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In a recent paper, Segur et al. (J. Fluid Mech. vol. 539, p. 229, 2005, hereafter referred
to as S) showed, based on a damped version of the nonlinear Schrodinger equation
(NLS), that any amount of dissipation (of a certain type) stabilizes the Benjamin–
Feir instability of a modulated Stokes wave train. Their theoretical predictions are
confirmed by laboratory experiments for waves of small or moderate amplitude, but
not for waves of large amplitude or with relatively large perturbations. S left open
questions regarding the validity of their theoretical results for these large-amplitude
waves, and possibly the validity of the NLS assumptions of weak nonlinearity
and narrow-bandedness. We investigate these issues using direct simulations of the
primitive equations, incorporating constant and wavenumber-dependent dissipation
models. For small or moderate amplitudes, our full simulations agree with the
theory and experiments of S. For large amplitudes, we find that it is primarily
the form of the dissipation model, rather than the assumptions of NLS, that is
responsible for the failure of S’s theoretical predictions. Indeed, with an appropriate
wavenumber-dependent dissipation model, both the full simulations and NLS obtain
the correct evolution behaviour for large-amplitude waves. Finally, using direct and
NLS simulations, we confirm the general conclusion of S for stabilization of the
Benjamin–Feir instability over long-time wave train evolution.

1. Introduction
It is well-known that unstable sideband disturbances will exponentially grow in

the nonlinear evolution of a modulated wave train as a result of the Benjamin–Feir
instability (Benjamin & Feir 1967). Recently, Segur et al. 2005, referred to herein as
S, used a damped version of the nonlinear Schrodinger equation (NLS):
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|ψ |2ψ + ψδ = 0 (1.1)

to show theoretically that the presence of dissipation diminishes the unstable region
of disturbances in time so that all initial unstable disturbances become stable
eventually, i.e. dissipation stabilizes the instability. In (1.1), ψ(x, t) represents the
complex amplitude of the envelop of the wave train, ω0 and k0 are respectively the
frequency and wavenumber of the carrier wave, and δ(� 0) is a constant dissipation
rate (e.g. Lo & Mei 1985). S also conducted tank measurements which supported the
theory for small to moderate carrier wave amplitudes and/or initial perturbations.
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Although the theoretical result of S is correct, and a similar finding was obtained
by Mei & Hancock (2003) in the study of wave transmission over a random seabed,
the conclusion of S is somewhat surprising because it has been generally held that,
while the presence of dissipation reduces the growth rate of unstable disturbances
(Benjamin & Feir 1967; Lake & Yuen 1977) and changes the long-time evolution (Lo
& Mei 1985), it does not affect the overall instability. Furthermore, for reasons S
discussed, their key conclusion had not been borne out by other measurements.

From the point of view of whether a Stokes wave train subject to (small) dissipation
is indeed stable or not in the presence of sideband disturbances, S leaves open a
number of important questions: (a) S is based on NLS which assumes narrow-band
and weak nonlinearity. Does their result also hold for more general wave conditions
(broad band and large amplitude) where the assumptions of NLS do not hold?
(b) S used a relatively simple dissipation model in (1.1). If a different dissipation
model is required for the physical mechanism and a similar theoretical result might
not be easy to obtain, would S’s general conclusion still hold? (c) One major area
of concern in S is when the amplitude of the wave or the initial disturbance is
large. In this case, the theory and measurements do not agree, and the question is
whether (1.1) is valid for these waves and, more importantly, whether the conclusion
of the Benjamin–Feir stability based on (1.1) indeed holds for these waves. (d) S’s
measurements were limited to relatively early evolution due to the length of their
wave tank. The long-time evolution prediction of their theory was thus not verified
(except for a special case they considered). Could the stabilizing effect they predicted
be confirmed in long-time wave evolutions?

In this note, we address these issues using direct nonlinear wave simulations based
on full Euler equation without resorting to model equations such as NLS.

2. Direct simulation model
We consider the problem of the nonlinear evolution of long-crested water waves

in finite depth including the effects of dissipation and surface tension. In the context
of potential flow, the field equation and boundary conditions (in Zakharov form) are
(e.g. Dommermuth & Yue 1987)

Φxx + Φzz = 0 for z � η(x, t), (2.1)
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Φz = 0 at z = −h, (2.4)

where η(x, t) is the free-surface elevation, Φ(x, z, t) the velocity potential, ΦS(x, t) ≡
Φ(x, z = η, t) the velocity potential on the free surface, h the water depth, g the
gravitational acceleration, and T the surface tension. Here (2.2) and (2.3) are the
nonlinear kinematic and dynamic free-surface boundary conditions, respectively, and
DΦ is included in (2.3) as a quasi-potential approximation to account for the (viscous)
dissipation effect (e.g. Ruvinsky, Feldstein & Freidman 1991).

