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ABSTRACT

The power spectrum of backscatter from the ocean surface at HF radio frequencies is characterized by two
large peaks called the first-order Bragg peaks. These are surrounded by a continuum due to second-order effects.
The power spectrum can be described in low to moderate sea states by a nonlinear integral equation relating it
to the ocean wave directional spectrum. Inverting this equation provides an estimate of the directional spectrum.
A number of inversion methods have been published. In this paper, the Wyatt method is discussed. This method
uses the part of the backscatter power spectrum that surrounds the larger Bragg peak. An extension of the method
to include the spectrum around the weaker peak is discussed, and some improvements in the solution are
demonstrated. Until recently, all published work in this area concerned solutions to a linearized version of the
equation. The second extension presented here tackles the nonlinear problem but points out the limitations of
the approach and shows that improvements to the solution with this or any other method are likely to be minor.
Of more importance is the limitation of second-order theory in high sea states, particularly at the higher radio
frequencies used at the moment in operational systems. A theory to describe the backscattered signal in these
circumstances is a major challenge for the future.

1. Introduction

High frequency (HF) radars transmit high frequency
(HF 3–30 MHz) radio waves that are scattered from
ocean waves in all directions, with some scattered to-
ward the radar receiver. The largest contribution to the
signal at the receiver has been shown (Crombie 1955;
Barrick 1972) to be due to scatter from ocean waves of
half the radio wavelength traveling directly toward or
away from the radar (when the transmit and receive sites
are collocated), according to whether the wind is blow-
ing in the half plane toward or away from the radar.
This produces a peak in the Doppler power spectrum
of the demodulated backscattered signal at a frequency
equal to the ocean wave frequency of this Bragg-
matched wave. This frequency is positive if the wave
is propagating toward the radar, and vice versa. There
is a second, usually smaller, peak in the Doppler spec-
trum at minus the frequency of the larger peak. These
peaks can be seen between the two pairs of dashed lines
in Fig. 1a. These peaks are shifted in frequency if there
is a surface current present. This shift is used to measure
surface currents (see, e.g., Paduan and Graber 1997).
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These peaks are referred to as first-order peaks because
they can be described by the first-order solution of a
perturbation analysis of the interaction between elec-
tromagnetic and hydrodynamic waves. The rest of the
power spectrum comprises a continuum, referred to as
the second-order part of the spectrum, and a noise floor.
In this paper, the second-order parts of the spectrum on
either side of the two first-order peaks are referred to
as sidebands, and there are four of these in each spec-
trum. The sidebands on the zero Doppler side of the
first-order peaks are referred to as inner sidebands and
the others as outer sidebands.

A number of approaches have been developed to pro-
vide a theoretical formulation for the power spectrum
in terms of the ocean wave spectrum (Barrick and Weber
1977; Robson 1984; Walsh and Srivastava 1987). The
perturbation solution developed by Barrick (1971) and
Barrick and Weber (1977) is most commonly used and
is the basis of the discussion in this paper.

A number of different radar systems have been used
for wave measurement. In this paper, the PISCES
(Shearman and Moorhead 1988), the OSCR (Wyatt and
Ledgard 1996), and the WERA (Gurgel et al. 1999)
radars will be mentioned. The PISCES operates in the
lower half of the HF band (4–18 MHz) and was designed
for wave measurement to ranges of 150 km from the
coast. The OSCR and WERA both operate at higher HF
frequencies (25–30 MHz), and OSCR was designed spe-
cifically for surface current monitoring within 40 km of



1652 VOLUME 17J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 1. Doppler spectra measured by OSCR (darker line) compared with spectra simulated with buoy data (lighter line). Date, time, and
significant wave heights are shown above each pair. (a) Low significant wave height, energy propagating toward the radar, and (b) energy
propagating across the radar beam; (c) high significant wave height, energy propagating toward the radar, showing the discrepancy between
theory and measurement, and (d) energy propagating across the radar beam.

the coast. These are all phased array systems for which
the problem of extracting wave measurements is rather
easier than is the case for compact antenna systems of
the CODAR type (Lipa et al. 1990).

a. Barrick’s equations

Full mathematical details for the analysis of second-
order ocean wave interactions can be found in the work

of Weber and Barrick (1977), Barrick and Weber (1977),
Lipa and Barrick (1986), and Holden and Wyatt (1992).
The latter two deal with the solution in the case of finite
depth from which the Weber and Barrick work can be
derived as the limit of deep water. The second-order
electromagnetic analysis is referred to in Lipa and Bar-
rick (1986) and Barrick (1971) and is based on the meth-
od of Rice (1951).

