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Numerical study of breaking waves by a two-phase flow model
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SUMMARY

A two-phase flow model, which solves the flow in the air and water simultaneously, is presented for
modelling breaking waves in deep and shallow water, including wave pre-breaking, overturning and post-
breaking processes. The model is based on the Reynolds-averaged Navier–Stokes equations with the k � �
turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered
grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm
is utilised for the pressure-velocity coupling and the air-water interface is modelled by the interface captur-
ing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating
overturning waves on a sloping beach and over a reef, and deep-water breaking waves in a periodic domain,
in which good agreement between numerical results and available experimental measurements for the water
surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash-up
during wave breaking have been captured by the two-phase flow model, which demonstrates the capability
of the model to simulate free surface flow and wave breaking problems. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Wave breaking plays an important role in air-sea interaction, surf zone dynamics, nearshore sedi-
ment transport, marine hydrodynamics and wave-structure interaction. The process of wave break-
ing on a beach is one of the most common phenomena seen in nature. Wave breaking is responsible
for the wave energy dissipation and the generation of turbulence, vorticity and nearshore currents in
the surf zone. Over the last three decades, significant advances have been made in the theoretical,
experimental and numerical studies of the characteristics of breaking waves. Some excellent reviews
of breaking waves and wave mechanics can be found in [1–4].

Much of our knowledge of breaking waves comes from laboratory measurements. Several system-
atic studies have been done for steady breaking waves [5], quasi-steady breaking waves [6], unsteady
deep-water breaking waves [7–11] and breaking waves in the laboratory surf zone [12–14]. Overall,
with the development of measurement techniques, physical experiments have provided much insight
into the kinematics and dynamics of breaking waves. However, the process of wave breaking has not
yet been fully understood because of its complexity and experimental investigations still struggle to
provide the detailed flow field, especially during wave overturning in three dimensions. Moreover,
conducting physical experiments cost a lot of money and are also very time-consuming. Thus, a
variety of numerical studies, which are cost-effective and can provide the detailed flow field, act as
a complementary approach to study breaking waves.
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There are a variety of numerical simulations for breaking waves, such as the shallow water model
[15, 16], Boussinesq model [17] and fully nonlinear potential flow model [18–21]. Although the
depth-integrated models (shallow water and Boussinesq models) are widely used in modelling sur-
face wave propagation, they cannot capture the realistic wave breaking and overturning processes.
The fully nonlinear potential flow model, which is based on inviscid and irrotational assumptions, is
capable of simulating breaking waves and can provide insight into the kinematics and dynamics of
water waves during wave overturning. However, this model usually terminates before the plunging
jet touches down and cannot provide any information after wave breaking. With the development of
the numerical methods for the Navier–Stokes equations and free surface flows [22], several numeri-
cal studies have been performed to further our understanding of breaking waves, such as the steady
spilling breaker generated by submerged bodies [23–25], deep-water breaking waves [26–29] and
breaking waves in the surf zone [30–36]. In order to track or capture the interface, several tech-
niques have been developed, such as the marker-and-cell method [23, 33], surface tracking method
[24], volume of fluid (VOF) method [26, 28, 30–32, 37], level set method [27, 29] and the density
function method [34]. In addition, there are some meshless methods such as the moving particle
semi-implicit method [38] , smoothed particle hydrodynamics method [39–41], and Meshless Local
Petrov-Galerkin method based on Rankine source solution (MLPG_R) method [42]. It is worth men-
tioning that most models are based on one-phase flow, in which only the flow in water is considered
in the computation, the pressure in the air is taken as a constant, and the boundary conditions are
specified at the free surface. During wave breaking, these one-phase flow models may be inade-
quate to deal with the air entrainment and splash-up process. Additional complication arises in the
treatment of boundary conditions at the highly distorted free surface. Thus, in order to take the air
into account for wave breaking, recently, several two-phase flow models, in which both flows in
the air and water are solved, have been developed to study the details of breaking waves and the
air entrainment during wave breaking in deep water [26–29], breaking solitary waves on sloping
beaches [37] and breaking waves in the surf zone [35, 36]. From the discussion earlier, it is shown
that two-phase flow model is preferable to study the kinematics and dynamics of water waves during
wave breaking.

The objective of this paper is to study breaking waves in deep and shallow water, focusing on
the wave overturning and post-breaking processes. In this study, a two-phase flow model, which
solves the flow in the air and water simultaneously, has been developed for modelling breaking
waves and providing detailed phenomena during wave overturning. The model is based on the
Reynolds-averaged Navier–Stokes (RANS) equations with the k� � turbulence model. The govern-
ing equations are solved by the finite volume method in a Cartesian staggered grid and the partial
cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm [43] is
utilised for the pressure-velocity coupling and the air-water interface is modelled by the interface
capturing method via a high resolution VOF scheme developed by Ubbink [44].

The organisation of this paper is as follows. The description of the mathematical model for the
two-phase flow is described in § 2. The numerical method and implementation are presented in § 3.
The numerical model is validated by simulating overturning waves on a sloping beach and over a
reef, and deep-water breaking waves in a periodic domain in § 4. Finally, conclusions are drawn
in § 5.

2. MATHEMATICAL MODEL

2.1. Governing equations

The governing equations for incompressible Newtonian fluid flow are the RANS equations. Mass
conservation is described by the continuity equation

@�

@t
Cr � .�u/D 0, (1)

where � is the density, t is the time and uD .u,w/ is the velocity vector.
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If we assume that the fluid is incompressible (d�=dt D 0), then the continuity equation can be
simplified to

r � uD 0. (2)

The momentum conservation is expressed as

@.�u/

@t
Cr � .�u˝ u/D�rpCr � Œ.�C�t /.ruCr

Tu/�C �g, (3)

where p represents pressure, g the gravitational acceleration vector, � the dynamic viscosity of
the fluid, and �t D �C�k2=� is the turbulent eddy viscosity. k is turbulent kinetic energy and � is
turbulent eddy dissipation which are governed by the k � � turbulence model [45]

@.�k/

@t
Cr � .�uk/D r � Œ.�C

�t

�k
/rk�CPk � ��, (4)

@.��/

@t
Cr � .�u�/D r � Œ.�C

�t

��
/r��CC1�

�

k
Pk �C2��

�2

k
, (5)

where Pk D �t .@ui=@xj C @uj =@xi /
2=2 is the turbulent production term, and the empirical

coefficients C�, �k , �� , C1� and C2� are given in Table I.
The momentum equation is closed with the constitutive relations for the density and dynamic

viscosity of the fluid

�D F�wC .1�F /�a, (6)

�D F�wC .1�F /�a, (7)

where the superscripts w and a denote fluid water and air, respectively. F is the volume fraction
defined as

F D

²
1, if only water is present;
0, if only air is present.

(8)

The air-water interface is then within the cells where 0 < F < 1. A particle on surface stays on
surface and the volume fraction F has a zero material derivative

dF

dt
D
@F

@t
C u � rF D 0. (9)

These equations complete the mathematical description of the two-phase flow model.

2.2. Initial and boundary conditions

In order to completely describe the mathematical model, it is necessary to define the boundary
conditions in a computational domain. The no-slip boundary condition is imposed on the solid
boundary, and the law of the wall function is applied for the k � � turbulence model. For the outlet,
the zero-gradient boundary conditions are applied for the flow. As both fluids in the air and water are
solved simultaneously in the present two-phase flow model, the kinematic and dynamic free surface
boundary conditions are already implemented, and they do not need to be specified explicitly at the
air-water interface. The inlet boundary conditions are case-dependent. In general, the time history

Table I. Empirical coefficients in the
k � � turbulence model [45].