For simplicity, a constant-dissipation model, i.e.DΦ ∝ Φ , is often used in (2.3) (e.g.
Jiang et al. 1996). A more physically realistic dissipation model accounting for viscosity
effect obtains, upon balancing of normal stress on the free surface, that DΦ ∝ Φzz

(e.g. Ruvinsky et al. 1991; Zhang & Vinals 1997). To elucidate the importance of the
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dissipation modelling, we consider in this note both of the above models:

Model I : DΦ = ΦSδ1, (2.5)

Model II : DΦ = Φzzδ2, (2.6)

where δ1 and δ2 are the dissipation coefficients to be determined by the practical
environmental conditions. For a single (linear) regular wave with wavenumber k0,
(2.5) becomes equivalent to (2.6) by setting δ1 = k2

0δ2. The dissipation rate in Model I
(strictly for a linear wave train) is independent of the wavenumber k of the wave
component, which is also the case in (1.1). For Model II, the dissipation rate is
proportional to k2, consistent with classical theory (Lamb 1932; Longuet-Higgins
1997). A similar dissipation model to (2.6) in the context of (2.1)–(2.4) was used by
Skandrani, Kharif & Poitevin (1996) to show that the presence of such a dissipation
promotes the frequency downshift in the nonlinear evolution of a wave train. They
did not, however, address the issue of stabilization of the Benjamin–Feir instability
in that context.

We apply the high-order spectral method (HOS) (e.g. Dommermuth & Yue
1987) to directly solve the nonlinear wave evolution problem (2.1)–(2.4). HOS is
a pseudo-spectral method based on the mode-coupling idea. The method follows
the evolution of a large number, N, of (broadband) wave modes and accounts for
their nonlinear interactions up to an arbitrary order, M, in the wave steepness. In
particular, the method achieves exponential convergence with respect to N and M
for moderately steep waves. The efficacy of HOS has been established in the study
of the nonlinear wave–wave interaction mechanism (e.g. Dommermuth & Yue 1987)
including the presence of atmospheric forcing (Dommermuth & Yue 1988), long–short
waves (Zhang, Hong & Yue 1993), and finite depth and depth variations (Liu & Yue
1998).

3. Comparison of direct simulations with experiments
We perform direct comparisons between the HOS simulations and the experiments

of S to examine the validity of the NLS assumptions and investigate the effect of
dissipation modelling on stabilizing the Benjamin–Feir instability. Special attention
is paid to the case of large waves or disturbances for which the theoretical result
and experiments of S do not agree. Based on (1.1), S showed that in the (time)
evolution of a modulated Stokes wave train, the two integral quantities below (which
are conserved in the absence of dissipation) must decay exponentially with time:

M(t) ≡ 1

L

∫
L

|ψ(x, t)|2 dx = M(0)e−2δt , P (t) ≡ i

L

∫
L

[ψψ∗
x − ψ∗ψx] dx = P (0)e−2δt

(3.1)

where ∗ denotes the complex conjugate and L is the length of the periodic domain of
the NLS. The theoretical results (3.1) are confirmed by their experiments for waves of
small to moderate amplitude, but not when the wave amplitude is large. Specifically,
the experiments show that, for large waves, P changes sign from positive to negative
during the evolution, in contrast to (3.1).

S considered two key wave experiments: one small amplitude and the other large
amplitude. Table 1 gives the relevant parameters, where δe is the measured dissipation
rate obtained by fitting the experimentally measured M(x) with the exponential decay,
M(x) = M(0)e−2δex . (Note that, for the spatial evolution of the wave train in the tank,
M(x) here is the counterpart of the temporal evolution M(t) in the NLS in (3.1)).
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a±1/a0 k0a0 δe

Small amplitude: 0.14 0.1 0.11 m−1

Large amplitude: 0.33 0.093 0.12 m−1

Table 1. Initial amplitude ratio of sidebands to carrier wave a±1/a0, initial carrier wave
steepness k0a0, and measured dissipation rate δe of the two laboratory experiments in S.