The resulting equations describe the relationship be-
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TABLE 1. Parameters used in the simulations.

CASE
Radar

frequency (MHz) Beam 1 Beam 2
Wind

speed (m s21)
Wind

direction
Swell relative

amplitude Swell direction

1
2
3
4
5
6
7
8

25.4
25.4
25.4
25.4
27.0
27.0
27.0
27.0

58
58
58
58
08
08
08
08

1158
1158
1158
1158

708
708
708
708

9
9
9
9

10
10
10
10

708
708
708
708
908
908
908
908

1.0
2.0
5.0

10.0
0.0
0.5
0.5
0.5

2208
2208
2208
2208
—
908

1808
2708

FIG. 2. The development of the estimated directional spectrum during the inversion process plotted in polar form. The number of iterations
for each inverted spectrum is shown. Circles are drawn at frequencies of 0.1, 0.2, and 0.3 Hz to aid comparison. Ten linear levels are
contoured at increments of 0.1 of the maximum. Each spectrum is scaled with respect to the maximum energy density in the modeled
spectrum shown top left.
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FIG. 3. The development of the Doppler spectrum through the iteration. The second-order sidebands for both radars are shown together
by reversing the Doppler frequency range of the second radar, since its upper sidebands are also at negative Doppler frequencies. The solid
black line shows the simulated spectra. This should be compared with the Doppler spectrum obtained at the end of the inversion, shown
with the thicker dashed line. The dot-dashed line is the Doppler spectrum obtained using the initializing wave spectrum, that is, the starting
point for the inversion. All others are at intermediate iterations. The vertical lines mark the position of the first-order peak (between each
sideband), the 2 hydrodynamic, and the 20.75 electromagnetic singularities.Ï

tween the power spectrum of the demodulated back-
scattered signal and the ocean directional wavenumber
spectrum. To first order, this takes the form

6 4s (v, f, d) 5 2 pk S(22m9k )d(v 2 m9v ),O1 0 0 b
m9561

(1)

where m9 denotes the sign of the Doppler shift, k0 is
the radar wave vector of magnitude k0 and direction

toward the scattering patch from the radar, S(k) is the
ocean directional wavenumber spectrum, vb 5

2gk0 tanh(2k0d), and d is the water depth. This equa-Ï
tion describes two peaks located at 6vb with amplitudes
dependent on the amplitudes in the directional spectrum
along the radar beam direction toward, S(22k0), and
away, S(12k0), from the radar.

The second-order contribution to the radar cross sec-
tion is given by

1` 1`

6 4 2s (v, f, d) 5 2 pk |G | S(mk)S(m9k9)d[v 2 mÏ(gk tanhkd) 2 m9Ï(gk9 tanhk9d) ] dp dq, (2)O2 0 E E T
m,m9561 2` 2`

where the integration variables, p and q, are wave-
number components parallel and perpendicular to k0,
respectively, and are related to the three wave vectors,
k, k9, and k0, by k 5 (p 2 k0, q) and k9 5 (2p 2 k0,
2q) so that k 1 k9 5 22k0. Here, m and m9 (both
equal to 61) locate the second-order contribution either

to the left or the right of the first-order peaks. The term
GT is the coupling coefficient describing both the elec-
tromagnetic and hydrodynamic processes that provide
the second-order backscatter. The details can be found
in Holden and Wyatt (1992).

Equations (1) and (2) both have to be multiplied by
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FIG. 4. Wavenumber ranges included in the case 5–8 inversions,
(a) for the nonlinear case and (b) for the 8-sb linear inversion. Wave-
numbers, for the Doppler frequency farthest from the first-order peaks
for each sideband, are joined together to reveal the outer Doppler
contour in each case. The darker lines show the mk vectors used in
the linear inversion. The m9k9 vectors to be included in the nonlinear
inversion (a) and the mk vectors for the lower sidebands (b) are shown
with lighter lines. The discretized wavenumbers themselves are
shown with the symbol 3 for the mk vectors and # for the m9k9
vectors. The horizontal axis measures the east–west component of
the wave vectors, and the vertical axis measures the north–south
component. Arrows with open arrowheads indicate sample vectors.
Since m and m9 are both negative for this example, these wave vectors
sum to give the Bragg matched wave vector, 2k0, shown for both
radar look directions, with the large solid arrowheads in (a). The
smaller solid arrow head in (a) shows wind direction for cases 5–8.