C� �k �� C1� C2�

0.09 1.0 1.3 1.44 1.92

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld



Z. XIE

of the velocity field and the volume fraction at the inlet are obtained from an analytical solution of
water waves. For the turbulence field, the method of Lin [46] is adopted here. The turbulent kinetic
energy is obtained as k D 1

2
.I �C/2, where C is the wave phase speed and I is the turbulent inten-

sity. The turbulent eddy dissipation � D �C�k2=.I� ��/ is adjusted, so the turbulent eddy viscosity
is I� times the dynamic viscosity of each fluid at the inlet. Unless stated otherwise I D 0.005 and
I� D 10 are used in this study.

In the computation, the initial flow field at t D 0 has to be prescribed. For calculations with the
fluids initially at rest, the flow field is initialised with zero velocity and hydrostatic pressure, and
the volume fraction is computed from the initial water depth. When the wave is initialised in the
computational domain, the water velocities and water surface are specified using the corresponding
analytical solution for water waves. The velocity in the air is initialised as zero in this case as little
is known about the flow in the air, and the pressure distribution in the whole domain is hydrostatic.

3. NUMERICAL METHOD

In order to solve the mathematical model proposed in the previous section, a numerical discretisa-
tion method is needed. There are several discretisation approaches for numerical solution of partial
differential equations, such as the finite difference method, finite element method, meshless meth-
ods, and the finite volume method (FVM). In this study, the FVM is used to discretise the governing
equations on a staggered Cartesian grid, which has the advantage of strong coupling between the
velocity and the pressure. Figure 1 shows a typical variable arrangement in a 2D Cartesian grid,
in which the velocities are located on the face centre of the control volume, and the pressure, all
other scalar variables and the volume fraction F are stored at the cell centre. P is the present node,
the upper-case letter E, W, N and S denote neighbouring nodes on the east, west, north and south
with respect to the central node P. The lower-case e, w, n and s denote the corresponding face of the
control volume, whereas c denotes the centre of the control volume.

3.1. Finite volume discretisation

In the FVM, also known as the control volume method, the whole domain is divided into a number
of control volumes, such that there is a control volume surrounding each grid point. The differential
equation is integrated over each control volume in order to derive the algebraic equation containing
the grid-point values of �, where � is the considered variable. The discretised equation expresses

p, F, k, ε
u

w

P EW

N

S

c ew

n

s

x

z

Figure 1. Variables used for the control volume (i,k) in a 2D staggered Cartesian grid. Velocities u(i,k) .F/
and w(i,k) .M/ are stored at the centre of the east and north face of the continuity control volume. Pressure
and other variables �(i,k) .ı/ are stored at the centre of the continuity control volume. The control volume

for velocities u (dotted line) and w (dashed line) are also shown.
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the conservation principle for a finite control volume, just as the differential equation expresses it
for an infinitesimal control volume. The FVM is conservative and can deal with complex geometries
[47, 48], thus it is especially suitable for modelling free surface flows because of the requirement of
mass conservation and the deformed interface, therefore it is adopted in the present study.

Consider a volume of fluid � that has an arbitrary domain, the surface of the control volume is S
and the unit outward normal vector to the face f is n. All the governing equations can be recast into
a general integral formulation as belowZ

�

@

@t
.��/d�C

Z
S

.�u � n/�dS D
Z
S

	
@�

@n
dS C

Z
�

QS
�d�, (10)

where � denotes the dependent variable, 	 is the viscosity and QS
� is the source term in the control

volume.
Table II shows the various values of �, 	 and QS

� in the general integral formulation to represent
the the Reynolds-averaged Navier–Stokes equations. It is noted that the final form of the continuity
Equation (2) used here is obtained under the assumption that the fluid is incompressible.

3.2. The complex geometry treatment in Cartesian grids

To deal with complex geometries in engineering applications, overlapping grids, boundary-fitted
grids and unstructured grids can be used. Unstructured grids provide great flexibility to conform
onto complex stationary or moving boundaries and can easily refine or coarsen meshes in a region
of the domain depending on the flow feature. However, they require additional computational efforts
and further complicate the algorithm implementation as there is no pre-define order of the control
volumes and their geometric layouts need to be calculated. Furthermore, generating high quality
boundary-fitted or unstructured grids is usually very cumbersome. Cartesian grid methods, which
can simulate flow with complex geometries on Cartesian grids, avoid these problems. The most pop-
ular methods are the immersed boundary method [49–52] and Cartesian cut cell method [53–58].
The primary advantage of the Cartesian grid method is that only little modification of the programme
on Cartesian grids is needed to account for the complex geometries. It also has the advantage of sim-
plified grid generation and simulating flow with moving boundaries because of the use of stationary,
nondeforming grids. The drawback of these methods is that implementing boundary conditions is
not straightforward and instability problems may occur in small cells when explicit schemes are
used. Thus, the cell-merging technique [59] and using slightly different control volumes [60] are
developed to avoid this instability, both of which effectively increase the size of the cut cell.

In this study, the partial cell treatment is used and a typical 
 function in a control volume, arises
from Fractional-Area-Volume Obstacle Representation method [61], is introduced in the finite vol-
ume discretisation. A similar approach can be found in [62] for simulating a moving body in free
surface flows. The 
 function is defined whose value is 1 for a point accessible to fluid and 0
for a point inside an obstacle. The average of this function over a control volume or cell face is
the fraction of the volume or area available to the flow. Figure 2 shows a typical cut cell in a 2D
Cartesian grid. It is worth mentioning that, in Lin’s work [62], the partial cell treatment is based
on the finite difference discretisation and an explicit scheme. However, in the present method, to

Table II. Values of �, 	 and QS
� in the general

integral formulation to represent the Reynolds-
averaged Navier–Stokes equations.

Equation � 	 QS
�

Continuity 1 0 0
Momentum u �C�t �rpC �g
k k �C �t

�k
Pk � ��

� � �C �t
��

C1�
�
k
Pk �C2��

�2

k
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Figure 2. 
 function for a typical cut cell in a 2D Cartesian grid, in which the length of the face is represented
as 
 ��x or 
 ��´, and the volume of the cell is represented by 
c ��x�´.

prevent the instability in small cells, an implicit scheme for time integration is employed for the
governing equations together with the finite volume discretisation.

In contrast to a full cell, the convective and diffusive fluxes at cell faces are modified in a cut cell,
which will be presented in the following discretisation.

3.3. Spatial discretisation

3.3.1. Convection term. The finite volume discretisation of the convection term is obtained as

QC
� D

Z
S

.�u � n/�dS D
X

f

.
A/f Œ.�u � n/��f

D
X

f

.�u � n
A/f�f (11)

D
X

f

mf�f,

where the subscript f denotes the corresponding face of the control volume, A is the area of the face
and m is the mass flux through the face

mD �u � n
A. (12)

In cut cells, the mass flux has also to be modified by the 
 function on the boundary. If 
 D 0,
there is no mass flux through the face and the convective flux is obtained as

mf D 0. (13)

The mass flux at the faces of the momentum control volume can be obtained by the interpolation
of values of � and u, such as mf D �fuf � n
fAf, however, the mass conservation in the momentum
control volume can be only guaranteed to the accuracy of the interpolation procedure [47]. Thus, in
this study, the mf is obtained from the interpolation of the mass fluxes, which is already available
at the faces of the continuity control volumes. The face value �f can be obtained from different
schemes and will be described in detail as follows.