Both experiments have the same carrier wave frequency ω0 = 20.923 s−1, similar initial
carrier wave steepness k0a0 and dissipation rate δe, but different initial sideband
amplitudes a±1. The frequencies of the sidebands are ω±n = ω0 ± n�ω, n= 1, 2, . . . ,
with �ω =1.068 s−1. The time history of the free-surface displacement is measured
at 12 locations in the tank with the distance from the wavemaker (in cm) of
Xm = 78 + 50m, m =1,. . .,12. The water depth is h = 20 cm.

In the HOS simulations, the initial free-surface elevation and velocity potential are
obtained from the experimental measurements at x = X1 using linear theory:

η(x, 0) =
∑

i

Ai cos θi

∣∣∣
t=0

, ΦS(x, 0) =
∑

i

Aiωi

ki tanh kih
sin θi

∣∣∣
t=0

, (3.2)

where θi ≡ kix − ωit + αi , and Ai , αi , and ωi are the amplitude, phase, and frequency
of the ith Fourier component of the wave displacement measured experimentally at
x = X1. Since the wave energy is concentrated in a small neighbourhood of ω0 in the
experiments, we use only the free wave components in the band ωi ∈ [0.5ω0, 1.5ω0] for
the initial conditions η(x, 0) and ΦS(x, 0). The wavenumber ki is related to the corresp-
onding frequency ωi by the dispersion relation: ω2

i = (gki +Tk3
i ) tanh kih. The coeffic-

ients in the two dissipation models (2.5) and (2.6) are obtained by equating the
respective linear spatial dissipation rates of the carrier wave to the measured δe:

δ1 = 2cg0δe, δ2 = 2cg0δe/k2
0, (3.3)

where cg0 is the group velocity of the carrier wave.
The length of the HOS computational domain is L =100λ0 (≡ 200π/k0). A periodic

boundary condition in x is used with non-periodic components in η(x, 0) and ΦS(x, 0)
tapered in small regions at the two ends of the domain. The other computational
parameters are: N= 4096, M= 4, and time step �t = T0/64 ≡ π/32ω0. With these
parameters, the maximum error (by comparing to simulations obtained with N=8192
and M= 5) in the amplitudes of the carrier wave and sidebands after O(100T0) is less
than 0.1 %. As in standard HOS, energy accumulating at the top of the wavenumber
range is removed by low-pass filtering. For these simulations, typically less than
0.01 % of the total energy is lost per wave period of simulation due to filtering.
Similar to the NLS, the temporal (t) evolution of the HOS wave field for the ith
wave component is compared to the spatial (x) evolution of the wave train in the
experiment by setting t = x/cgi , where cgi is the group velocity of ith component.

In figure 1, HOS results are compared to the experiments of S for the amplitudes
of the carrier wave (a0) and upper and lower sidebands (a±1) as functions of distance
from the wavemaker for the two cases in table 1. The experimental data for the
large-amplitude case, which was not shown in S, were provided by D. Henderson
(one of the authors). As in S, the wave amplitudes are compared in a frame with
decaying effect, e−δex , factored out (for clarity in comparison, the same factor is used
in both Models I and II in plotting the results).
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Figure 1. Comparisons of the HOS simulations (Model I: - - -; Model II: ——) with the
experiments of S (�) for wave amplitudes in the decaying frame. (a, d) Carrier wave a0,
(b, e) lower sideband a−1 and (c, f ) upper sideband a+1 as functions of distance from the
wavemaker for the evolution of small-amplitude (a–c) and large-amplitude (d–f ) wave trains.
(x = 0 is 128 cm from the wavemaker.)

The comparisons between direct simulations and experiments are satisfactory
for both small and large wave trains using either dissipation model, although the
simulations slightly underestimate the lower sideband. In both cases, the simulations
with Model II provide a larger (smaller) prediction of lower (upper) sideband than
those with Model I. In S, the amplitudes of higher harmonic sidebands, a±2 and a±3,
were also obtained. We have also made comparisons of these to the direct simulations.
Overall, the comparisons are also satisfactory and very similar to those in figure 1,
with the results using Model II again generally slightly over/under predicting the
higher harmonic lower/upper sideband amplitudes than those with Model I.