various radar parameters for a quantitative comparison
with measured radar backscatter spectra. These are not
always known. To avoid this problem, Eq. (2) is divided
by Eq. (1) [or more usually by the integral of Eq. (1)
over the finite width of the Bragg peak]. A large number
of comparisons between the Doppler spectrum obtained
by integrating the equation for a given ocean wave spec-
trum measured using a buoy and the Doppler spectrum
measured by the radar at the location of the buoy have
been made. In many sea states, the theory clearly pro-
vides a very good description of the backscatter, and it
is this agreement that has motivated attempts to invert
the equation.

Measurements with the PISCES radar during a storm
showed that the equation does not do a good job of
describing the backscatter at the peak of the storm (Wy-
att 1995a). Backscatter measured using a radar beam
looking into (or away from) the wind direction is sig-
nificantly enhanced at second-order Doppler frequencies
over the backscatter that would be predicted using Eq.
(2). Recent measurements with the OSCR and WERA
radars confirm that this effect occurs at lower sea states
at the higher operating frequency (Wyatt 1998). Wyatt
(1995a) reported that the breakdown of the theory de-
pended on the directional properties of the wave spec-
trum, and these effects are also seen in the OSCR and
WERA data. Figure 1 shows an OSCR example. In low-
er sea states (Fig. 1a) and in radar look directions more
perpendicular to the wind direction (Figs. 1b,d), the sec-
ond-order theory is in much better agreement with the
measurements then is the case for the Doppler spectrum
shown in Fig. 1c, measured with the relatively high
waves (3 m significant wave height) propagating toward
the radar. Recent work (Kingsley et al. 1998) has de-
scribed the shape of the WERA Doppler spectrum as
sea state increases when looking roughly into the wind
and has shown that the slope of the second-order spec-
trum appears to saturate at a significant wave height of
about 4 m. The consequences for the accuracy of wave
measurements are described in Wyatt et al. (1999). The
main effect is an overestimation of short wave ampli-
tude, and until a new theory emerges, this can probably
be dealt with by imposing a wave height dependent
upper limit on the range of ocean wave frequencies for
which the inversion is carried out. The alternative is to
use a lower radio frequency where saturation will occur
at a higher significant wave height.

b. The inversion problem

The normalized equation is used for wave measure-
ment. It is a nonlinear, first kind Fredholm equation with
a number of attendant numerical difficulties not least of
which is the nonlinearity. Four methods that attempt a
solution to this equation have been developed. Three of
these are linearized methods—Lipa (1977), Wyatt
(1990a), and Howell and Walsh (1993). These will be
referred to as BL, LW, and HW, respectively. Of these,
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FIG. 5. The directional spectrum plotted in polar form, as in Fig. 2, with the model spectrum used in the simulation on the left and those
obtained for the 4 sb, the nonlinear, the 6 sb, and the 8 sb inversions from left to right. Cases 1–3 are shown here.

BL and HW find a solution for the first five Fourier
coefficients of the directional distribution, and LW finds
the directional wavenumber spectrum on a wavenumber
grid. The fourth, and most recently published, method
is an optimization technique developed by Hisaki (1996)
to solve the nonlinear problem. The LW method makes
use of Doppler spectra measured at the same location
from different directions using two radar systems. The
PISCES, WERA, and OSCR systems have all been de-
veloped as dual-radar systems to avoid problems of di-
rection and amplitude ambiguities that can otherwise
arise. The HW and Hisaki methods can be used with
either a dual-radar or a single-radar system but in the
latter case, provide a reduced range of parameters, and
the accuracy of these have not been published.

The LW method has been subject to exhaustive testing
(Atanga and Wyatt 1997; Wyatt 1990b, 1991, 1995b;
Wyatt and Holden 1992, 1994; Wyatt and Ledgard 1996;
Wyatt et al. 1999; Krogstad et al. 1999), and good ac-
curacy in a range of wave parameters determined from
the directional spectrum has been demonstrated.