First order upwind scheme
The upwind scheme implies that the convection is received from upstream and transmitted to the
next control volume downstream. In the first order upwind (FOU) scheme, the value of � on the

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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face of the control volume is taken by the constant extrapolation of the value of � at the grid point
of the donor cell, for example

�FOU
f D �D, (14)

where subscripts D, A, and U denote donor cell, acceptor cell and upwind cell, which is shown
in Figure 3.

If the first order upwind scheme is used, the convection term in the east face of the control volume
can be expressed as

me�e Dmax.me, 0/�P �max.�me, 0/�E. (15)

High order schemes
Among all the possible schemes, the first order upwind scheme has the best convergence prop-
erty, but the aim of other schemes is to improve the accuracy. Thus, when a high order scheme is
used, it is advantageous to also use the first order formulation, and the difference between the first
order upwind and the other scheme gives rise to an additional source term QH

� , used in the deferred
correction approach [47].

In the second order upwind (SOU) scheme, the value at the face of the control volume is obtained
by the linear extrapolation of the value of � at two upstream cells as

�SOU
f D

3

2
�D �

1

2
�U

D �DC
1

2
.�D � �U/ (16)

D �FOU
f C

1

2
.�D � �U/.

High resolution scheme
It is well known that unphysical wiggles (numerical oscillations) will appear in numerical simu-
lations with high order schemes under some circumstances. Thus, a high resolution scheme [48],
which combines the high order accuracy with monotonicity, is used in this study to discretise the
value at the face as

�f
HRS D �FOU

f C‰
�
r
�
f

� �
�SOU

f � �FOU
f

�
, (17)

in which ‰./ is the limiter function where the minmod limiter [63], which is one of the simplest
second-order Total Variation Diminishing schemes, is used here

‰.r/DmaxŒ0, min.r , 1/�. (18)

Similar results were obtained by using other limiter functions and a general review of various
limiter functions can be found in [64] and will not be presented here. r�f represents the ratio of
successive gradients of � on the solution mesh and obtained as

r
�
f D

�A � �D

�D � �U
. (19)

f

U D A
mf>0

UDA
mf<0

Figure 3. Notation of the cells for the interpolation at the face f: D, A and U denote donor cell, acceptor cell
and upwind cell, respectively.
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Discussion
The convection term plays an important role in numerical solution of the Navier–Stokes equa-
tions. For a two-phase flow model, the convection term can be discretised in two different ways:
conservative form and nonconservative form.

When nonconservative form is employed, the density in the centre of the control volume is used
and the mass flux on the face m0f can be obtained as

m0f D �c.u � n
A/f. (20)

As we assume that the velocity does not vary discontinuously near an interface, the resulting mass
flux is continuous in a control volume but discontinuous between the control volumes. Many people
used the nonconservative form as it is simple for numerical implementation. However, the noncon-
servative form will violate the rule for consistency at control volume faces proposed by Patankar
[43]:

Consistency at control volume faces: when a face is common to two adjacent control volumes, the
flux across it must be represented by the same expression in the discretisation equations for the two
control volumes.

For example on the east face of the control volume P, the mass flux is expressed as �P.u � n
A/e
when the control volume surrounding P is considered, and as �E.u �n
A/e when the control volume
surrounding E is considered. In the vicinity of the interface, the mass flux across the face between
the control volumes surrounding P and E will be inconsistent when �P ¤ �E.

Therefore, the conservative form for the mass flux

mf D .�u � n
A/f, (21)

is employed in this study.
In the available literature, the conservative form is used in a few two-phase flow models

[44, 65–68]. It is mentioned that special attention has to be paid in the discretisation of the con-
servative form of the convection term, otherwise, high and irregular velocities near the interface can
sometimes destroy the solution [69], and one way to overcome this is to use the nonconservative
form of the convection term [70]. In addition, special attention should be paid to the discretisation
of the body force, otherwise non-physical velocities will be generated for the quiescent fluid [71,72].

The idea of consistency between mass and momentum conservation has been proposed in the con-
servative form [44, 67, 68]. For collocated grids, Ubbink [44] used the face value for Ff calculated
from the VOF equation to obtain the mass flux for the momentum equation, whereas Bussmann
[68] explicitly calculated the exact mass flux based on the volume tracking method. It is not easy
to calculate consistent mass fluxes across cell faces for a staggered grid, Rudman [67] introduced a
twice-as-fine sub-mesh nested within the underlying solver mesh for mass convection, in order to
overlap the control volumes for the mass and momentum to get the consistency. Rudman [67] used
the explicit scheme for the momentum equation and calculated the mass fluxes based on the volume
fraction that was obtained from the Youngs’ VOF method [73]. However, it is not clear yet how to
deal with this consistency in a single staggered grid if the mass flux is not calculated based on the
explicit interface advection (such as surface capturing methods) and especially when the implicit
scheme is employed for the momentum equation.

It is worth remarking that the mass flux is discontinuous in a control volume in the conservative
form because of the density variation between the cell face and cell centre (here the mass flux at
the cell centre means the mass flux taken its corresponding values at the centre point). Sometimes,
the combination of the conservative form and the high resolution scheme may lead to some conver-
gence problems in the simulation. Thus, a step function for the mass flux is introduced to the high
resolution scheme to get more robust and accurate solution as

�f
HRS D �FOU

f Cˆ
�
rmf
�
‰
�
r
�
f

� �
�SOU

f � �FOU
f

�
, (22)

where ˆ./ is the step function and rmf is the variation for the mass which is defined as the ratio of
the mass flux between the conservative and nonconservative form
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rmf D
mf

m0f
. (23)

The step function ˆ./ takes the form

ˆ.r/D

²
1, if jr j6 1;
0, otherwise,

(24)

which means that the present high resolution scheme switches to the first order upwind scheme
when the density on the cell face is larger than the density in the cell centre.

3.3.2. Diffusion term. The finite volume discretisation of the diffusion term is obtained as

QD
� D

Z
S

	
@�

@n
dS D

X
f

	f
@�

@n
.
A/f, (25)

where the viscosity on the face is obtained by the harmonic mean [43], for example, on the east face

	e D
	P	E

�e	PC .1� �e/	E
, (26)

where œe D jeEj=jPEj. Analogous expressions can be derived for all other faces (fDw, n, s) by
making appropriate index substitutions and will not be shown here.

The gradient at the face is calculated by the finite difference approach as

@�

@n
D
�nb � �P

�Pnb
, (27)

where �Pnb is the distance from the present point P to the neighbouring point nb.
When the control volume is a cut cell, special attention has to be paid to the spatial discretisation.

When the face of a momentum control volume is on the wall, the diffusion flux is obtained asZ
S

	
@�

@n
dS D

X
f

	f
@�

@n
.
A/fC 
wŒ.1� 
/A�f, (28)

where @�
@n

is calculated by the finite difference approach in Equation (27) and 
w is the shear stress
on the face of the control volume. For example, in the case of the control volume for u momentum
equation in 2D (see Figure 4), the shear stress on the south face is


w D�	s
uP � usolid

0.5.
u�´/
, (29)

where usolid is the velocity on the solid boundary.