In figure 2, we compare HOS simulations with the measurements of S for the
integral quantities M(x) and P (x). In HOS, M and P are computed using (3.1) with the
complex amplitude of the wave envelope at time t given by ψ(x) = η(x, t)exp(−ik0x),
where η(x, t) is obtained from the simulation. Here M and P are plotted in the original
physical frame instead of the decaying frame since P is not conserved in the decaying
frame. For M , HOS predictions using either dissipation model are satisfactory for
both small and large wave amplitude. For P , the comparisons are more qualitative,
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Figure 2. Comparisons of M and P as functions of distance from the wavemaker between
HOS simulations (with Model I: - - -; and Model II: ——) and the experiments of S (�)
during nonlinear evolution of small-amplitude (a, b); and large-amplitude (c, d); wave trains.

with the Model II HOS predictions apparently better than those using Model I for
the large-amplitude case. In particular, the change of sign of P in the experiment
after some time for this case is predicted by HOS Model II. As reported by S, the
NLS predictions based on (1.1) fail for the large-amplitude case but are satisfactory
for small amplitude (see figure 4 below). We note that the apparent discrepancy
between HOS and the experiment at the initial time in figure 2(b) is due to the
initial condition for HOS not including the bound waves that are present in the
measurements at x = X1.

The sign change of P in figure 2(d) and the prediction of it with dissipation Model
II can be explained heuristically. For ψ(x) =

∑
n ane

in�kx , we have P = 2�k
∑

n n|an|2,
from its definition. Thus, higher-wavenumber upper sideband (n > 0, kn ≡ k0 +
n�k >k0) components contribute positively to P , while lower sideband (n< 0, kn < k0)
components contribute negatively. On the other hand, the dissipation rate in Model II
is proportional to k2 and hence disproportionately damps out the upper sideband
components more rapidly relative to the lower sideband (cf. figures 1(e) and 1(f )
for Model II relative to Model I predictions). For large-amplitude sidebands, this
effect evidently becomes significant enough over time (distance) to cause P to become
negative.

The small- and large-amplitude cases S used are for similar carrier wave steepness
but different perturbation amplitudes (table 1). To understand the effect of larger
carrier wave steepness, we present results for two steeper carrier waves, k0a0 = 0.14 and
0.18. The carrier wavenumber, normalized perturbation wavenumber and amplitude,
and dissipation rate are otherwise the same as those for the small-amplitude case in
table 1. Figure 3 shows the very long-time evolution of P for the steeper carrier wave
cases using direct simulations with different dissipation models. The very long-time
result for the small-wave case is also shown for comparison. With Model II, the value
of P always decreases from positive to negative, reaches a minimum point, and then
increases and approaches zero. The minimum value of P is smaller for larger carrier
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Figure 3. Effect of carrier wave steepness on the long-time evolution of P : (a) k0a0 = 0.10
and �k/k0 = 0.10, (b) k0a0 = 0.14 and �k/k0 = 0.14, and (c) k0a0 = 0.18 and �k/k0 = 0.18;
from measurements of S (�) and HOS simulations with Model I (- - -) and Model II (——).

wave. With Model I, figure 3(c) shows that the asymmetric growth of sidebands
induced by very strong nonlinear wave interactions can also change the sign of P . In
figures 3(b) and 3(c), the initial peaks of P are due to the spread of energy to high
frequency as a result of broadband wave interactions. In all cases, the absolute value
of P eventually decays to zero as the total wave energy diminishes.

4. Modified form of the damped NLS
The results of § 3 suggest that the difficulty in S with the damped NLS (1.1)

for the large-amplitude case, especially in predicting P , might be a result of the
constant-dissipation model used (rather than the other assumptions in the NLS). To
show that this is indeed the case, we make a simple heuristic modification to (1.1) by
incorporating a wavenumber-dependent dissipation model comparable to (2.6):

ψt +
ω0

2k0

ψx + i
ω0

8k2
0

ψxx + i
ω0k

2
0

2
|ψ |2ψ +

(
k2

0ψ − i2k0ψx − ψxx

)
δ2 = 0. (4.1)

The damping term associated with δ2 above is constructed to obtain a dissipation
rate proportional to k2

n for ψ(x) =
∑

n ane
in�kx . Comparing (4.1) and (1.1), and letting

k2
0δ2 = δ, the additional terms introduced are −i2k0ψxδ2 and −ψxxδ2. While the value

of δ2 in (4.1) can in principle again be related to that used in (2.6) by equating
the net energy loss, the direct relationship between HOS with Model II and the
variable-dissipation NLS (4.1) is in general non-trivial. From (4.1), it can be shown
that:

dM

dt
= −

(
2k2

0δ2

)
M − (2k0δ2)P − (2δ2)