c. Linearizing methods

Close to the first-order Bragg peaks, the second-order
backscatter is generated by combinations of long waves
propagating in all directions with waves of the same
order and propagating in roughly the same direction as
the first-order Bragg wave. These short waves can, ex-
cept in very low sea states, be assumed to be wind driven

and hence modeled with a wind–wave model. This can
take the form of a k24 or f 25 (or similar) wavenumber
or frequency model, as is used in the BL and HW in-
versions, or by using a Pierson–Moskowitz spectrum as
is used in the LW model. In the latter case, additional
information is required to provide the spectral peak. This
is achieved using significant wave height and mean pe-
riod found directly from the radar spectrum (Wyatt et
al. 1985) to determine a wind speed and hence the spec-
tral shape. In addition, a model of the directional dis-
tribution is required. In the BL and HW inversions, all
short waves are assumed to be in the same direction as
the first-order waves so the directional distribution can-
cels when the second order is scaled by the first order.
The LW inversion extends the range of Doppler fre-
quencies used and accounts for the resulting increased
range in directions of the short-wave components by
using a cardioid directional distribution around the mean
direction determined from the first-order peaks using
the same cardioid distribution. A method to estimate the
parameters of a short-wave directional model has been
developed (Wyatt et al. 1997) but is not yet implemented
as part of the inversion.

These two-scale models apply over limited Doppler
frequency ranges. The inversion should be limited to
normalized Doppler frequencies, h 5 v/vb, with 0.6 ,
|h| , 2 in deep water. This frequency range reducesÏ
as the water depth decreases (Holden and Wyatt 1992).
Beyond this, there are wavenumbers, k, contributing to
S(k) that are of the same order as wavenumbers, k9,



DECEMBER 2000 1657W Y A T T

FIG. 6. As in Fig. 5 but for cases 5–8. No 8 sb inversion possible for cases 6–8.

contributing to S(k9) either at the same or at different
Doppler frequencies. Nonetheless, the LW method is
applied over a Doppler frequency range 0.4 , |h| ,
1.6 with the assumption that the Pierson–Moskowitz
spectrum will give a reasonable model of the longer
wavelengths in S(k9).

d. LW linear inversion method

This method is described in detail in Wyatt (1990a)
and Atanga and Wyatt (1997). It is an iterative scheme
that solves the direct problem, that is, it integrates Eq.
(2) for a given wave spectrum at each iteration and then
modifies the wave spectrum at each wavenumber ac-
cording to the difference between the measured and in-
tegrated Doppler spectra at Doppler frequencies influ-
enced by the wavenumber, weighted by the contribution
that wavenumber makes relative to all other wave-
numbers that contribute at the Doppler frequency. The
wavenumbers used in this process are sampled at ;158
intervals along the Doppler frequency contours deter-
mined by Eq. (3) and the radar signal spectral analysis,

which sets the discretization of Doppler frequency. An
inital wave spectrum, S0(k), is required, and for this,
S(k9) is used. The integrations are carried out for each
frequency bin within the limited Doppler frequency
ranges referred to above and are restricted to the two
sidebands surrounding the larger Bragg peak for each
of two radar measurements from the same location. To
ensure that information from more than one sideband
and more than one radar are used in the solution for
each wavenumber, nearest neighbors from the other
sideband and radar are identified and used in the ad-
justment process. These nearest neighbors identify the
Doppler frequency, wavenumber, and propagation di-
rection of the wave closest to the wavenumber vector
whose amplitude is being adjusted. The method has been
successfully applied to data collected at a range of radio
frequencies (e.g., Wyatt and Holden 1992; Wyatt and
Ledgard 1996; Wyatt et al. 1999). The range of Doppler
frequencies used limits the range of ocean wave fre-
quencies for which a solution is found. At 9 MHz, the
upper limit is about 0.3 Hz, and at 27 MHz, about 0.38
Hz.
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FIG. 7. Parametric plots of directional spectra for case 1 in the same order as Fig. 5. The inverted spectrum is shown with a solid line
and the simulated spectrum with a dashed line. Above the plots are two rows of figures giving in the first row inverted wave height, mean
period, and a quantity measuring the degree of convergence (,1 is usually a good inversion) and in the second row, the wave height and
period of the simulated spectrum.

→

FIG. 8. Doppler spectrum plots (as in Fig. 3) comparing the final Doppler spectra for the linear (dotted line), 6 sb (dashed), and 8 sb
(dash-dot) inversions with the simulated spectrum (solid). The nonlinear spectrum is also plotted (spaced dots) but is barely seen in this
case, since it is almost the same as the simulated spectrum. Here (a) is for the first radar and (b) for the second radar.