3.3.3. Source term.

Source term linearisation
When the source term QS

� is a function of �, then there are many ways in which the QS0
� and QS1

�

can be chosen to satisfy

QS
� DQ

S0
� CQ

S1
� �, QS1

� < 0. (30)

The term in QS
� without � goes into the term QS0

� . The term that includes � is modified as QS1
� �

providedQS1
� < 0 is satisfied, otherwise, it goes into the termQS0

� . The advantage of this way is that
once substituting the discretised source term into the governing equation, the term QS1

� � may be
moved to left-hand side of the equation, yields an equation that has a stronger diagonal dominance,
and therefore a better and faster rate of convergence will be achieved [43].
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)Δx
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u

Figure 4. Boundary treatment in a cut cell for the u momentum equation in 2D Cartesian grid.

Pressure term
The finite volume discretisation of the pressure term is obtained as

Q
p
� D

Z
�

�rpd�D�rp
c�, (31)

and the pressure gradient is calculated as

rp D

�
@p

@x
,
@p

@´

�

D

�
pe � pw

�x
,
pn � ps

�´

�
.

(32)

Body force term
The finite volume discretisation of the body force term is obtained as

QB
� D

Z
�

�gd�D �cg
c�, (33)

where the value in the centre of the control volume is obtained by the volume averaging of two
values on the face of the control volume.

3.4. Temporal discretisation

A backward finite difference is used for the time derivative, which leads to an implicit scheme for
the governing equations

QT
� D

Z
�

@

@t
.��/d�D

�nC1c �nC1 � �nc �
n

�t

c�, (34)

where �t is the time step and the superscripts nC 1 and n mean the value in current and previous
time step, respectively. The implicit scheme has the advantage of unconditional stability and thus
can prevent the instability problem in small cut cells.

3.5. General form of the discretisation

Substituting all the above discretised terms into Equation (10) and subtracting the continuity
Equation (1) multiplied by �nC1P , leads to

a
�
P�

nC1
P D

X
a
�
nb�

nC1
nb C b

�
P , (35)
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where a� is the coefficient, the subscripts P and nb=E,W,N,S denote the variables in the present and
neighbouring cells, respectively and b�P is the source term.

In nonlinear problems, it is often desirable to slow down the change in the predicted change of
the dependent variable and in such circumstances under-relaxation [43] is used, thus Equation (35)
may be written as

�nC1P D �0P C ˛�

 P
a
�
nb�

nC1
nb C b

�
P

a
�
P

� �0P

!
, (36)

or

a
�
P

˛�
�nC1P D

X
a
�
nb�

nC1
nb C b

�
P C

1� ˛�

˛�
�0P , (37)

where �0P is the value from the previous iteration and 0 < ˛� < 1 is the under-relaxation factor.
There are no general rules for choosing the best value for the under-relaxation factor [43], thus from
our experience ˛� D 0.7 is used in this study.

The coefficients depend on the approximations used and the first order upwind scheme is used in
this study as the basis of the formulation, high resolution scheme is implemented using the deferred
correction method via source term QH

� [47]. For example, the coefficients for momentum equation
� D u,w are

a
�
nb Dmax.�m�f , 0/C

	f.
A/f

�Pnb
,

a
�
P D

�nc 
c�

�t
C
X

nb

a
�
nb, (38)

b
�
P DQ

p
� CQ

B
� C

�nc 
c�

�t
�nP CQ

H
� .

The algebraic equations are solved by the Alternating Direction Implicit method with Tridiagonal
Matrix Algorithm or Bi-Conjugate Gradients Stablized Method [74] in this study.

3.6. Pressure-velocity coupling

In the incompressible Navier–Stokes equations, pressure and velocity are decoupled as the pressure
term does not appear in the continuity equation. For some numerical discretisations this may cause
convergence problems. However, when a staggered mesh is used, as in this work, coupling occurs as
a result of the discretisation, as velocity updates on cell faces contain pressure terms. In this study,
the SIMPLE algorithm [43] is employed for the pressure-velocity coupling, and more details can
be found in [75]. SIMPLE algorithm is used to calculate the corrected pressure and after solving
the pressure correction equation, the updated pressure and velocity are added by the pressure and
velocity correction terms, respectively.

3.7. Volume of Fluid scheme for interface capturing

A key requirement for modelling two-phase flow is a method of calculating the shape of the inter-
face. Numerous methods have been proposed and used for the simulation of interfacial flows.
However, the VOF method for tracking the interface is one of the most popular approaches because
of its advantages: mass conservation, computational efficiency and easy implementation. From
a general point of view, there are two classes of algorithms to solve the F transport Equation
(9): algebraic and geometric computation [76]. Excellent reviews on the VOF methods can be found
in [22, 76].

Considering the advantages of the VOF method and efficiency in algebraic computation, the high
resolution VOF scheme Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)
is employed in this study to capture the air-water interface for breaking waves. CICSAM is a high
resolution scheme based on the normalised variable diagram used by Leonard [77]. It contains two
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high resolution schemes, and the weighting factor is based on the angle between the interface and
the direction of motion. An outline of CICSAM is given below. Refer to [44] for the details.

The normalised variable QF is defined as

QF D
F �FU

FA �FU
, (39)

where the subscript A indicates the acceptor and U the upwind cell. The Hyper-C scheme [77],
which follows the upper bound of the convection boundedness criteria (CBC) is used as it is highly
compressive and can convert a smooth gradient into a sharp step.

QFfCBC D

8̂<
:̂

min

´
1,
QFD

cD

μ
, when 06 QFD 6 1

QFD, when QFD < 0, QFD > 1

(40)

where subscript D indicates donor cell, cD D
P

f max
°
�Vf�t
�D

, 0
±

is the Courant number of the

donor cell and Vf is the volumetric flux. However, the Hyper-C scheme is inadequate to preserve
the shape of an interface that lies tangentially to the flow direction. Thus CICSAM switches to the
ULTIMATE-QUICKEST (UQ) scheme [77]

QFfUQ D

8̂<
:̂

min

´
8cD QFDC .1� cD/.6 QFDC 3/

8
, QFfCBC

μ
, when 06 QFD 6 1

QFD, when QFD < 0, QFD > 1

(41)

in this case.
Thus, depending on the angle between the interface and the flow, CICSAM combines these two

schemes, then

QFf D �f QFfCBC C .1� �f/ QFfUQ , (42)

in which the weighting factor is given as

�f Dmin

²
k�

cos.2˛� /C 1

2
, 1

³
, (43)

where k� is a constant introduced to control the dominance of the different schemes and the recom-
mended value is k� D 1, ˛� is the angle between the vector normal to the interface and the vector
that convects the centres of donor and acceptor cells.

The final expression for the face value of F is

Ff D .1� ˇf/FDC ˇfFA, (44)

where the weight factor ˇf is obtained by

ˇf D
QFf � QFD

1� QFD
. (45)

It is noted that the normalised variable in Equation (39) will be divided by zero if the volume
fraction F has the same value in the acceptor and upwind cell. In the numerical implementation, the
numerator and denominator of the weighting factor in Equation (45) are multiplied by .FA � FU/,
resulting a modified expression of the normalised variable on the face (not shown here), to avoid the
singularity in the computation.
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4. RESULTS AND DISCUSSION

4.1. Breaking waves on a sloping beach

In this section, we simulate a two-dimensional overturning solitary wave and compare both quanti-
tatively and qualitatively with the experiment [78] for a breaking solitary wave splash-up on a 1:15
sloping beach. A number of different numerical methods have been developed to study this problem,
such as the boundary element method (BEM) [20], coupling of BEM and VOF methods [79, 80],
Corrected Incompressible Smoothed Particle Hydrodynamics method [41] and MLPG_R method
[42].