1

L

∫
L

|ψx |2 dx (4.2)
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Figure 4. Comparisons of P as a function of distance from the wavemaker between theoretical
predictions using damped NLS equations (1.1) (- - -) and (4.1) (——), and the experiments of
S (�) for (a) small- and (b) large-amplitude waves.

and

dP

dt
= −

(
2k2

0δ2

)
P − (2k0δ2)

1

L

∫
L

4|ψx |2 dx − (2δ2)
i

L

∫
L

(ψxψ
∗
xx − ψ∗

xψxx) dx, (4.3)

where the second and third terms on the right-hand side of (4.2) and (4.3) are
associated with the two additional dissipation terms in (4.1). Because of these terms,
M and P do not decay purely exponentially with time. In particular, the second term
on the right-hand side of (4.3) is negative definite and will always act to reduce the
value of P with time (and possibly from positive to negative). Figure 4 compares the
predictions of P using (1.1) versus (4.1) to the measurements of S for small- and
large-amplitude waves. The modified damped NLS (4.1) provides a qualitatively more
realistic prediction of P for the large-amplitude wave case, in particular capturing
the sign change from positive to negative. Quantitatively agreement however is still
lacking.

5. Dissipation effect on long-time wave evolution
The key conclusion of S, obtained based on (1.1), is that the presence of dissipation,

no matter how small, will eventually stabilize the Benjamin–Feir instability. For
the relatively limited evolution distance allowed by their experimental tank, this is
confirmed (for the small-amplitude wave case). As a final check, we obtain long-time
evolution predictions using direct HOS simulations (with Model II dissipation) as
well as the modified damped NLS equation (4.1) for both small and large wave
amplitudes.

Figure 5 plots the long-time evolution of the amplitudes of the carrier wave and the
first sideband components (in the decaying frame) up to x = 2500 cm ∼ 175λ0. Since
the dissipation rate is now wavenumber-dependent, it is important that the decaying
effect is factored out based on the actual dissipation rate of each wave component, i.e.
exp(−δe(k

2
i /k2

0)x), i = 0, ± 1. From the figure, it is clear that these wave components
all eventually reach stable states. This confirms the general conclusion of S, based
originally on a constant-dissipation NLS model, that the presence of dissipation
eventually stabilizes the Benjamin–Feir instability.

Figure 5 also shows a distinct frequency downshift for the large-amplitude case
(see e.g. Skandrani et al. 1996). In fact the lower sideband amplitude a−1 eventually
becomes greater than that of the carrier wave a0 (in the decaying frame). In the
present context, the frequency downshift depends not only on the parameters of
the wave train but also on the dissipation rate, the latter diminishing the unstable
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Figure 5. Long-time evolution of the amplitudes in decaying frame of (a, d) carrier wave a0,
(b, e) lower sideband a−1 and (c, f ) upper sideband a+1, as functions of distance from the
wavemaker during nonlinear evolution of small- (a–c) and large- (d–f ) amplitude wave trains;
obtained using direct HOS simulations with Model II dissipation (2.6) (——) and the modified
damped NLS (4.1) (- - -).

region and changing the growth rate in time. Indeed, the magnitudes of the frequency
downshift in the cases shown in figure 3(b, c) are much greater than would be obtained
with the most unstable sideband disturbance for these wave trains given by classical
inviscid stability theory.

6. Conclusions
We use direct simulations to address the question, raised in S, of the stability and

evolution of a sideband modulated Stokes wave train in the presence of dissipation.
Our direct simulations, using HOS (with different dissipation models), agree with
the theoretical and experimental predictions of S for small- or moderate-amplitude
waves. For large wave amplitudes, for which the theory and measurements of S
disagree, we find that the discrepancy is primarily due to the form of the dissipation
term used in S. This we confirm by showing that the NLS model equation using a new
wavenumber-dependent dissipation model obtains reasonably satisfactory agreement
with experiments for small and large wave amplitudes. Finally, we confirm by both
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HOS and NLS simulations the theoretical conclusion of S about long-time stabilizing
of the Benjamin–Feir instability in the presence of dissipation.

We gratefully acknowledge stimulating discussions with Professors H. Segur and D.
Henderson who also kindly provided us with the raw data of the experiments in S.
This research is supported financially by grants from the Office of Naval Research.
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