2. Linear inversion modifications

Two minor modifications to the numerical method are
described here first. Of more importance is the discus-
sion in section 2c about the extension of the method to
make use of the second-order sidebands surrounding the
lower Bragg peak.

a. Initializing spectrum

During the iterations, the modification procedure in-
creases amplitude at a particular vector wavenumber
according to the contribution of that wavenumber to the
Doppler frequency when there is a difference in the
inverted and simulated (or measured) Doppler spectra.
But this increase is proportional to the existing ampli-
tude. Since the initial spectrum that has been used is a
pure wind–wave spectrum, if there is swell in the mea-
sured (or simulated) spectrum in a very different direc-
tion from the wind–wave mode, the larger initial am-
plitudes at all wavenumbers in the wind–wave direction
(even though amplitudes at swell frequencies are ini-
tially very small) drive the initial swell mode devel-

opment in this direction. The amplitude of the integral
equation kernel at a particular wavenumber only takes
over and corrects the swell direction later in the pro-
cedure. This slows down the convergence.

To improve convergence, the initializing spectrum has
been modified in the following way. The wind–wave
mode is determined as before, but amplitudes at all
wavenumbers (in all directions) less than one half of
the peak wavenumber in the Pierson–Moskowitz spec-
trum are initialized with values equal to the value at
one half the peak wavenumber in the wind–wave di-
rection. There is thus a uniform plateau from which the
swell mode can grow. Figure 2 shows the development
of the swell mode as the iteration proceeds with rea-
sonable agreement between inverted and simulated
spectra after 20 iterations. The convergence of the cor-
responding Doppler spectrum is seen in Fig. 3.

b. Convergence criterion

The quantity used to determine convergence measures
the mean difference in dB between the inverted (at each



DECEMBER 2000 1659W Y A T T



1660 VOLUME 17J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 9. The directional spectrum measured by OSCR during Holderness is plotted in parametric form, the inversion is the solid line and
the wave buoy data the dashed line. The date, time, and location of the two measurements are shown. Beneath these are two rows of figures
giving in the first row radar wave height, mean period, and a quantity measuring the degree of convergence (,1 is usually a good inversion)
and in the second row, the wave height and period of the buoy measurement. The linear inversion is on the left followed by the nonlinear
and 6 sb inversions.
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iteration) and the measured spectrum over the Doppler
frequency range being modified. The convergence cri-
terion has been modified to account for subtle but im-
portant changes to the directional spectrum in the later
stages of the inversion. Two quantities are monitored.
One, c1, is the mean difference described above but
summed over the last two iterations to smooth small
fluctuations. The second, c2, is the absolute difference
between c1 measured at the current iteration with that
measured at the last. Convergence is assumed to have
occurred if either c1 , 0.5 dB or c2 , 0.001 dB.

c. Using the lower Bragg peak sidebands

A recent comparison between the performance of the
LW and HW methods (Atanga and Wyatt 1997) has
suggested that using the second-order sidebands around
both first-order peaks when signal-to-noise is sufficient
might improve the accuracy of the inversion. The HW
method performed significantly better in amplitude es-
timation in these circumstances, which tend to be cases
where the wind direction is roughly perpendicular to
one of the radar beams. The LW method has been ex-
tended to include this part of the spectrum, provided the
signal-to-noise there is greater than 15 dB, the same
criterion as is used for the larger sidebands. However,
this signal-to-noise criterion was not found to be suf-
ficient. A criterion based on comparing the integrated
amplitude in the Doppler spectrum normalized to the
integral under the larger peak proved to be the most
reliable, although further work is needed to confirm that
this is universally applicable. When this ratio falls below
about 10%, use of the additional sidebands increases
rather than decreases the error in the inversion. This is
because the lower sideband amplitudes are rather sen-
sitive to the relative amplitudes of the two Bragg peaks
and hence to wind direction. This is less of a problem
for simulated cases, where the estimated wind direction,
obtained by combining the estimates from each simu-
lated Doppler spectrum, is rather accurate. However, for
the measured cases, the individual Doppler spectra usu-
ally do not produce exactly the same estimate of wind
direction, and an average is used. This has only a very
small effect on the upper sideband amplitudes but can
lead to large differences for the lower sidebands.

The results obtained provide some evidence that im-
provement in accuracy might be possible with this ex-
tension, although this improvement is not very large for
the cases considered so far. If the technique is to be
applied for operational applications, a detailed statistical
analysis is needed using one or more of the many da-
tasets that have been used in the evaluation of the ex-
isting inversion method. However, the small improve-
ments that might be delivered may not be worth the
additional computing resource required.