In the simulation, the computational setup is the same as the laboratory setup except that we
use the analytical solution to generate the solitary wave at the inlet. The schematic of the run-up
of a breaking solitary wave is shown in Figure 5, where the origin of the coordinate system is on
the still water level above the toe of the beach, x and ´ are the horizontal and vertical coordi-
nates, respectively, D is the still water depth, H is the solitary wave height. The slope of the beach
tan.ˇ/ D 1 W 15, the still water depth is D D 0.3048 m, and we calculate the case for the incident
solitary wave with the ratio of wave height to still water depth, H=D D 0.45. The computational
domain starts from the toe of the beach and extends to the location beyond the maximum run-up
point 18.75D. The height of the computational domain is 1.75D, and it is discretised by a 1800�140
nonuniform grid with minimum meshes�x=D D 0.005 and�´=D D 0.005 in the breaking region.
At the inlet, the solitary wave is generated by giving the water surface profile and the water particle
velocities based on the analytical solution [81] as

�.x, t /DH sech2
"r

3H

4D3
X

#
,

X D x�Ct�xL, (46)
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The no-slip wall boundary condition is applied at the sloping beach and zero-gradient boundary
conditions are applied at the top and outlet of the computational domain.

In Figure 6, the profiles of the overturning wave are quantitatively compared with the experimen-
tal data [78] at t

p
g=D D 9.29, 9.87, 10.35, 10.73 along with the recently published results of [42]

using the MLPG_R method. At t
p
g=D D 9.29 before wave breaking, it can be seen that the wave

crest becomes steep because of the shoaling effect. At t
p
g=D D 9.87 during wave breaking, the

wave has passed the breaking point, which is defined as when the front of the wave becomes verti-
cal and starts to overturn. At t

p
g=D D 10.35 during wave overturning, a plunging jet is formed in

front of the wave. At t
p
g=D D 10.73 during wave curling down, the plunging jet will impinge the

water surface ahead and generate the splash-up. It can be seen from Figure 6 that the computational

x/D

z/
D

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

slope 1:15 

x
z H/D=0.45

Figure 5. Schematic of an incident H=D D 0.45 solitary wave breaking on a 1:15 sloping beach
(not scaled).
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Figure 6. Quantitative comparison of wave surface profiles during wave overturning on a sloping beach for
H=D D 0.45. Blue solid line, present results; red circles, experimental data [78]; black dashed line, results

obtained by the MLPG_R method [42].

results agree well with experimental measurements and MLPG_R results in terms of the wave shape
and location before wave curling down, and there is only a slight difference in the size of the cavity
enclosed by the plunging jet. The slight discrepancy may be caused by the solitary wave at the inlet
generated from the analytical solution differing slightly from the experiment [82].

A detailed comparison of the plunging jet, at the time of jet impingement, with the experimental
and the BEM results are shown in Figure 7. Both numerical results (VOF and BEM) agree reason-
ably with experimental data. The slight difference is that the jet obtained from the VOF model has a
similar size to that obtained from the BEM model and both are thicker than their experimental coun-
terpart as discussed in [83]. Nevertheless, because the numerical model cannot get the exact initial
condition used in the experiment, any small difference will lead to the change of the plunging jet,
thus we do not expect to match everything between the experiment and computation. In an overall
sense, the present code well predicts the overturning wave and a good agreement with experimental
data is obtained.

The overturning jet of breaking waves has been investigated mathematically in [84–86]. New
[85] has found that a certain section of the wave profile beneath overturning waves, in both deep
and shallow water, can be closely approximated by a

p
3 aspect-ratio ellipse. The best fitted

p
3

aspect-ratio ellipse for the curve beneath the plunging jet obtained from the present model is also
shown in Figure 7 with �30ı orientation relative to the x direction. It can be seen that the plunging
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Figure 7. Detailed comparison of the plunging jet. Blue solid line, present results; red circles, experimental
data [78]; black dashed line, profile at t

p
g=D D 10.73 obtained by the Boundary Element Method [20];

green dash-dotted line is a
p
3 aspect-ratio ellipse.

jet follows New’s theory, and similar results have also been observed for deep-water breaking waves
in the numerical simulations in [26, 27].

To investigate the convergence of the method, another two sets of mesh, a coarse mesh (900�90)
with minimum meshes �x=D D 0.01 and �´=D D 0.01 and a fine mesh (2600 � 240) with
minimum meshes �x=D D 0.0025 and �´=D D 0.0025, are used to simulate the overturning
wave. The comparison of the profiles of the overturning wave is shown in Figure 8. It is found
that the results are convergent, and grid-independent results are obtained for the medium and fine
meshes. The finer mesh produces sharper plunging jet during wave overturning, but it requires more
computational effort.

Figure 9 shows the velocity fields for both air and water during wave overturning. At t
p
g=D D

9.29 before wave breaking, the wave becomes steep, and the velocity in the water increases from
the bottom to the water surface. The velocity and the water surface profile all suggest the wave is
in the pre-breaking region, which is classified as u < C before wave breaking. At t

p
g=D D 9.87
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Figure 8. Comparison of the profiles of the overturning wave obtained by different meshes. Coarse mesh
(900 � 90), black dashed line; medium mesh (1800 � 140), blue solid line; fine mesh (2600 � 240), red

dotted line.
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Figure 9. Velocity fields during wave overturning on a sloping beach. Velocities are normalised by the wave
phase speed C , and the colour bar represents the magnitude of the velocity.

during wave breaking, the maximum velocity in the water is greater than the phase speed C , is
nearly horizontal and is located at the front face of the wave. Large velocity vectors are produced in
the air ahead of the front face of the wave because of the pushing of the wave. At t

p
g=D D 9.87

during wave overturning, the velocity in the plunging jet increases. At t
p
g=D D 10.73 during

wave curling down, the maximum velocity in the water is located at the tip of the plunging jet and
large velocities beneath the plunging jet are observed as the entrapped air tries to escape from the
enclosed cavity. It is worth noting that the air above the crest of the wave tries to follow the water
surface and the recirculation of air can be clearly observed above the wave crest during wave break-
ing. These results are more detailed than the experimental measurements [78] which cannot give
velocities there. They are physically realistic so support the model to simulate breaking waves.

It is noted that numerical results are only presented up to the breaking process in Figure 6
because the measured water surface profiles are not available after the wave touches down for
the case (H=D D 0.45). In order to show the capability of the present model in simulating wave
post-breaking and subsequent splash-up processes, the case for the breaking solitary wave with
H=D D 0.4 is computed with the same above mentioned computational setup, and quantitatively
compared with the laboratory photographs [78,87] in Figure 10. It can be seen that the development
of plunging jet, jet impingement and generation of splash-up are reproduced in the simulation, which
reasonably agree with the experimental measurements. However, there is a discrepancy between
the simulation and experiment for the enclosed cavity and the secondary jet generated during the
splash-up process. This is attributed to the strong two-phase flow mixing and the generation of small
bubbles during the splash-up process, which is difficult to be simulated in the present model.

4.2. Breaking waves over a reef

It is worth pointing out that several researchers in [88] have used the overturning of a solitary wave
over a reef [89] to validate their models, in which only the time series of water surface profiles at

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld



NUMERICAL STUDY OF BREAKING WAVES

(Nb) (Nc)

(Ne) (Nf) (Ng) (Nh)

(Na) (Nd)

Figure 10. Qualitative comparison of numerical snapshots (Na-Nh) with laboratory photographs (a-h)
[78, 87] (With permission from ASCE) for H=D D 0.4.

fixed gauges are compared against experimental data. In order to compare the model with others,
we present our numerical results here for completeness.

