) discusses the detail of this
statistic. Under these assumptions and restrictions, GY
claimed that the volume-average rate of dissipation
follows a lognormal distribution.

The problem with applying GY’s theory of lognor-
mality to thermocline observations is that the external
length scale of patches of turbulence can be very small,
particularly in the vertical direction. The thickness of
the layers is frequently comparable to, and smaller
than, the averaging scale r (0.5 to 4 m). For example,
Gregg et al. (1986), Yamazaki and Lueck (1987), and
Rosenblum and Marmorino (1990) have examined the
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statistics of patch thickness and find that more than
half of the turbulent layers are thinner than 2 m. If we
interpret the domain scale L as the external length scale
of a turbulent layer, in strict accordance with GY, then
the condition r < L for statistical homogeneity is rarely
satsfied in the thermocline. The de facto domain scale
is the depth range of a set of observations, and if the
individual estimates ¢, in this set are identically dis-
tributed (represent a single population), their distri-
bution should still be lognormal. However, the domain
scale for a set of estimates is sometimes chosen arbi-
trarily (Baker and Gibson 1987) or with little concern
for the external length scale of thermocline turbulence
(Lueck 1988). Such datasets contain samples from
unrelated turbulent layers mixed with specimens from
regions that may not even be turbulent.

The importance of the domain scale was noted by
Crawford ( 1982). His dissipation rates distributed log-
normally when his dataset consisted exclusively of ob-
servations from above the core of the EUC (between
40 and 120 m). However, the distribution was not log-
normal when the dataset was expanded to include es-
timates from the core and deeper water. Similar results
were reported by Peters and Gregg (1988). The mean
vertical shear is very small in the core and the physics
of mixing in it must be quite different from the highly
sheared flow above the core. The domain scale of a set
of dissipation estimates is invariably large (of order
100 m) because 1) individual estimates are a spatial
average over 0.5 to 4 m and 2) the set must contain a
substantial number of estimates for statistical tests.
Therefore, with only a few exceptions, such as the EUC,
datasets from the thermocline are inconsistent with the
assumptions and restrictions set forth by GY; that the
domain scale is shorter than the external length scale
of the turbulence and that the averaging scale is small
compared to the domain scale. Such datasets are not
homogeneous and we have no basis for expecting a
lognormal distribution. The prerequisites on the av-
eraging and domain volume for a lognormal distri-
bution are extremely restrictive for data collected in
the thermocline.

What is an appropriate choice for the domain scale,
L, in the thermocline? It is any scale over which the
volume-average dissipation rates are statistically ho-
mogeneous and, therefore, it is not the Ozmidov scale.
The domain scale can be larger than the Ozmidov scale
because homogeneity over a particular scale does not
require overturning eddies at the same scale. The
microstructure shear variance changes abruptly by
several orders of magnitude at the upper and lower
boundaries of a turbulent patch. Therefore, the thick-
ness of a turbulent layer should be taken as the upper
bound for the domain scale L until the internal struc-
ture of these layers is better understood. No clear guid-
ance exists to determine L objectively. Gurvich and
Yaglom assumed that the turbulence is isotropic over
the averaging scale r. This is a convenient assumption
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in a theoretical development, but it is not a prerequisite
for a lognormal distribution. When the breakage coef-
ficients are statistically independent and homogeneous,
even if the turbulence is anisotropic, the measured dis-
sipation rates should still be lognormal. Thus, conven-
tional spectrally averaged dissipation estimates may
sometimes appear lognormal; Gregg (1990, personal
communication) found such a dataset.

In summary, by the theory of breakage and its ap-
plication to turbulence, the volume average dissipation
rate, ¢, has a lognormal pdf in a domain characterized
by the length scale L, if the following three conditions
are met:

(i) ¢ is statistically homogeneous in the domain,

(ii) the averaging scale is small compared to the
length scale L., and

(iii) the averaging scale is /arge compared to the
Kolmogorov scale, 7.

3. Oceanic dissipation estimates

a. Data

To examine the question of lognormality in the
thermocline, we will use data from one vertical profile
(Fig. 1) and one quasi-horizontal profile collected over
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F1G. 1. Vertical profiles of du/dz and dv/9dz, temperature and its
gradient. The dv/dz data between 50 and 200 m (large box) were
used for the conventional dissipation estimates, while the segment
between 162 and 170 m (small rectangle ) was used in the alternative
method.
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the upper 200 m off San Diego, California. Details on
the data collection and instrumentation are in Ya-
mazaki and Lueck (1987) and Osborn and Lueck
(1985b). While falling at an average rate of 0.5 ms™',
the vertical profiler measured two orthogonal com-
ponents of the vertical gradient of horizontal velocity,
du/dz and dv/az, at a rate of 256 samples per second.
The spatial sampling rate was 512 m™'. The geographic
orientation of the two velocity components is unknown
and irrelevant, the nomenclature being used merely
to distinguish the two signals. The sensors aboard
the submarine Dolphin measured the horizontal grad-
ients of vertical and athwartships velocity, dw/dx and
dv/dx, at a rate of 512 samples per second while trav-
eling at a speed of 1.2 m s™!. The spatial sampling rate
was 427 m™'. The submarine was descending from a
depth of 50 to 120 m with an average declination of
6°. The average buoyancy frequency between 50 and
120 m was N = 4.6 cph. The detail of the hydrographic
conditions for these datasets can be found in Yamazaki
et al. (1990).

b. Conventional dissipation estimates

For our first test of lognormality, the dissipation rates
were calculated in a conventional manner, namely,
two-second blocks of data were Fourier transformed
to produce variance spectra of shear and these spectra
were integrated from 1 Hz to a frequency corresponding
to one-half of the Kolmogorov wavenumber. The dis-
sipation rate was calculated according to the isotropic
turbulence formula:

& = 7.5v<52> (7)

where v is the kinematic viscosity, which we take as
1.3 X 107 m? s™! for the data discussed here, s is a
component of the shear, and the angled braces indicate
that the spectral integral is a spatial average. The av-
eraging scale is two seconds, corresponding to a spatial
scale of r =~ 1 and 2.4 m for the vertical and horizontal
profiles, respectively.

Ideally, one would like to integrate the spectrum
from zero to infinity, but the sampling rate and noise
considerations restrict us to a finite band of integration.
The spectral method allows explicit control over the
bandwidth used to estimate the shear variance and this
is its main attraction. Noise in the measured shear sig-
nal above the upper limit of integration is excluded
from the dissipation estimate (6), which increases its
resolution. If the spectra follow the Nasmyth universal
spectrum (Oakey 1982), then the spectral level is pro-
portional to €3/* and the upper limit of integration is
proportional to ¢'/*. In the thermocline ¢ ranges ap-
proximateély from 1071 to 107 W kg ™! and the spectral
band of integration varies by an order of magnitude.
An estimate of the amount of shear variance that is
lost by using a finite upper limit can be obtained by
assuming that the spectra follow, on average, the Nas-
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myth universal shear spectrum. This is another attrac-
tive feature of the conventional method. Fifteen percent
of the spectral variance is lost by ending the integration
at one-half of the Kolmogorov wavenumber. The
amount of signal variance lost due to the lower limit
of integration depends on the rate of dissipation and
is negligible for large rates. For the vertical profiles, 1
Hz corresponds to 2 cpm, while for the data collected
with the submarine, 1 Hz corresponds to 0.8 cpm. For
the very small rate of 1 X 107'© W kg™!, the shear
variance lost is 25% and 10% for the vertical and hor-
izontal profiles, respectively, if the spectra follow the
Nasmyth spectrum. At these levels of dissipation, ve-
locity fluctuations are strongly influenced by stratifi-
cation in the dissipation range of the spectrum and the
vertical velocity spectra in low wavenumbers differ no-
ticeably from the Nasmyth spectrum (Yamazaki
1990b). The dissipation rates reported here have not
been corrected for the losses incurred by a finite band-
width. Practical considerations, such as the length of
data in the Fourier transform and low-frequency mo-
tions of the profiler, restrict the lower limit of integra-
tion to a finite value. Although details do vary, the
spectral method desscribed here is currently used by
all microstructure researchers.

A vertical profile of the rate of dissipation estimated
using dv/9z is shown in Fig. 2 (open circle). The min-
imum resolution of our method is 5 X 107" W kg™!
and the estimates span more than 3 decades. As usual,
the turbulence was “patchy” (see also Fig. 1) in the
sense that there were layers thinner than 10 m with
dissipation rates of order 1078 W kg~! separated by
much thicker regions with rates of order 10" W kg ~".
Because the dissipative patches were well separated in
space it is extremely unlikely that they resulted from
a single process, and our dataset must contain samples
from a number of different turbulent events. Even if
we hypothesize that the turbulence was generated by
a single type of process, the process could not have
been started simultaneously in each layer, and the
samples would come from different stages in the life
cycle of this process and have differing statistical prop-
erties. Therefore, a typical profile of dissipation rates,
such as shown in Fig. 2, is not homogeneous. For this
dataset the domain scale is L = 150 m. Our dataset
meets two of the three conditions for lognormality.
The averaging scale r = 1 m is much less than the
domain scale L = 150 m (condition ii in section 2)
and r is much larger than the Kolmogorov scale (con-
dition iii), which is never more than 0.1 m in the ocean.

‘However, our dataset does not meet the important

condition of homogeneity.

A significant departure from lognormality is evident
in a quantile-quantile plot (Fig. 3) where the logarithm
of the empirical dissipation rates are plotted against
the theoretical rates (hereafter a qg-plot; Chambers et
al. 1983). This departure is similar to all previous re-
ports. Although the departure from lognormality at
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FIG. 2. Vertical profile of dissipation rates computed using dv/dz.
The open circles are 1-m averages produced by the conventional
method, the dots are the unsmooted instantaneous rates and the
asterisks are the instantaneous rates averaged over 1 m. The chain-
dot line shows the dissipation rate corresponding to a Kolmogorov
wavenumber of 120 cpm and the dashed lines delimit the 8-meter
segment analyzed in section 3c.

rates smaller than 107'° W kg~! may be attributable
to noise, the departure at large dissipation rates is not
due to instrumental effects or other types of undersam-
pling of the shear signal. The Kolmogorov—Smirnov
test (hereafter, the KS test) rejected the null hypothesis
that the dissipation estimates follow a lognormal dis-
tribution at a 5% significance level.

A quasi-horizontal profile taken with the submarine,
and in close proximity to the vertical profile shown
earlier, is displayed in Fig. 4 along with profiles of tem-
perature, o, and the depth of the boat. These data span
a horizontal distance of approximately 630 m and a
vertical distance of 70 m. The most dissipative event,
near meter 240, was associated with intense fine-struc-
ture activity having a signature similar to an event in-
terpreted by Itsweire and Osborn (1988) as a Kelvin—
Helmholz instability. the other regions of high dissi-
pation had much smoother fine-structure in temper-
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ature and density. Clearly 'a number of unconnected,

and possibly different, mechanisms were responsibie

for the turbulence measured with the submarine, and

the dataset shown in Fig. 4 is not homogeneous. Indeed
a qqg-plot of the dissipation rates (Fig. 5) departs sig-

nificantly from a lognormal distribution and the KS-

test rejected the dataset at a 5% level of significance.

¢. Instantaneous dissipation estimates

We will now attempt to extract a dataset that follows
a lognormal distribution, and to do so, we will restrict
our attention to a single turbulent layer in order to
satisfy the assumptions in GY. We will use the shear
signal dv/dz between 162 and 170 m, which is interior
to a region of elevated turbulence spanning the depth
range of 160 to 175 m (Figs. | and 2). This choice
makes our domain scale L = 8 m. The conventional
spectral method provides only eight dissipation esti-
mates. Although the data length used to compute the
spectra can be shortened somewhat, this method can-
not generate enough estimates for meaningful statistics.
An alternative method is to use the square of every
data point in the time series of dv/dz to compute the
shear variance. This method produces a time series of
(9v/3z)? equal in length to the original shear signal.
Spatial averaging is then accomplished by computing
the means of a number of adjacent points, that is,
through the decimation of the shear-squared time series
into a shorter and smoothed series. This method pro-
vides explicit and generous control over the averaging
scale at the price of very limited control over the spec-
tral bandwidth. The bandwidth used to compute the
shear variance can be controlled by filtering the shear
data before squaring them, but the bandwidth cannot
be varied among the individual estimates of the vari-
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FiG. 3. The qg-plot of 1-m averaged dissipation rates computed
with the conventional method using dv/dz data between 50 and 120
depth.
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with the conventional method using dw/dx, along with profiles of depth, temperature, and

sigma-f.

ance. The maximum spatial resolution is determined
by the sampling rate and is 0.002 m for the vertical
profile. Although this “instantaneous dissipation”
method may appear novel, it is the discrete equivalent
of the analog, or continuous, methods used by the pi-
oneers of turbulence research (Grant et al. 1962, Fig.
7). These and other researchers took the analog voltages
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FIG. 5. The qg-plot of dissipation rate computed with the con-
ventional method using dw/dx data collected from the submarine
(Fig. 4). The averaging scale is 2.4 m.

produced by their velocity sensors, bandpass filtered
the signals to reject drifts and high-frequency noise,
squared this signal by various analog methods and, fi-
nally, averaged the variance using circuits with con-
trollable time constants.

The spectrum of the 8-meter segment of dv/ 9z data
between 162 and 170 m contains spurious peaks at
wavenumbers above 120 cpm (Fig. 6). The two narrow

. peaks are associated with the power mains, while the

broader peak between them has not been identified.
The vertical profiler had a small amplitude wobble at
a frequency of 0.3 Hz (Moum and Lueck 1985), al-
though this is not particularly evident (in Fig. 6) be-
cause the shear signal was relatively large. We have
low-pass filtered the shear data in the time domain
with a nine-pole elliptic recursive filter (Antoniou
1979) set to reject signals above 120 cpm and high-
pass filtered the data with a single-pole Butterworth
filter set to attenuate signals below 0.2 cpm. The elliptic
filter is extremely sharp and the effect of the two filters
can be gauged by comparing the spectrum of the filtered
and unfiltered signals (Fig. 6). The mean rate of dis-
sipation for this 8-meter segment, using the conven-
tional method, was 2.4 X 1078 W.kg~!. Based on this
mean rate, the Kolmogorov length scale was n = 0.0031
m and its wavenumber was 51 cpm. Because the high-
wavenumber cut off of our filter is more than twice the
average Kolmogorov wavenumber, our filter removes
very little of the shear signal. The local dissipation rate
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FIG. 6. Spectra of filtered and unfiltered dv/dz data between 162
and 170 m. The spectrum of the unfiltered data has been shifted up
by two decades for clarity and the dashed line marks the Kolmogorov
wavenumber.
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within our 8-meter data segment was significantly larger
than the mean rate, but as will be shown later, there
was little loss of data even for local regions. The buoy-
ancy frequency over the 8-meter segment was 6 X 103
s~!, and thus, e(¥N?)~! = 510. By the criterion of Gar-
gett et al. (1984), the turbulence was isotropic in the
“dissipation” range of the wavenumber spectrum, a
strong indication that the turbulence was homoge-
neous.

For comparison with the conventional method of
computing dissipation rates, we have plotted (Fig. 2)
a profile of the unaveraged instantaneous dissipation
rates 7.5»(dv/dz)? showing every data point (512 per
meter). Without smoothing, the instantaneous dissi-
pation rates can be arbitrarily small and Fig. 2 shows
only values larger than 107" W kg~'. Very few dissi-
pation rates exceed the rate corresponding to a Kol-
mogorov wavenumber of 120 cpm (Fig. 2, chain-
dashed line)—our filter cutoff wavenumber. Deci-
mating the instantaneous dissipation rates by averaging
sequential groups of 512 estimates produced a subset
of estimates averaged spatially over 1 m, a 512-point
average, and these estimates should be comparable to
the conventional ones. The two methods agree on the
large dissipation estimates (Fig. 2, asterisks and circles),
while for small dissipation rates, the spectral method
produced esitmates that are consistently smaller than
the product of our alternative method. The difference
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between the two methods at small dissipation rates re-
flects the advantage of the conventional method.

We have met two of the three conditions for log-
normality—we have a dataset (between 162 and 170
m) that is very likely homogeneous (condition i in sec-
tion 2) and the alternate method will allow us to keep
the averaging scale small compared to the domain scale
of L = 8 m (condition ii). The final condition is the
minimum averaging scale (r > 7n), an issue intimately
connected with the concept of statistical independence.
By Kolmogorov’s third hypothesis (Kolmogorov 1962)
the squared shears are mutually independent in the
inertial subrange, but our sampling extended beyond
this subrange and into the dissipation range of the shear
spectrum. Therefore, the instantaneous dissipation es-
timates are not necessarily mutually independent. Our
sampling scale of 0.002 m was smaller than the average
Kolmogorov scale (n = 0.0031 m) and viscous
smoothing should have rendered the estimates inter-
dependent. Our instrumentation also performed some
smoothing of the shear signal. The analog low-pass filter
used for antialiasing purposes prior to digitization is
not a factor because we used a very sharp 7-pole elliptic
filter set to attenuate signals above the Nyquist fre-
quency. However, the probes averaged the shear signal
spatially and this process has been investigated at length
by Ninnis (1984). To a very good approximation the
probe acts as a “box-car” window with a width of 0.014
and has its first null response at 175 cpm. Thus, for
averaging scales comparable to and smaller than 0.014
m, the dissipation estimates were not statistically in-
dependent.

If we do not decimate our local dissipation rates, the
estimates are not lognormal (Fig. 7a), undoubtedly
because they do not satisfy condition (iii)—they are
not mutually independent. To determine the amount
of spatial averaging required to produce a lognormal
set of dissipation estimates, we progressively decimated
our instantaneous dataset (trying 2-point, 3-point, etc.
averaging) and examined each decimated set for log-
normality using the KS test. Decimation with 5-point
averaging produced estimates that passed the KS test
at a 5% level of significance (Fig. 7b). Thus, a spatial
averaging scale of » = 0.010 m = 3.1y produces a log-
normal distribution for thermocline turbulence and
quantifies the condition r > 7, at least for this particular
example. The averaging scale associated with S-point
averaging is comparable to the smoothing scale of the
shear probe and, therefore, r = 37 is an upper estimate
for the lower bound of r for lognormality. Had the
spatial resolution of the shear probe been higher, a log-
normal distribution may have been attained at a
smaller averaging scale. All larger averaging scales up
to and including decimation by 64-point averaging (r
= 0.13 m =~ 507) produced estimates that passed the
KS-test (Fig. 7¢). Averaging scales larger than 64 points
were not attempted because at such scales the number
of estimates is too small for a meaningful test.
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F1G. 7. The qq-plot of the instantaneous dissipation rate 7.5»(dv/
dz)?; (a) no averaging, (b) 5-point (r = 35) averaging, and (c) 64-
point (7 = 40n) averaging.

The largest instantaneous dissipation estimate ob-
served in our 8-meter segment was 1 X 107 W kg™!
(Fig. 7a), and the Kolmogorov wavenumber corre-
sponding to this rate is 130 cpm, which is larger than
the cut-off wavenumber of our filter. If we can assume
that the Nasmyth spectrum describes this dataset, then
the loss of signal variance incurred by our filter is less
than 3% for the largest estimate and even less for the
smaller estimates. The signal variance lost due to spatial
averaging by the shear probe is 21% using tables in
Appendix C of Ninnis (1984). These tables quantify
the total variance lost if the shear spectrum follows
Nasmyth’s universal spectrum and, hence, they over-
estimate the attenuation of instantaneous dissipation
rates. Thus, the statistical distribution of the instan-
taneous and decimated dissipation rates are not sig-
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nificantly affected by either probe smoothing or by the
filtering of our data.

We also computed the instantancous dissipation
rates e = 7.5»(dw/dx)? using the measurements taken
with the submarine. We used a segment of data 16
seconds (L = 19 m) long (Fig. 8) that was imbedded
in a larger turbulent region located near meter 240 of
the entire horizontal profile shown in Fig. 4. This mix-
ing layer was 5 m thick. The shear data were processed
with the same method used for the vertical profile ex-
cept that the filtering was different; no high-pass filter
was used and the low-pass filter was set to 80 cpm. The
spectrum of the selected 19-meter segment shows con-
siderable signal contamination above 100 cpm (Fig.
9), which stems mostly from machinery aboard the
boat (Osborn and Lueck 1985b). Rolling motions
of the boat, which were small, had no effect on the
dw/0dx signal. The layer had an average dissipation rate
of 2.1 X 1078 W kg™!, a Kolmogorov length scale of
7 = 0.0032 m, and a Kolmogorov wavenumber of 50
cpm (dashed line in Fig. 9). The buoyancy frequency
in this layer was 9 X 107357, hence, e(vN?)™' = 200.
By the criterion of Gargett et al. (1984 ), the turbulence
was marginally isotropic in the dissipation range of the
wavenumber spectrum. As before, the instantaneous
dissipation rates are not lognormal when the dataset
was not decimated (Fig. 10a). The least amount of
spatial averaging that produced a dataset that passed
the KS-test at a 5% level of significance was 4-point
averaging, for which r = 0.0094 m = 2.9y (Fig. 10b).
All larger averaging scales up to and including 64-point
averaging (0.15 m = 477) passed the KS test at the
same level of significance (Fig. 10c).

The margin between the average Kolmogorov
wavenumber and the cutoff wavenumber of our filter
was not as large for the horizontal profile as it was for
the vertical profile and some loss of variance was in-
curred by our filtering. The largest instantaneous dis-
sipation rate was 3 X 107 W kg~! (Fig. 10a) and the

~ low-pass filter may have attenuated this value by ap-

proximately 17% and spatial averaging by the shear
probe may have reduced this value by 30%. As was the
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F1G. 8. Microstructure shear form a region near meter 240 in Fig.
4. The 19-meter long segment in the dotted rectangle was used to
examine the statistics of the instantaneous dissipation rates 7.5»(dw/
ax)2.
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FiG. 9. Spectra of filtered and unfiltered dw/dx data from the 19-
meter long segment identified in Fig. 8. The unfiltered data have

been shifted up by 2 decades. The dashed line marks the Kolmogorov
wavenumber.

case for the vertical profile, the statistical distribution
of the dissipation rates from the 19-meter segment of
the horizontal profile was not significantly affected by
the probe smoothing or by filtering.

An averaging scale of 3n was sufficiently large to
produce a lognormal pdf using data from both the ver-
tical and the horizontal profiler. This lower limit of 3y
is an order of magnitude smaller than the limit of 369
suggested by van Atta and Yeh (1975) based on sta-
tistical independence. The fact that an averaging scale
of 3 Kolmogorov lengths produced a lognormal dis-
tribution does not necessarily mean the estimates are
statistically independent at this scale because the log-
normal distribution may allow some degree of inter-
dependence. Moreover, spatial averaging by the shear
probe virtually guarantees statistical dependence at this
scale.

4. Discussion

The rate of dissipation of kinetic energy in the ther-
mocline appears to be randomly distributed in space
and time and is characterized by limited spatial and
temporal scales. Dissipation rates estimated with con-
ventional methods range over at least 3 decades, and
e garnered from thermocline profiles is a highly skewed
random variable. The lognormal distribution describes
one particular family of skewed variables. Unfortu-
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nately, conventional oceanic dissipation estimates
generally violate the assumption of homogeneity in the
GY theory of lognormality and this is the reason why
(almost) all datasets fail statistical tests for lognor-
mality. The restrictions for a lognormal distribution,
as summarized at the end of section 2, are simply in-
compatible with conventional estimates of dissipation
rates in the oceanic thermocline. The important role
of homogeneity has been noticed in data collected in
the EUC (Crawford 1982; Peters and Gregg 1988) and
can also be seen by comparing mixing layer data against
thermocline observations. Dissipation estimates drawn
from surface mixing layers are close to lognormal, al-
though they do not always pass statistical tests. Shay
and Gregg (1986 ) measured dissipation rates in a con-
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FI1G. 10. The qg-plot of the instantaneous dissipation rate 7.5»(dv/
4z)?%; (a) no averaging, (b) 4-point (r = 2.9) averaging, and (c) 64-
point (r = 567) averaging.
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vectively driven surface layer off the Bahamas and near
the center of a warm-core ring. The data from the Ba-
hamas passed a statistical test at a 5% level of signifi-
cance, while the data from the ring failed only in a
narrow region near the peak of the pdf. From a.reex-

amination of the data, Gregg (1989, personal com- .

munication) found that the ring data were less ho-
mogeneous than the data from the Bahamas. The stan-
dard deviation of friction velocities in a benthic
boundary layer (Crawford and Dewey 1990) was so
small that the data passed statistical tests for normality.
An alternative method, which has the flexibility to
be compatible with the restrictions outlined by GY,
does produce dissipation estimates that distribute log-
normally when the data are drawn from a single tur-
bulent layer. Successful results were obtained with both
vertical and horizontal profiles. The alternative method
was not developed to be a candidate to replace the
conventional method of estimating dissipation rates,
rather, we developed it to show that ¢ in the thermocline
does indeed have a lognormal pdf within the scope
considered by GY. The conventional and the alter-
native method are analogous techniques. Both produce
estimates of the shear variance. The conventional
method computes the variance over an explicitly con-
trolled range of wavenumbers (or frequencies) with
little control over the spatial (temporal ) averaging scale.
The alternative method does the same over an explicitly
controlled length in space (time) with little control over
the bandwidth. The alternative method may prove
useful for data collected exclusively in mixing regions,
where signal levels are large and the lack of bandwidth
control is not serious, and it may be valuable for studies
of benthic boundary layers where estimates must be
made very close to the bottom (Dewey et al. 1988).
This study has shown that the lognormal pdf de-
scribes dissipation rates within a single patch of tur-
bulence. However, the more general and important
question of what is the pdf of ¢ in the thermocline on
very large scales (scales much larger than the size of
an individual patch) is a more difficult one. The theory
of GY provides no guidance on this general question
because their concerns focussed on the inertial subrange
and they did not consider the patch distribution of tur-
bulence that has subsequently been discovered in the
oceanic thermocline. A description of dissipation rates
on large scales requires insight into patch statistics. In
particular, we need to understand the life cycle of in-
dividual mixing events, the statistical distribution of ¢
among an ensemble of events for all stages of their life
cycle, and the distribution of the spatial scale (relative
volume) of mixing events. Although this task may ap-
pear daunting, some progress has been achieved. The
data reported here are a subset of a large number of
profiles. A distribution formed from the mixture of
two lognormal distributions passes statistical tests ( Ya-
mazaki et al. 1990) and such an heuristic approach
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hints at the underlying sources of thermocline turbu-
lence; active mixing events and decaying turbulence
with unique means and standard deviations. Recently,
Gregg et al. (1990) used the distribution of the fourth
moment of the internal-wave shear to infer the distri-
bution of ¢, having found a strong statistical correlation
between these two parameters. However, turbulence is
a nonlinear process; for example, it has a critical Rich-
ardson number, and there is currently no way to predict
the pdf of the output of a nonlinear process from the
pdf of the input. The statistical distribution of the length
scale of patches has also received some attention (Gregg
et al. 1986; Rosenblum and Marmorino 1990) and
appears to be nearly exponential (Yamazaki and Lueck
1987).

5. Conclusions

The theory for the lognormal pdf of volume-averaged
dissipation rates developed by Gurvich and Yaglom
(1967) is valid for estimates from the oceanic ther-
mocline when these estimates meet the restrictions set
forth by Gurvich and Yaglom. These restrictions are:

(1) the set of dissipation rates, ¢,, averaged over a
length scale ¥ and drawn from a domain of spatial scale
L must be statistically homogeneous,

(i1) the averaging scale must be small compared to
the domain scale, r < L, and

(ii1) the averaging scale must be large compared to
the Kolmogorov length scale, r > 1.

Dissipation rates reported previously are seldom log-
normal because the conventional method of estimating
¢, is usually inconsistent with these rather severe re-
strictions, particularly in the thermocline. The esti-
mates are seldom homogeneous due to the patchy na-
ture of turbulence. An alternative method that is con-
sistent with the restrictions set forth by Gurvich and
Yaglom produces estimates that have a lognormal pdf.
The shortest averaging length scale that produces a log-
normal pdf (condition iii) is 3y for both a horizontal
and a vertical profile taken in the thermocline.
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APPENDIX

Another Example of Instantaneous
Dissipation Estimates

In order to demonstrate that our instantaneous dis-
sipation method is applicable to other datasets we have
examined one profile obtained with the Expendable
Dissipation Profiler (XDP) during the Mediterranean
Out-Flow Experiment (Lynch and Lueck 1989). The
XDP (Lueck and Osborn 1985) measures one com-
ponent of vertical shear, du/dz, over wavenumber 2
to 120 cpm, and measures temperature with a spatial
resolution of about 1 m. The XDP descends approxi-
mately 2.8 m s~!. The data sampling for shear is made
at a rate of 1024 per second, thus the maximum spatial
resolution is 0.0027 m.

Because the XDP is expendable it is well suited to
mesurement in a benthic boundary layer. During the
experiment over one hundred meters of a benthic mix-
ing layer was observed (Fig. Al). This mixing layer
was composed of two sections: an entrainment section
between 340 and 410 m, and a well-mixed section be-
tween 420 m and the sea floor. These two sections are
separated by a quiescent layer at 420 m. Similar features
are shown in Lueck and Osborn (their Fig. 4, 1985).
We use a section of shear data between 423 and 461

du/8z [sec™] T [°C]
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FIG. Al. Vertical shear and temperature profile measured with
the XDP. The data were collected in the Gulf of Cadiz at 35°45'N,
6°29'W. The instrument profiles right into the bottom (474 m). The
benthic boundary layer is thicker than 100 m. Dashed box shows the
range of data used for the instantaneous dissipation estimate.
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FiG. A2. The qg-plot of the instantaneous dissipation rate for the
XDP: (a) no averaging, (b) 4-point averaging, and (c¢) 64-point av-
eraging. Note that the range of dissipation estimates is much larger
than Figs. 7 and 10.

m, which corresponds to 16 second data. The conven-
tional spectral method using one second data gives 16
estimates of dissipation rate. The average dissipation
rate from these estimates is 1.1 X 107> W kg™}, and
the Kolmogorov scale, 5, is 0.0007 m. Since the dis-
sipation rate is extremely high, the shear spectrum is
not resolved completely. As we discussed in section 3,
the conventional method provides an opportunity to
correct the missing part of the spectrum. The corrected
dissipation average is 2.1 X 1075 W kg™!, and 7 is
0.0006 m.

The raw shear data require filtering before we cal-
culate instantaneous dissipation rates. We high-pass
filtered the data at 3.6 cpm and low-pass filtered the
data at 107 cpm. Unfortunately this low-pass cut off
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is much lower than the Kolmogorov wavenumber, 265
cpm. Thus, we can not rigorously examine the mini-
mum averaging scale for lognormality as done in sec-
tion 3. Although we are missing the shear variance at
high wavenumbers, appropriately averaged dissipation
rates should follow the theory of lognormal distribu-
tion. Again, without local averaging the instantaneous
dissipation estimates are not lognormal (Fig. A2a), but
4-point averaging produces lognormal samples (Fig.
A2b). The 64-points averaging is also lognormal (Fig.
A2c) and the averaging scale is 0.17 m, which is much
shorter than the scale of the conventional method.
Therefore, the instantaneous dissipation estimates can
offer very detailed statistical properties of the benthic
mixing layer.
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