The results are presented alongside the nonlinear re-
sults in section 5. In some of the cases considered, the
signal-to-noise requirement means that additional side-

bands are only used from one of the radars. In general,
there are three possible combinations referred to as 4
sb (two sidebands from each radar), 6 sb (four sidebands
from one radar), and 8 sb, where all sidebands are of
sufficient signal-to-noise to be used.

3. Limitations to linear and nonlinear inversion

The difficulty with the inversion of Eq. (2) is that the
problem is ill-posed, and therefore, any solution method
has to impose constraints of some sort. The LW method
works because each wavenumber, at which an inversion
is attempted, contributes to more than one sideband, and
preferably more than one radar spectrum and smoothing
is introduced to keep the solution at each wavenumber
tied to that of its nearest neighbors. The second radar
is particularly important in this respect.

a. Wavenumber ranges

The wavenumbers that contribute to the range of
Doppler frequencies used in the LW inversion can be
determined using the delta function in Eq. (2),

d[v 2 mÏ(gk tanhkd) 2 m9Ï(gk9 tanhk9d) ], (3)

together with the second-order Bragg condition k 1 k9
5 22k0. This equation has different solutions for the
different m, m9 combinations and for each of the two
radar directions, k0, used in the dual-radar solution. Fig-
ure 4a shows the wavenumber ranges that are included
in the inversion for one particular radar direction pair
(separated by 708 in this case). Note that it is mk (thick
line and 3 marking each discretized wavenumber used)
and m9k9 (thin line and #) that are plotted here, since
it is at these wave vectors that adjustments are being
made during the inversion. The plots show the Doppler
contour farthest from the first-order peaks. Other con-
tours are similar in shape within these limits. Because
mk and m9k9 are included here separately, there are four
contour groupings for each radar. An example of a mk,
m9k9 pair is shown with arrows.

The linear inversion method estimates the spectrum
at all wavenumbers mk, within the limits shown on the
diagram, that have near neighbors from one of the other
sidebands (from the same or the other radar). The spec-
trum at all other wavenumbers is estimated using the
initializing Pierson–Moskowitz spectrum. The wind di-
rection used in the initialization for this wavenumber
set is shown in Fig. 4a. It can be seen here that the only
part of the wavenumber plane that is covered over the
full 0–2p range is the long wavenumber range (close
to the origin). Over most of the plane, the range of
directions is limited. For this particular configuration,
full directional coverage is limited to wavenumbers less
than about 0.3 m21 (;0.27 Hz). This is less than the
frequency range used in the inversion, and clearly at
higher frequencies, some reduction in accuracy can be
expected. However, this is ameliorated to a certain ex-
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←

FIG. 10. Doppler spectrum plots for the second case in Fig. 9 again showing the linear (dotted) and the 6 sb (dashed) spectra compared
with the measured (solid) Doppler spectrum for (a) radar 1 and (b) radar 2 (where both sidebands are used). The nonlinear spectrum is also
plotted (spaced dots), but it is almost the same as the simulated spectrum and is only visible at the extreme Doppler frequencies.

tent because, as can be seen in Fig. 4a, the high fre-
quencies included in the inversion are those in the half
plane containing the wind direction. So it is only the
spectrum at high frequencies opposed to the wind di-
rection, where energy levels should be low, that is not
part of the inversion. This reduction in accuracy at high-
er frequencies will also be present in other inversion
methods that limit the Doppler frequency range (as all
of the existing ones do).

A nonlinear inversion will provide estimates of the
directional spectrum at mk and at m9k9. Therefore, of
concern here is the location of the contributions from
m9k9. As can be seen in the figure, there is considerable
overlap between the m9k9 contribution to the outer side-
band and the mk contribution to the inner sideband of
the same radar. There is some overlap between the m9k9
contributions to both sidebands. There is only a very
limited overlap between m9k9 contribution to the outer
sideband of one radar with the mk contribution to the
inner sideband of the other radar and no overlap between
m9k9 contribution to the inner sidebands of the two ra-
dars. There is very limited coverage of the full direction
range for any of these cases. Again, this will be a prob-
lem for any inversion method that restricts the range of
Doppler frequencies used.