We use a similar computational setup to [88]. The detail of the experimental setup can be found
in [89]. The schematic of the overturning of a solitary wave over a reef is shown in Figure 11, where
the origin of the coordinate system is on the still water level above the toe of the reef, x and ´ are the
horizontal and vertical coordinates, respectively.D D 0.31m is the still water depth,H D 0.1314m
is the solitary wave height, RD 0.263 m is the height of the reef. The computational domain is 6 m
long and 0.8 m high, and it is discretised by a 1500� 200 uniform grid. The no-slip boundary con-
ditions are used for all boundaries, and the solitary wave is initialised similar to that in the previous
section, but the centre is located at x D�2 m.

Figure 12 shows the comparison of wave elevations between numerical results and experimental
data for the wave gauges P2-P4. At gauge P2 (x D 0 m), the wave profile is similar to the ini-
tial solitary wave, but the wave steepness is higher than that for the initial wave (H=D D 0.424).
When the wave propagates on the reef, the wave profile becomes asymmetrical (see from P3 and
P4) and the front of the wave becomes steeper during wave breaking. It is shown that the computed
water surface profiles agree well with the experimental measurements [89], and similar to the results
obtained in previous numerical studies [42, 88].

At the beginning of the solitary wave propagating towards the reef, there is little change in the
wave shape. As the solitary wave approaches the toe of the reef, a small part of the wave is reflected
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Figure 11. Schematic of the overturning of a solitary wave over a reef.
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back, whereas the main part of the wave propagates on the reef. Because the top of the wave moves
faster than the bottom of the wave, the front of the wave is steepened, and the wave starts to over-
turn. Figure 13 shows the evolution of water surface profiles during wave overturning. At the onset
of wave breaking (t D 1.2 s), the wave front becomes near vertical. The plunging jet is observed dur-
ing wave overturning (t D 1.3 s and t D 1.4 s). The plunging jet impinges the water surface ahead to
generate the secondary jet (t D 1.6 s) and the jet-splash cycles are developed afterwards (t D 1.8 s).
The wave profiles at the breaking point and the jet-fall initiation, measured with a high-speed video

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

0

0.1

0.2

0.3

0.4

0.5
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t (s)

η/
D

Figure 12. Comparison of wave elevations between numerical results (lines) and experimental data (marks).
Wave gauges P2 (red), P3 (blue) and P4 (black). As the wave starts at a different location between the
experiment and calculation, all experimental data are shifted with a same period of time to match the wave

elevation in the first gauge P2.
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Figure 13. The evolution of water surface profiles during wave overturning over a reef. The experimental
water surface profiles measured with the high-speed video camera during the overturning process are plotted
in red lines (only two profiles at the breaking point and jet fall initiation are available in the experiment [89]).
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camera in [89], are plotted in Figure 13 as well for comparison. It is noted that the shape of the
computed wave profiles reasonably agree with the experimental measurements, however, there is a
phase shift between the numerical results and experimental data, which has also been observed in
[90]. This might be attributed to the small domain used in the simulation, whereas a much longer
domain was used in the experiment. Overall, the present model is capable of simulating the wave
overturning, air entrainment and splash-up processes.

4.3. Breaking waves in deep water

Several numerical studies of deep-water breaking waves have been done in the past
[26, 27, 29, 90, 91]. In these studies, a steep Stokes wave, which leads to a plunging breaker, was
simulated in a periodic space domain. The same computational setup in [26, 29] is used here and
the schematic of deep-water breaking waves is shown in Figure 14, where the wavelength (L) is
taken as a reference length and D=L D 0.5. The computational domain is one wavelength wide
and one wavelength high, that is x=L, ´=L 2 Œ�0.5, 0.5�, and is discretised by a 256� 256 uniform
grid. Periodic boundary conditions are imposed at the inlet and outlet of the computational domain,
where the wave moves out of the right of the domain and will reenter from the left. No-slip boundary
conditions are applied at the bottom and top of the domain. At t D 0, the water surface profile and
water particle velocities for the Stokes wave are initialised as

�.x, 0/D
a

L

�
cos .kwx/C

1

2
� cos .2kwx/C

3

8
�2 cos .3kwx/

�
,

u.x, ´, 0/D a
p
gkw.1C �2/exp.kwy/ cos.kwx/, (47)

w.x, ´, 0/D a
p
gkw.1C �2/exp.kwy/ sin.kwx/,

in which a is the wave amplitude, kw D 2�=L is the wavenumber, � D akw is the wave steepness
and � D 0.55 is considered here.

Figure 15 shows the space-time evolution of water surface profiles during wave breaking. It can
be seen that the front of the wave is steepened during wave propagation, a plunging breaker is devel-
oped when the wave reenters the domain from the left (x=L D �0.5). The plunging jet impinges
the water surface ahead, and jet-splash cycles are observed afterwards, similar to overturning waves
in shallow water (see Figure 10 and Figure 13). It is shown that the deep-water breaking waves are
captured by the present model and similar to previous published results.
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Figure 14. Schematic of breaking waves in deep water.
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Figure 15. The space-time evolution of water surface profiles during wave breaking in deep water. For the
sake of clarity, the numerical results are also mapped into the interval x 2 Œ0.5, 1.5�.

5. CONCLUSIONS

In this study, a two-phase flow model has been developed for investigating breaking waves in both
deep and shallow water, focusing on the wave overturning and post-breaking processes. The model
is based on the RANS equations with the k�� turbulence model. The finite volume method is utilised
to discretise spatial derivatives and a backward finite difference discretisation was used for the time
derivative, which lead to an implicit scheme for the governing equations. The SIMPLE algorithm
is employed for the pressure-velocity coupling, the Cartesian cut-cell method is implemented to
deal with complex geometries, and the air-water interface was captured by the high resolution VOF
scheme CICSAM.

In order to validate the model, overturning waves on a sloping beach and over a reef were com-
puted and compared with available experimental data. It is shown that good agreement between
numerical simulations and experimental measurements for the water surface profiles was obtained
using the two-phase flow model presented here. Furthermore, deep-water breaking waves in a peri-
odic domain was simulated and similar results were obtained with previous studies. The overturning
jet, air entrainment and splash-up during wave breaking have been captured by the two-phase flow
model, which demonstrates the capability of the model to simulate free surface flow and wave
breaking problems.

Although only two-dimensional (2D) wave breaking over simple geometries (sloping beach and
reef) is considered here, this study should be regarded as a first step towards better understanding
of the kinematics and dynamics of breaking waves. Because of complex processes during wave
breaking, much future effort should be devoted to further this study. One aspect is to extend this
model for more realistic three-dimensional (3D) breaking waves, in which the generation of tur-
bulence and vortex structures are different from that in 2D breaking waves. Compared with the
2D case, the spanwise variation of the wave during propagation can be taken into account in the
3D simulation, which would better represent the actual wave breaking process seen in nature. The
3D wave profile could be observed during the wave breaking process, in which the wave can break
first at some points and continue with spreading laterally. The flow field may become more obvi-
ously three-dimensional especially during air entrainment and jet-splash cycles after wave breaking.
Furthermore, the generation of obliquely descending eddies could be observed in the 3D simulation.
Another aspect is to investigate breaking waves over more complex topography, such as convex and
concave coastlines. Water waves change their direction during wave propagation because of wave
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refraction and diffraction over a varying bathymetry. As the waves shoal in shallow water, fully
3D breaking waves develop and earlier or later wave breaking will be observed at different lateral
locations depending on the local wave steepness. Studies on these two aspects, which will improve
our understanding of the characteristics of 3D breaking waves, are currently underway and will be
reported in the near future.