Thus it is anticipated that the accuracy of a nonlinear
inversion, restricted to the same Doppler frequency
range, will be limited particularly by the lack of overlap
in high wavenumber ranges between the two radars.

b. Doppler frequency ranges

Making use of a wider range of Doppler frequencies
would increase the overlapped coverage of the wave-
number plane by the two radars. One extension, as has
already been mentioned, is to include the Doppler fre-
quencies around the weaker first-order peak, provided
that signal-to-noise is sufficient. The coverage obtained
is seen in Fig. 4b, which shows mk for an 8 sb linear
inversion. The m9k9 contours (not shown here), which
would be used in a nonlinear inversion, can be easily
assessed by comparing Figs. 4a and b. The range of
wavenumbers that now have full directional coverage
is more than doubled (to ;0.8 m21), but there is very
little additional overlap in directional coverage at high
wavenumbers.

The other alternative is to extend the Doppler fre-
quency range beyond 0.4 , |h| , 1.6. The problem
with this is that the numerical integration used in the
direct part of the procedure becomes increasingly in-
accurate as the inner sideband contours increase in size
(measured by the wavenumber range covered). Second-

ly, as has been mentioned above, the second-order mod-
el becomes increasingly inaccurate as a description of
the outer sideband, particularly at higher values of |h|
as wave height increases.

4. Nonlinear inversion method

a. Staged approach

In spite of all the anticipated limitations, a nonlinear
method has been developed. The LW method requires
that individual wavenumbers contribute to more than
one sideband, and the limitations of this have already
been referred to. Thus a three-stage approach has been
adopted. Stage 1 is the same as the linear inversion, that
is, S(k) is modified, after the integration is carried out,
in the way described before. At stage 2, S(k) is modified
for contributions to the inner sideband, but S(k9) is mod-
ified for contributions to the outer sideband. In Fig. 4a,
it can be seen that there is significant overlap between
the wavenumbers involved here. Finally, at stage 3,
S(k9) is modified for both sidebands.

b. Nearest neighbors

In order to implement the modifications described in
section 4a, nearest neighbors have to be determined for
k and k9 at stage 2 and for k9 and k9 at stage 3. At
stage 3, the discretizations for the two sidebands pro-
duce wavenumber increments that are similar (distances
between the # symbols in Fig. 4a), as they were in
stage 1. However, at stage 2, this is not the case. There
are large variations in k but small variations in k9 (com-
pare distances between the 3 and the # symbols), with
the result that many k9 will share the same nearest neigh-
bor in k. This is likely to have a smoothing effect in
the solution.

c. Iteration scheme

Implementing the three-stage procedure from the out-
set of an inversion has not proved successful. Best re-
sults have been achieved when the linear inversion is
allowed to iterate to convergence, at which stage the
three-stage procedure is implemented. This iterates until
the convergence criterion has been met (see section 2b).
Criterion c1 is modified to be the sum of Doppler spectral
differences for the current and two previous iterations,
that is, over three stages. Criterion c2 has the same def-
inition as before, and the same minimum values are
required.
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5. Results
a. Simulations

Eight different ocean wave spectra have been used to
generate simulated Doppler spectra to test the methods.
This is not adequate to make a quantitative assessment
of accuracy but is sufficient to demonstrate the nature
of the solutions. One case is of a pure wind–wave spec-
trum, and in all the others, swell has been added with
different relative amplitudes and directions. In all cases,
a water depth of 20 m and a Pierson–Moskowitz wind–
wave model have been used. For the swell cases, a peak
frequency of 0.08 Hz has been used. The remaining
parameters are shown in Table 1. The first four cases
are those used in Atanga and Wyatt (1997).

Figures 5 and 6 show polar plots comparing the linear
with the nonlinear solution and the solutions using ad-
ditional sidebands from one and from both beams with
the model spectrum used in the simulations. Case 4 is
not included in the plot because it looks very similar
to case 3. There is usually little difference between the
4 sb, the nonlinear, and the 6 sb cases, but the 8 sb
cases are not as accurate. Case 5 (in Fig. 6) is one where
the 8 sb inversion should not have been attempted be-
cause the amplitude ratio criterion for one of the radars
was far from satisfied. The result is characteristic of the
behavior of the inversion in such cases. The solution
oscillates between two directional shapes, with the peak
alternately to the northwest and southwest for this case.
Figure 7 shows the results presented in parametric form
for case one, with the frequency spectrum, mean direc-
tion, and spread as functions of frequency compared
with the parameters of the spectra input to the simu-
lations. These plots combine the wave spectrum ob-
tained by inversion with the Pierson–Moskowitz spec-
trum model used at high frequencies, and hence the plots
extend to 0.5 Hz. In this display, it is again difficult to
distinguish between the 4 sb, the nonlinear, and the 6
sb solutions, although the 6 sb case slightly has the edge
in directional spread accuracy at low frequencies. It is
clear here that the 8 sb case does not get the amplitudes
as accurately. This was more difficult to see in the polar
comparisons. Figure 8 shows the part of the normalized
Doppler spectra used in the inversions compared with
the normalized Doppler spectra obtained using the in-
verted wave spectra (i.e., the last direct calculation done
before convergence) for all four solutions again for case
1. While the differences are quite small (apart from the
8 sb case), the nonlinear solution does provide a better
fit to the simulated spectra, so much so that it can hardly
be seen in the plot. Presumably, the fact that this does
not also result in a more accurate solution for the wave
spectrum is associated with the problems of coverage
of the wavenumber plane already referred to.

b. OSCR data

The OSCR measurements were made at the location
of a directional waverider during the second Holderness

experiment (Prandle et al. 1996). It is much more dif-
ficult to find cases where the amplitude ratio criterion
for 6 sb or 8 sb inversions is satisfied and the evidence
for any improvement is not clear. A much more detailed
analysis is required along the lines already used to eval-
uate the 4 sb case (Wyatt et al. 1999). Furthermore, it
is more difficult to compare spectral shape because the
waverider provides only a parameterized form of the
directional spectrum. The use of the maximum entropy
method to estimate the directional spectrum from these
parameters has been shown to be useful (Krogstad et
al. 1999) but is not completely satisfactory when it
comes to looking for small differences between the dif-
ferent inversions. Two cases are shown in Fig. 9 in
parametric form. The 6 sb inversion for the first example
is perhaps slightly better. As was the case with the sim-
ulations, the nonlinear inversion generates a Doppler
spectrum that is closer to the measured spectrum, al-
though the wave spectrum is not as accurate. Figure 10
shows one such example where again it is difficult to
see the nonlinear case, since it is almost aligned with
the measured Doppler spectrum.

6. Discussion

Two extensions to the LW method for determining
the ocean wave directional spectrum from HF radar
backscatter have been presented. One concerns the use
of the lower second-order sidebands in the analysis
when there is sufficient signal-to-noise and has shown
small improvements in the accuracy of the estimated
wave spectrum. The statistical significance of these im-
provements and the exact signal-to-noise criteria re-
quired to implement the method need further work. The
lower sidebands are vulnerable to contamination due to
antenna sidelobes, to short timescale current variability,
and probably other hydrodynamic effects not accounted
for in the backscatter modeling. This may explain why
the application to OSCR data is less robust than the
application to simulated data.

It has been demonstrated that the LW linear inversion
method can be extended to a nonlinear solution, that is,
to a solution that provides an estimate of both the long-
and short-wave parts of the wave spectrum. This non-
linear solution does indeed generate Doppler spectra that
converge to measured or simulated spectra better than
is achieved using the linear method. However, this does
not result in a more accurate ocean wave directional
spectrum probably because the inversion at high wave-
numbers only covers a small range of directions.

Of more practical importance is the observation in
section 1a and Fig. 1 that the Doppler spectrum does
not conform to second-order theory in high sea states
when the radar is looking into the wind. A different
theoretical formulation is required to deal with this sit-
uation. This problem is more serious at the high HF
operating frequencies of the OSCR and WERA radar
systems, since it starts to become a problem at signif-
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icant wave heights above about 3 m (as seen in Fig.
1c). The alternative is to use lower radio frequencies.
The PISCES measurements were made to significant
wave heights over 7 m, with no significant effect on
accuracy due to this limitation. Theory would suggest
(Wyatt 1995a) that problems would start to arise at wave
heights in excess of about 10 m at PISCES operating
frequencies.

The OSCR and WERA deployments have shown that
the inversion (whether linear with additional sidebands
or nonlinear) overestimates amplitudes at higher ocean
wave frequencies in these circumstances, although di-
rections are, on the whole, recovered well (Wyatt et al.
1999). The increased power in the measured Doppler
spectum is converted into increased energy in the wave
spectrum in the corresponding frequency range. One
method that could be used to avoid the problem is to
set a maximum ocean wave frequency for the inversion
in inverse proportion to significant wave height. This
would limit the opportunity to observe the development
of new wave systems when the overall sea state remains
high, although perhaps this is not a serious practical
limitation.
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