ACKNOWLEDGEMENTS

The author would like to acknowledge the financial support by the Marie Curie EST fellowship for his PhD
study at the University of Leeds. Drs Xianyun Wen and Andrew N. Ross are greatly appreciated for their
guidance and advice. Special thanks are due to Dr Matthew Hubbard and Prof. Peter Jimack for providing
useful comments and suggestions. Invaluable comments from anonymous reviewers for the improvement of
the manuscript are also gratefully acknowledged.

REFERENCES

1. Peregrine DH. Breaking waves on beaches. Annual Review of Fluid Mechanics 1983; 15:149–178.
2. Banner ML, Peregrine DH. Wave breaking in deep-water. Annual Review of Fluid Mechanics 1993; 25:373–397.
3. Battjes JA. Surf-zone dynamics. Annual Review of Fluid Mechanics 1988; 20:257–293.
4. Mei CC, Liu PLF. Surface-waves and coastal dynamics. Annual Review of Fluid Mechanics 1993; 25:215–240.
5. Duncan JH. The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. Journal of Fluid

Mechanics 1983; 126:507–520.
6. Lin JC, Rockwell D. Evolution of a quasi-steady breaking wave. Journal of Fluid Mechanics 1995; 302:29–44.
7. Bonmarin P. Geometric-properties of deep-water breaking waves. Journal of Fluid Mechanics 1989; 209:405–433.
8. Rapp RJ, Melville WK. Laboratory measurements of deep-water breaking waves. Philosophical Transactions of the

Royal Society of London Series A-Mathematical Physical and Engineering Sciences 1990; 331(1622):735–800.
9. Perlin M, He JH, Bernal LP. An experimental study of deep water plunging breakers. Physics of Fluids 1996;

8(9):2365–2374.
10. Tulin MP, Waseda T. Laboratory observations of wave group evolution, including breaking effects. Journal of Fluid

Mechanics 1999; 378:197–232.
11. Melville WK, Veron F, White CJ. The velocity field under breaking waves: coherent structures and turbulence.

Journal of Fluid Mechanics 2002; 454:203–233.
12. Nadaoka K, Hino M, Koyano Y. Structure of the turbulent-flow field under breaking waves in the surf zone. Journal

of Fluid Mechanics 1989; 204:359–387.
13. Ting FCK, Kirby JT. Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering 1994;

24(1-2):51–80.
14. Kimmoun O, Branger H. A particle image velocimetry investigation on laboratory surf-zone breaking waves over a

sloping beach. Journal of Fluid Mechanics 2007; 588:353–397.
15. Titov VV, Synolakis CE. Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2.

Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE 1995; 121(6):308–316.
16. Li Y, Raichlen F. Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics 2002; 456:295–318.
17. Zelt JA. The run-up of nonbreaking and breaking solitary waves. Coastal Engineering 1991; 15(3):205–246.
18. Longuet-Higgins MS, Cokelet ED. The deformation of steep surface-waves on water. Part 1. Numerical method of

computation. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences
1976; 350(1660):1–26.

19. Dommermuth DG, Yue DKP, Lin WM, Rapp RJ, Chan ES, Melville WK. Deep-water plunging breakers - a
comparison between potential-theory and experiments. Journal of Fluid Mechanics 1988; 189:423–442.

20. Grilli ST, Svendsen IA, Subramanya R. Breaking criterion and characteristics for solitary waves on slopes. Journal
of Waterway, Port, Coastal, and Ocean Engineering-ASCE 1997; 123(3):102–112.

21. Yan S, Ma QW. QALE-FEM for modelling 3D overturning waves. International Journal for Numerical Methods in
Fluids 2010; 63(6):743–768.

22. Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid
Mechanics 1999; 31:567–603.

23. Miyata H. Finite-difference simulation of breaking waves. Journal of Computational Physics 1986; 65(1):179–214.
24. Rhee SH, Stern F. RANS model for spilling breaking waves. Journal of Fluids Engineering-Transactions of the

ASME 2002; 124(2):424–432.
25. Iafrati A, Campana EF. Free-surface fluctuations behind microbreakers: space-time behaviour and subsurface flow

field. Journal of Fluid Mechanics 2005; 529:311–347.
26. Chen G, Kharif C, Zaleski S, Li J. Two-dimensional Navier-Stokes simulation of breaking waves. Physics of Fluids

1999; 11(1):121–133.
27. Hendrickson KL. Navier-Stokes simulation of steep breaking water waves with a coupled air-water interface. Ph.D.

Thesis, Massachusetts Institute of Technology, 2005.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld



Z. XIE

28. Lubin P, Vincent S, Abadie S, Caltagirone JP. Three-dimensional large eddy simulation of air entrainment under
plunging breaking waves. Coastal Engineering 2006; 53(8):631–655.

29. Iafrati A. Numerical study of the effects of the breaking intensity on wave breaking flows. Journal of Fluid Mechanics
2009; 622:371–411.

30. Lin P, Liu PLF. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 1998;
359:239–264.

31. Bradford SF. Numerical simulation of surf zone dynamics. Journal of Waterway, Port, Coastal, and Ocean
Engineering-ASCE 2000; 126(1):1–13.

32. Zhao Q, Armfield S, Tanimoto K. Numerical simulation of breaking waves by a multi-scale turbulence model.
Coastal Engineering 2004; 51(1):53–80.

33. Christensen ED, Deigaard R. Large eddy simulation of breaking waves. Coastal Engineering 2001; 42(1):53–86.
34. Watanabe Y, Saeki H, Hosking RJ. Three-dimensional vortex structures under breaking waves. Journal of Fluid

Mechanics 2005; 545:291–328.
35. Hieu PD, Katsutohi T, Ca VT. Numerical simulation of breaking waves using a two-phase flow model. Applied

Mathematical Modelling 2004; 28(11):983–1005.
36. Wang Z, Zou Q, Reeve DE. Simulation of spilling breaking waves using a two phase flow CFD model. Computers &

Fluids 2009; 38(10):1995–2005.
37. Guignard S, Marcer R, Rey V, Kharif C, Fraunie P. Solitary wave breaking on sloping beaches: 2-D two phase flow

numerical simulation by SL-VOF method. European Journal of Mechanics B-Fluids 2001; 20(1):57–74.
38. Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method.

International Journal for Numerical Methods in Fluids 1998; 26(7):751–769.
39. Shao SD. Simulation of breaking wave by SPH method coupled with k-� model. Journal of Hydraulic Research

2006; 44(3):338–349.
40. Dalrymple RA, Rogers BD. Numerical modeling of water waves with the SPH method. Coastal Engineering 2006;

53(2-3):141–147.
41. Khayyer A, Gotoh H, Shao SD. Corrected incompressible SPH method for accurate water-surface tracking in

breaking waves. Coastal Engineering 2008; 55(3):236–250.
42. Ma QW, Zhou JT. MLPG_R method for numerical simulation of 2D breaking waves. CMES-Computer Modeling in

Engineering and Sciences 2009; 43(3):277–303.
43. Patankar SV. Numerical heat transfer and fluid flow. Taylor & Francis,: London, 1980.
44. Ubbink O. Numerical prediction of two fluid systems with sharp interfaces. Ph.D. Thesis, Imperial College of

Science, Technology and Medicine, 1997.
45. Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics

and Engineering 1974; 3(2):269–289.
46. Lin P. Numerical modeling of breaking waves. Ph.D. Thesis, Cornell University, 1998.
47. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics (3rd rev. edn). Springer: Berlin, 2002.
48. Hirsch C. Numerical Computation of Internal and External Flows Introduction to the Fundamentals of CFD (New

edn.) Butterworth-Heinemann: Oxford, 2007.
49. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed-boundary finite-difference methods for

three-dimensional complex flow simulations. Journal of Computational Physics 2000; 161(1):35–60.
50. Tseng YH, Ferziger JH. A ghost-cell immersed boundary method for flow in complex geometry. Journal of

Computational Physics 2003; 192(2):593–623.
51. Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy

simulations. Computers & Fluids 2004; 33(3):375–404.
52. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239–261.
53. Udaykumar HS, Shyy W, Rao MM. ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex

and moving boundaries. International Journal for Numerical Methods in Fluids 1996; 22(8):691–712.
54. Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate Cartesian grid method for viscous incompressible flows with

complex immersed boundaries. Journal of Computational Physics 1999; 156(2):209–240.
55. Tucker PG, Pan Z. A Cartesian cut cell method for incompressible viscous flow. Applied Mathematical Modelling

2000; 24(8-9):591–606.
56. Ingram DM, Causon DM, Mingham CG. Developments in Cartesian cut cell methods. Mathematics and Computers

in Simulation 2003; 61(3-6):561–572.
57. Kirkpatrick MP, Armfield SW, Kent JH. A representation of curved boundaries for the solution of the Navier-Stokes

equations on a staggered three-dimensional Cartesian grid. Journal of Computational Physics 2003; 184(1):1–36.
58. Chung MH. Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape.

Computers & Fluids 2006; 35(6):607–623.
59. Causon DM, Ingram DM, Mingham CG, Yang G, Pearson RV. Calculation of shallow water flows using a Cartesian

cut cell approach. Advances in Water Resources 2000; 23(5):545–562.
60. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B. A Volume-of-Fluid based simulation method

for wave impact problems. Journal of Computational Physics 2005; 206(1):363–393.
61. Torrey MD, Cloutman LD, Mjolsness RC, Hirt CW. NASA-VOF2D: a computer program for incompressible flows

with free surfaces. Technical Report LA-10612-MS, Los Alamos Scientific Laboratory, 1985.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld



NUMERICAL STUDY OF BREAKING WAVES

62. Lin P. A fixed-grid model for simulation of a moving body in free surface flows. Computers & Fluids 2007;
36(3):549–561.

63. Roe PL. Characteristic-based schemes for the Euler equations. Annual Review of Fluid Mechanics 1986; 18:337–365.
64. Waterson NP, Deconinck H. Design principles for bounded higher-order convection schemes - a unified approach.

Journal of Computational Physics 2007; 224(1):182–207.
65. Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of

Computational Physics 1992; 100(1):25–37.
66. Udaykumar HS, Kan HC, Shyy W, TranSonTay R. Multiphase dynamics in arbitrary geometries on fixed Cartesian

grids. Journal of Computational Physics 1997; 137(2):366–405.
67. Rudman M. A volume-tracking method for incompressible multifluid flows with large density variations. Interna-

tional Journal for Numerical Methods in Fluids 1998; 28(2):357–378.
68. Bussmann M, Kothe DB, Sicilian JM. Modeling high density ratio incompressible interfacial flows. In ASME 2002

Joint U.S.-European Fluids Engineering Division Conference. ASME: Montreal, Quebec, Canada, 2002; 707–713.
69. Prosperetti A, Tryggvason G. Computational Methods for Multiphase Flow. Cambridge University Press: Cam-

bridge, 2007.
70. Esmaeeli A, Tryggvason G. A direct numerical simulation study of the buoyant rise of bubbles at O(100) Reynolds

number. Physics of Fluids 2005; 17(9):093303.
71. Mencinger J, Zun I. On the finite volume discretisation of discontinuous body force field on collocated grid:

application to VOF method. Journal of Computational Physics 2007; 221(2):524–538.
72. Wemmenhove R. Numerical simulation of two-phase flow in offshore environments. Ph.D. Thesis, University of

Groningen, 2008.
73. Youngs DL. Time-dependent multi-material flow with large fluid distortion. In Numerical Methods for Fluid

Dynamics, Morton KW, Baines MJ (eds). Academic: New York, 1982; 273–285.
74. van der Vorst HA. Bi-CGSTAB - a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear-systems. SIAM Journal on Scientific and Statistical Computing 1992; 13(2):631–644.
75. Xie Z. Numerical modelling of breaking waves under the influence of wind. Ph.D. Thesis, University of Leeds, 2010.
76. Rider WJ, Kothe DB. Reconstructing volume tracking. Journal of Computational Physics 1998; 141(2):112–152.
77. Leonard BP. The ultimate conservative difference scheme applied to unsteady one-dimensional advection. Computer

Methods in Applied Mechanics and Engineering 1991; 88(1):17–74.
78. Li Y. Tsunamis: Non-breaking and breaking solitary wave run-up. Ph.D. Thesis, California Institute of Technology,

2000.
79. Guignard S, Grilli ST, Marcer R, Rey V. Computation of shoaling and breaking waves in nearshore areas by the

coupling of BEM and VOF methods. Proceedings of the Ninth (1999) International Offshore and Polar Engineering
Conference, 1999; 304–309.

80. Lachaume C, Biausser B, Grilli ST, Fraunie P, Guignard SP. Modeling of breaking and post-breaking waves on
slopes by coupling of BEM and VOF methods. Proceedings of the Thirteenth (2003) International Offshore and
Polar Engineering Conference, vol. 3, 2003; 353–359.

81. Dean RG, Dalrymple RA. Water wave mechanics for engineers and scientists. Prentice-Hall: Englewood Cliffs, N.
J., 1984.

82. Lee JJ, Skjelbreia JE, Raichlen F. Measurement of velocities in solitary waves. Journal of Waterway, Port, Coastal,
and Ocean Engineering-ASCE 1982; 108(2):200–218.

83. Li Y, Raichlen F. Discussion: breaking criterion and characteristics for solitary waves on slopes. Journal of Waterway,
Port, Coastal, and Ocean Engineering-ASCE 1998; 124(6):329–333.

84. Longuet-Higgins MS. Parametric solutions for breaking waves. Journal of Fluid Mechanics 1982; 121:403–424.
85. New AL. A class of elliptical free-surface flows. Journal of Fluid Mechanics 1983; 130:219–239.
86. Greenhow M. Free-surface flows related to breaking waves. Journal of Fluid Mechanics 1983; 134:259–275.
87. Li Y, Raichlen F. Energy balance model for breaking solitary wave runup. Journal of Waterway, Port, Coastal, and

Ocean Engineering-ASCE 2003; 129(2):47–59.
88. Helluy P, Golay F, Caltagirone JP, Lubin P, Vincent S, Drevard D, Marcer R, Fraunie P, Seguin N, Grilli S et al.

Numerical simulations of wave breaking. ESAIM-Mathematical Modelling and Numerical Analysis-Modelisation
Mathematique Et Analyse Numerique 2005; 39(3):591–607.

89. Yasuda T, Mutsuda H, Mizutani N. Kinematics of overturning solitary waves and their relations to breaker types.
Coastal Engineering 1997; 29(3-4):317–346.

90. Lubin P. Large eddy simulation of plunging breaking waves. Ph.D. Thesis, University of Bordeaux, 2004.
91. Song CY, Sirviente AI. A numerical study of breaking waves. Physics of Fluids 2004; 16(7):2649–2667.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld


