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ABSTRACT

The operational consensus forecast (OCF) scheme uses past performance to bias correct and combine
numerical forecasts to produce an improved forecast at locations where recent observations are available.
Here, OCF uses past observations and forecasts of significant wave height from five numerical wave models
available in real time at the Australian Bureau of Meteorology. In addition to OCF, different adaptive
weighting and forecast combination strategies are investigated. At deep-water sites (ocean depth � 25 m),
all of the interpolated raw model forecasts outperformed 24-h persistence and, after bias correction, one
model was clearly best. Significant improvements over raw model significant wave height forecasts were
achieved by bias correction, linear-regression methods, and combination strategies. The best forecasts were
obtained from a “composite of composites” in which models with highly correlated errors were combined
before being included in the performance-weighted bias-corrected forecast. This technique slightly outper-
formed the linear-regression-corrected best model. At shallow-water sites (ocean depth � 25 m), all raw
models perform poorly relative to the 24-h persistence. The composited, corrected forecasts significantly
improved on raw model significant wave height forecasts but only slightly outperformed the 24-h persis-
tence. The raw models generated unrealistically large biases that tended to be amplified with larger ob-
served values of significant wave height.

1. Introduction

The operational consensus forecast (OCF) scheme
(Woodcock and Engel 2005, referred to hereafter as
WE05) combines forecasts derived from a multimodel
ensemble to produce an improved real-time forecast at
locations where recent observations are available.
Component model biases and weighting factors are de-
rived from a training period of the previous 30 days of
model forecasts and verifying observations. The next
real-time OCF forecast is a weighted average of the set
of latest-available, bias-corrected, component forecasts.
Each component forecast is weighted by the inverse of
the mean absolute error (MAE) of that forecast over
the training period.

In operational daily weather prediction at the Aus-
tralian Bureau of Meteorology (the bureau), OCF com-
bines both operationally available model output statis-
tics forecasts (MOS; Glahn and Lowry 1972) and bilin-

early interpolated direct model output forecasts at over
700 sites twice daily from 0 to 7 days ahead. OCF su-
perseded MOS as the official objective forecast guid-
ance in March 2005.

This study employs OCF to generate 24-h predictions
of significant wave height at 18 wave observation loca-
tions around Australia. Direct model output forecasts,
interpolated from numerical wave models (five models
for deep-water sites and four for shallow-water sites),
provide the underlying component forecasts in the
OCF composite. The main objective is to investigate
whether OCF improves on its component forecasts.
Additionally, several modifications to the WE05 OCF
procedure were undertaken to investigate the impacts
from variations in training-period and combination
strategies.

Typical operational global wave models provide
wave forecasts that are skillful only in water depths
greater than about 25 m (Booij et al. 1999). This is
mainly due to their lack of detailed shallow-water phys-
ics and bathymetry (e.g., see Gorman et al. 2003). The
observations for this study were obtained from buoys
located in both shallow and deep water. The inclusion
of shallow-water sites (several being within the complex
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bathymetry of the Great Barrier Reef) provides an op-
portunity to investigate the provision of accurate fore-
casts in shallow water. Additionally, it can provide a
benchmark for future evaluations of shallow-water
wave models.

The observational data and numerical models are de-
scribed in section 2, details of the method in section 3,
results in section 4, while section 5 contains a summary
of the work and some potential avenues for improve-
ment.

2. Data

Observational data and model forecasts used in this
study were from 1 November 2003 for buoys in a depth
of less than 25 m (i.e., shallow water) and from 16 July
2004 for deep-water buoys until 31 May 2005. These
periods differed because one model used for deep wa-
ter was only available at the bureau after July 2004 and
it does not provide shallow-water predictions.

The study was based on operationally available data.
As such, there were frequent occasions when model
predictions and/or observational data were unavailable.
Missing data were far more prevalent than in WE05,
which led to a modification from the WE05 scheme to
minimize the impact of missing data when comparing
OCF with other bias-correction and compositing
schemes. Here, the training set consisted of the imme-
diate prior n events, where an event is a single occasion
when all forecasts and their verifying observations are
present. This restriction differs substantially from the
operational OCF where depleted component sets and
up to half the observations in the learning window are
tolerated before OCF is discontinued until sufficient
observations are available for learning to resume. The
restriction was imposed on the assumption that the
more complex regression methods of bias correction
and compositing could perform poorly compared to
OCF when data were missing from the training period.
The results comparing performance with varying train-
ing periods (section 4e) justifies this assumption. The
intention was to enable an identical treatment of all
experimental methods and their verification over
matching events.

Bias-correction and compositing parameters were al-
lowed to persist across missing data sequences rather
than be relearned whenever the daily sequence of
events dropped below the nominated training period
number. This change from the operational OCF was
implemented both to offset the impact of missing data
in the comparison of methods and to permit the use of
additional sites with relatively few observations by
avoiding any additional verification data loss imposed
by relearning.

a. Observations

Observations from the Australian national wave data
network were used to bias correct, weight, and verify
the forecasts. The locations of the observation sites are
shown in Fig. 1 with the details of each instrument listed
in Table 1. Note that the locations included 13 deep-
water sites and 5 shallow-water sites.

The observations within the Australian national
wave data network are predominantly from Waverider
buoys. The basis of the Waverider buoy system is a
spherical buoy tethered by a mooring to follow the ver-
tical motions of the water surface. Within the buoy an
accelerometer is mounted to detect only the vertical
movement of the buoy as it rides on the water surface.
Directional Waverider buoys detect the horizontal mo-
tion of the buoy as well as the vertical movement and
hence are able to calculate the direction of the wave
motion. The directional information from these buoys
however is not used in this study. The laser wave gauge
uses a laser mounted above the water surface to mea-
sure the surface displacement.

Vertical accelerations from the Waverider buoys are
integrated to obtain the surface displacement for a sub-
set of each hour—typically 20–30 min. The time series
of surface displacements are then analyzed to produce
hourly significant wave heights Hs, where Hs is calcu-
lated by using

Hs � 4�m0

and m0 is the variance of the surface displacement time
series. Here, Hs is approximately equal to the average
of the highest one-third of the waves. The estimated
sampling error of the buoy measurements of Hs is 7%–
8% of the observed value (Donelan and Pierson 1983;
Monaldo 1988).

The last column in Table 1 lists the number of veri-
fiable, independent forecasts using a running 29-event
training set. The large variations are due to both dif-
ferent study periods for deep and shallow sites and
variations in the availability of the observations.

b. Models

Numerical forecasts from five wave models were con-
sidered. These are all available in real time at the bu-
reau. Table 2 lists some of their details.

The first three models are implementations of
AUSWAM, a version of the third-generation Wave
Model (WAM; WAMDI Group 1988; Komen et al.
1994). All three versions of AUSWAM cover the Aus-
tralian region with different domain sizes, different spa-
tial resolutions, and different sources of wind forcing.
WAMMES is nested within WAMAUS, which in turn
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is nested within WAMGLOB. Specific details of the
operational implementations of AUSWAM can be
found in National Meteorological and Oceanographic
Centre (1999) and Greenslade (2001).

The fourth model used in this work is the wave model

run operationally at the Met Office (UKMO). It is a
second-generation wave model that includes the assimi-
lation of altimeter wave heights (Holt 1997). The final
model used is the operational wave model from the
National Centers for Environmental Prediction

FIG. 1. Location of the observation sites (see Table 1). The shallow-water sites are indicated with triangles.

TABLE 1. Details of the observation sites used (see Fig. 1). Here, WMO refers to the number assigned to the location by the World
Meteorological Organization. Instrument types are Waverider (W), directional Waverider (DW), and Laser Wave Gauge (LWG).
Owners of the datasets are the Manly Hydraulics Laboratory (MHL); the Environmental Protection Agency (EPA), Queensland,
Australia; Western Australia Department for Planning and Infrastructure (DPI); Woodside Petroleum Ltd. (Wood); Bureau of
Meteorology (BoM); and Esso Australia Ltd. (ESSO). Entries in italics refer to the buoys that are designated “shallow water.”

WMO Name Lat (°S) Lon (°E) Depth (m) Type Owner No. of forecasts

52121 Weipa 12.68 141.75 7 W EPA 1405
55017 Byron Bay 28.69 153.73 72 DW MHL 91
55018 Coffs Harbor 30.35 153.27 73 W MHL 91
55019 Crowdy Head 31.83 152.86 79 W MHL 64
55020 Eden 37.29 150.18 110 W MHL 91
55022 Port Kembla 34.48 151.03 78 W MHL 86
55024 Sydney 33.77 151.42 85 W MHL 545
55026 Strahan 42.08 145.01 100 W BOM 528
55028 Cairns 16.73 145.71 14 W EPA 1683
55029 Townsville 19.16 147.06 20 DW EPA 58
55032 Hay Point 21.27 149.31 10 W EPA 92
55033 Emu Park 23.31 151.07 22 DW EPA 1526
55035 Brisbane 27.49 153.63 70 DW EPA 568
55039 Kingfish B 38.60 148.19 78 LWG ESSO 578
55040 Cape du Couedic 36.07 136.62 80 W BoM 538
56002 North Rankin 19.59 116.14 125 W Wood 447
56005 Rottnest 32.11 115.40 48 W DPI 90
56006 Cape Naturaliste 33.36 114.78 50 W DPI 522
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(NCEP). This model is the WAVEWATCH III
(WWIII; Tolman 1991): a third-generation wave model
developed at NCEP and similar to the WAM model.
WWIII, however, differs in areas such as the model
structure, the numerical methods, and the physical pa-
rameterizations. The global version of WWIII operates
only to a minimum depth of 25 m, so shallow-water
predictions of Hs derived from WWIII were unavail-
able.

The models that include shallow-water physics (see
Table 2) generally do so in only a limited way. In par-
ticular, the only shallow-water effects explicitly in-
cluded in WAMMES are the dissipation of energy due
to bottom friction and the alteration of the dispersion
relation to depend on depth, which results in modifica-
tions to the source terms. WWIII and the UKMO
model include these effects and also refraction and
straining of the wave field.

It is important to note that, while the basic physics of
some of the models are similar (e.g., WAMGLOB and
WAMAUS), all five models have different wind forc-
ings and spatial resolutions, while some include data
assimilation and some include shallow-water physics.
These different configurations generate errors that vary
between the models and thereby enhance the likeli-
hood of improved forecasts from a consensus of bias-
corrected model forecasts—the success of compositing
techniques depends in part upon the extent to which
these errors are random and out of phase.

3. Method

The 24-h model forecasts of Hs were generated at the
observation sites every 12 h by cubic spline interpola-
tion from the nearest model grid points to the observa-
tion location. The verifying observation was the closest
(in time) observation within an hour of the forecast.

It should be noted that observations of Hs are aver-
ages in time at individual locations while the model
forecasts are expected values of Hs over an area (the
model grid box) and a time period (the model time
step). So all estimates of Hs used here, including the
different model forecasts, represent different spatial
and temporal scales.

Following the OCF methodology, bias correction is
undertaken on a training set of events for each compo-
nent model contributing to the final forecast. The train-
ing set bias is estimated from the component errors
using the best easy systematic estimator (BES; Wonna-
cott and Wonnacott 1972, their section 7.3), where

BES � �Q1 � 2Q2 � Q3��4,

where Q1 and Q3 are the first and third quartiles of the
training set and Q2 is its median. To simplify our com-
putations here, training sets were restricted to E � 1
members where E is a multiple of 4. Hence, in the
experiments, training windows were allowed to vary
from 5 to 57 events.

The internal methods are those in which the model
forecast is corrected according to a training set based
on that particular model. Two internal methods were
used to modify the direct model output forecasts. The
first was a simple bias correction using BES. The sec-
ond was a least squares linear-regression correction
whereby a linear-regression equation between the pre-
dictands (observations) and predicators (direct model
outputs) was generated and then applied to the next
forecast.

Several forms of compositing (combining forecasts)
were investigated. The simplest is the average of all
components, referred to here as equal weighting since
the components are equally weighted. Performance
weighting combines the forecasts according to their
performance over a training set. Procedures such as
OCF combine forecasts using weights according to the
MAE of the bias-corrected component forecasts. Here,
we follow Daley (1991) and use error variance weights
in performance-weighted compositing. In practice, the
differences resulting from the use of error variance
weights instead of MAE weights is negligible. A short
time series of the performance-weighted bias-corrected
composite forecast (i.e., OCF) and the raw model fore-
casts for site 55026 (Strahan) is provided in Fig. 2: the
WAMGLOB and WAMAUS forecasts were withheld
from the plot for clarity.

One external method wherein all component fore-
casts are treated simultaneously was used. A multilin-
ear-regression equation was generated from the train-

TABLE 2. Characteristics of wave models.

Model Center Domain Spatial resolution Wind forcing Data assimilation? Shallow water?

WAMGLOB BoM Global 1° 3-hourly Yes No
WAMAUS BoM Regional 1/2° 1-hourly Yes No
WAMMES BoM Regional 1/8° 1-hourly No Yes
UKMO Met Office Global 5/6° � 5/9° 1-hourly Yes Yes
WWIII NOAA Global 5/4° � 1° 3-hourly No Yes
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ing set for all models: a procedure somewhat akin to a
running multimodel MOS with the derived Hs as model
predictors and the observed Hs as the predictand. In an
operational weather prediction scheme servicing sev-
eral weather elements per site over hundreds of sites, a
running multimodel, multilinear-regression option may
not be viable. However, here we only have one element
(Hs), 13 sites, and only four or five predictors.

Finally, we generated forecasts by using the linear-
regression coefficient and intercept derived from the
best-performing linear-regression-corrected compo-
nent in the training period at a site and applying them
to the corresponding next independent component
forecast for that site (i.e., the coefficient and intercept
values change for every forecast).

In summary, the following comparisons were under-
taken:

• training-window variations in steps of 4 for 5 to 57
verifiable events;

• internal linear-regression correction and bias-
correction forecasts;

• equal-weighted and performance-weighted compos-
ites;

• multimodel, multilinear-regression compositing
(MM); and

• best linear-regression-corrected component forecast
(BELC).

All bias-correction, linear-regression-correction,
MM, and BELC comparisons are undertaken over cor-
responding, matching events (i.e., identical verifying
sets and training windows). Matching 24-h persistence
forecasts were generated as a benchmark.

4. Results

In this section, only the results from runs using a
running 29-event training period are presented in de-
tail. They represent the sequence-independent fore-
casts (i.e., forecasts following the training sets). The
impact of varying training window size is discussed in
section 4e. All 29-event results cover exactly the same
events. Summary statistics were generated for each site
and then combined in Tables 3 and 4.

Verification statistics include bias, MAE, RMSE
[median and its 90% confidence interval generated us-
ing the bootstrap method (Efron and Tibshirani 1991)
with 106 iterations], XAE, scatter index (SI% � 100 �
standard deviation normalized by the observation
mean), and percentage of explained variance (V% �
100 � square of the correlation between forecast and
observation). Statistics were calculated separately at
each site and then consolidated using event frequency
weightings.

a. Deep water

Table 3a summarizes the performance of the inter-
polated raw model forecasts. These results are calcu-
lated based on 4239 independent forecasts over 13
deep-water sites for the 29-event training period.
WWIII significantly (more than 95% level based on
RMSE) outperformed all of the other models. It
yielded the lowest MAE, RMSE, XAE, and SI%, as
well as the largest V%. Nevertheless, there was consid-
erable variation across sites with every raw forecast
scheme outperforming the others for at least one site.

FIG. 2. Time series of raw model and OCF composite errors (m) for site 55026. Raw
WAMGLOB and WAMAUS errors were withheld from the plot for clarity. The line linking
OCF errors has also been included for clarity.
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Component model biases exceeding 0.5 m occurred at
some sites. However, all raw model forecasts produced
more favorable error statistics than did persistence.

Table 3b summarizes the performance over the same
events as Table 3a but with the forecast bias over the
previous 29 events removed. Bias correction improved
on the raw forecast results by approximately 10%–
15%. The bias-corrected WWIII clearly outperforms
the other bias-corrected models. This result contrasts
markedly with WE05 where all of the bias-corrected
model forecasts showed similar accuracy.

Equal-weighted and performance-weighted compos-
ites of the bias-corrected forecasts are included in Table
3b. The OCF strategy (i.e., performance-weighted bias
correction) yields approximately a 15% improvement
on the raw WWIII forecasts. Bias correction alone im-
proved WWIII by 13% so that compositing was not the
dominant factor in forecast improvement. OCF margin-
ally outperformed equal-weighted bias correction, so it
could be noted that even though WWIII was the best
individual corrected model, the inclusion of other mod-
els in the compositing provided some further small im-
provement.

The impact of linear-regression correction on the raw
model forecasts is shown in Table 3c. For the U.K. and

Australian models the improvement due to linear-
regression correction and bias correction was similar.
However, WWIII improved more from linear-
regression correction than from bias correction. It sig-
nificantly outperformed the other corrected models.
The impact of linear regression increased the gap in
performance between WWIII and the other models,
and hence compositing was less beneficial than with
bias correction. In fact, neither equal-weighted nor per-
formance-weighted composites outperform the linear-
regression-corrected WWIII. The multimodel linear re-
gression (MM in Table 3c) marginally outperformed
the internal linear-regression schemes and was espe-
cially useful in reducing the XAE.

Applying linear regression to the best of the raw
forecasts in the training period and using the regression
equation on the next corresponding forecast (BELC)
produced forecasts that matched the linear-regression-
corrected WWIII and the composites for accuracy.

Table 3d compares the performance of the experi-
mental results with the average of the five raw models.
Composite forecast statistics improved the average raw
model forecast statistics by between 15% and 30%. At
9 out of the 13 deep-water sites performance-weighting
methods including MM (3 sites) produced the lowest

TABLE 3b. As in Table 3a but applying a bias correction developed from the training window. Here, EW BC refers to the
equal-weighted bias-corrected composite and OCF refers to the performance-weighted bias-corrected composite.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 	0.02 0.40 0.55 0.53 0.57 2.79 29 55
WWIII 0.00 0.31 0.46 0.43 0.49 2.69 24 72
WAMGLOB 	0.02 0.38 0.53 0.51 0.56 3.01 28 55
WAMAUS 	0.01 0.36 0.52 0.49 0.54 2.81 28 59
WAMMES 0.00 0.34 0.51 0.49 0.54 2.72 26 61
EW BC 	0.01 0.30 0.44 0.41 0.47 2.48 23 70
OCF 0.00 0.29 0.42 0.40 0.45 2.59 23 70

TABLE 3a. Verification of interpolated raw model 24-h forecasts of significant wave height at 13 deep-water sites over 4239 forecasts
per model. Here, SI is the percentage (standard deviation of forecast errors)/(mean of observations). Bias, MAE, RMSE, and maximum
absolute error (XAE) are in m. In addition, V% is the percentage of variance in the observed significant wave height explained by the
forecasts. The 90% confidence intervals for the overall best raw model forecasts RMSE are included. Persistence is the 24-h persistence
forecast. The best results for the table are in boldface.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 	0.02 0.47 0.64 0.62 0.66 2.83 33 52
WWIII 0.14 0.36 0.53 0.50 0.55 2.77 27 70
WAMGLOB 0.07 0.43 0.59 0.57 0.62 2.92 32 51
WAMAUS 0.08 0.43 0.59 0.57 0.62 2.80 33 57
WAMMES 	0.01 0.39 0.56 0.54 0.59 2.87 30 62
Persistence 0.00 0.55 0.80 0.77 0.83 3.89 41 52
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RMSE. At one site (55039), the raw model forecasts
from WWIII recorded the lowest RMSE of all. Gener-
ally, performance-weighted linear-regression correc-
tion outperformed both the best raw forecast and the
best bias-corrected forecast scheme. However, the best
linear-regression-corrected model was slightly better
than the performance-weighted linear-regression-
corrected composite and as good as OCF.

If most weight is placed on the RMSE, then the re-
sults for deep-water sites indicate the following.

• One raw model (WWIII) significantly outperformed
the others and did so after bias correction and linear-
regression corrections were applied to all.

• Learned correction strategies (either bias correction
or linear-regression correction) substantially im-
proved upon the raw forecasts.

• Linear-regression-correction methods performed
similarly to bias-correction methods.

• Compositing of corrected forecasts substantially im-
proved on the average bias-corrected error.

• If anything, performance-weighting composites
methods slightly outperformed equal-weighting com-
posites.

• In hindsight, the linearly corrected best model was as
good as the best composite. This is discussed further
in section 4d.

b. Shallow water

WWIII model forecasts were unavailable for the
shallow-water sites so only four numerical models were
used. This permitted more events (19 months for shal-
low water as opposed to 10.5 months for deep water) to
be examined.

TABLE 3c. As in Table 3b but applying linear-regression corrections derived from the training window. Here, EW LC refers to the
equal-weighted linear-regression-corrected composite, PW LC is the performance-weighted linear-regression-corrected composite,
BELC is the best linear-regression-corrected component forecast (see text for details), and MM is a multimodel linear-regression
composite.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 	0.02 0.39 0.55 0.53 0.57 2.81 29 53
WWIII 0.01 0.29 0.42 0.40 0.45 2.60 22 72
WAMGLOB 0.00 0.38 0.54 0.51 0.56 3.15 28 54
WAMAUS 0.00 0.36 0.51 0.48 0.53 2.93 27 58
WAMMES 0.00 0.34 0.49 0.46 0.51 2.96 26 61
BELC* 0.00 0.31 0.43 2.54 23 69
EW LC 0.00 0.31 0.44 0.42 0.47 2.66 23 68
PW LC 0.02 0.32 0.43 0.41 0.46 2.61 24 70
MM 0.01 0.30 0.43 0.41 0.46 2.54 22 69

* The mean not the median value.

TABLE 3d. Improvement impacts of bias correction (BC), linear-regression correction (LC), and equal-weighted (EW) and perfor-
mance-weighted (PW) compositing over the average raw model for deep-water events. BELC and MM are as in Table 3c. The 24-h
persistence is included. “Best” refers to the best overall single model, i.e., hindsight selection, and for raw, BC, and LC it was WWIII.

Model MAE (m) RMSE (m) XAE SI% V%

Avg raw 0.42 0.58 2.84 31.0 58.4
Improvement over avg of raw models (%)

Best raw 13 9 2 13 20
Avg BC 14 12 1 13 3
Avg LC 15 14 	2 15 2
Best BC 25 21 5 23 23
Best LC 30 28 8 29 23
PW BC (i.e., OCF) 30 28 9 26 20
EW BC 28 24 13 26 20
PW LC 23 26 8 23 20
EW LC 25 24 6 26 16
MM 28 26 11 29 18
BELC 25 26 11 26 18
Persistence 	32 	37 	37 	32 	11
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Comparing the corresponding raw forecast results in
Table 3a (deep water) with Table 4a (shallow water)
reveals that model biases in shallow water are a signifi-
cant problem. The three coarser-resolution models
have biases of the order of 0.5 m while the WAMMES
bias is half that. WAMMES, which includes bottom
friction, a depth-dependent dispersion relation, and
higher spatial resolution, significantly outperformed
the other models. Nevertheless, the 24-h persistence
forecasts overall were significantly better than any
model forecasts.

The poor performance of the models in shallow wa-
ter compared to deep water is probably due to the ab-
sence of both shallow-water physics and to their rela-
tively coarse resolution. The shallow-water buoys are
generally closer to the coastline and effects due to com-
plex reef topography and bathymetry, such as shelter-
ing, are more important. Coarse-resolution models will
not be able to capture these dynamics accurately. Fig-
ure 3 illustrates a large bias in the raw model forecasts
that often exceeds the observed Hs and which appears
to be amplified whenever the observed Hs increases.

The reason for including shallow-water sites in this
work is to examine whether it is possible to make
simple corrections to accommodate shallow-water ef-
fects. For example, a simple linear regression may be
appropriate for adjusting the offshore wave height as
it approaches the shore (see, e.g., Hemer and Bye
1999).

Not surprisingly, the impact of bias correction was
substantial, as Table 4b shows. All of the bias-corrected

model forecasts significantly outperformed their raw
counterpart and even the best raw model. The bias-
correction error statistics indicated about a 45% im-
provement over the raw models. After bias correction
all model performances are similar, which is a corre-
sponding result to WE05. Performance-weighted and
equal-weighted composites improved on the individual
bias-corrected models by 15% and performed slightly
worse than did the 24-h persistence. OCF again slightly
outperformed the equal-weighted bias correction.
However, note that the SI% and V% statistics are poor
compared to their deep-water equivalents. For opera-
tional forecasts, a value of SI � 30% shows reasonable
skill. This means that even though the RMSE is low
compared to deep water, this is an artifact of the lower
Hs in shallow water and the forecast skill here is still
poor.

Table 4c shows that the linear-regression correction
markedly improves over the bias correction in shallow
sites. The linear-regression and MM composites pro-
duced very similar results and were about 20% better
than the bias-corrected composites (probably reflecting
the amplification of bias whenever Hs increases, as seen
in Fig. 3) and outperformed the 24-h persistence. How-
ever, as V% indicates, only a little more than half of the
variance in Hs was explained by the corrected model
forecasts, and the high SI% values again indicate that
the forecast skill is poor.

Table 4d summarizes the shallow-water site results
showing the relative performance of the various correc-
tions and composites against the average of the raw

TABLE 4a. As in Table 3a but for five shallow-water sites and 4851 forecasts.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 0.54 0.57 0.72 0.70 0.74 3.42 79 49
WAMGLOB 0.53 0.56 0.67 0.65 0.70 3.37 73 41
WAMAUS 0.48 0.52 0.64 0.62 0.65 3.62 72 48
WAMMES 0.23 0.43 0.56 0.53 0.59 3.75 72 53
Persistence 0.00 0.17 0.28 0.26 0.33 3.06 48 51

TABLE 4b. As in Table 3b but for five shallow-water sites.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 0.01 0.23 0.36 0.33 0.40 3.05 72 48
WAMGLOB 0.00 0.23 0.35 0.33 0.41 3.04 71 40
WAMAUS 0.01 0.21 0.35 0.32 0.41 3.21 67 46
WAMMES 0.01 0.20 0.36 0.32 0.41 3.41 65 50
EW BC 0.01 0.18 0.31 0.28 0.38 3.08 66 52
OCF 0.01 0.17 0.30 0.28 0.36 3.00 66 53
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numerical models. Essentially, all of the linear-
regression composites, including MM, improved over
persistence.

To summarize, for shallow-water sites the following
was found.

• The 24-h persistence forecasts outperformed all of
the raw model forecasts.

• One raw model was significantly better than the oth-
ers, but after bias correction and linear-regression
correction, they all performed similarly.

• Learned correction strategies (either bias correction
or linear regression) significantly improved upon the
corresponding raw forecasts. However, the linear-
regression improvements were substantially more
than bias-correction improvements.

• Compositing of corrected forecasts substantially im-
proved on the average bias-corrected error.

• Performance-weighting composites of bias-corrected
forecasts slightly outperformed equally weighted
composites but no difference was evident for linear-
regression-corrected forecast composites.

• Linear-regression composites outperformed persis-
tence.

• In hindsight, the corrected best model was as good as
the best composite.

• None of the methods produced a forecast that was
acceptable for operational forecasting (using a 30%
threshold for SI).

These results suggest that in order to improve fore-
casts of Hs in shallow water, specialized shallow-water
wave models are necessary.

c. Correction methodology

Both shallow- and deep-water site results provide
strong evidence that simple running corrections to
model forecasts can result in significant forecast im-
provements. This result is consistent with several other
studies in numerical weather prediction, for example,
Mao et al. (1999) using multivariate linear regression to
predict numerical forecast error and Stensrud and
Skindlov (1996), Stensrud and Yussouf (2003, 2005),
and WE05 using bias correction.

TABLE 4c. As in Table 3a but for shallow-water sites.

Model Bias (m) MAE (m)

RMSE

XAE SI% V%Median (m) 5% 95%

UKMO 0.01 0.16 0.31 0.29 0.34 2.53 56 50
WAMGLOB 0.01 0.17 0.30 0.30 0.35 2.52 59 43
WAMAUS 0.00 0.15 0.29 0.28 0.33 2.68 58 49
WAMMES 0.01 0.14 0.27 0.26 0.32 2.43 57 54
BELC* 0.02 0.15 0.28 2.53 56 50
EW LC 0.01 0.14 0.26 0.25 0.33 2.28 56 54
PW LC 0.01 0.14 0.26 0.24 0.32 2.33 53 53
MM 	0.01 0.14 0.26 0.25 0.32 2.72 58 54

* The mean not the median value.

TABLE 4d. As in Table 3d but for five shallow-water sites. Best for raw, BC, and LC was WAMMES.

Model MAE (m) RMSE (m) XAE SI% V%

Avg raw 0.53 0.65 3.54 74.0 47.8
Improvement over avg of raw models (%)

Best raw 19 14 	6 3 11
Avg BC 59 45 10 7 	4
Avg LC 71 55 28 22 3
Best BC 62 44 4 12 5
Best LC 74 58 31 23 13
PW BC (i.e., OCF) 68 54 15 11 11
EW BC 66 52 13 11 9
PW LC 74 60 34 28 11
EW LC 74 60 36 24 13
MM 74 60 23 22 13
BELC 72 57 29 24 5
Persistence 68 57 14 35 7
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Tables 3b and 3c compare the bias-correction and
linear-regression-correction impacts on individual
model forecasts of Hs at deep-water sites. Significant
(5%) improvements (in RMSE) of linear-regression
correction over bias correction were evident for the two
better models (WWIII and WAMMES). A slight im-
provement was evident for WAMAUS and no change
was detectable otherwise. For shallow-water sites
(Tables 4c and 4d), linear-regression correction signifi-
cantly (95% level) outperformed bias correction for
each model by about 20% on average.

For both shallow- and deep-water sites, linear-
regression correction provided significant improvement
over bias correction for the best individual models.

d. Compositing methodology

The equal-weighted bias correction and OCF in
Tables 3b and 4b agree with the results from WE05
indicating that performance-weighted composites
slightly outperform equal-weighted composites. How-
ever, there was no evidence that performance weight-
ing outperforms equal weighting when a linear-
regression correction is employed (see Tables 3c and
4c).

For deep-water sites OCF provided the most success-
ful composite forecast, whereas at shallow sites, linear-
regression-corrected composites performed best. Both
internal compositing methods slightly outperformed
MM in both deep and shallow water.

The BELC experiment whereby the regression coef-
ficient and intercept from the best linear-regression-
corrected component within the training set were ap-
plied to the next forecast from that component shows

that the method performs almost as well as the best
overall linear-regression-corrected model. This is evi-
dent by comparing BELC with WWIII in Table 3c for
deep water and BELC with WAMMES in Table 4c for
shallow water.

A common result in both deep and shallow water was
that the linear-regression-corrected best-in-hindsight
forecast model performed close to the best of the com-
posite forecasts without the benefit of hindsight. This
result may suggest that compositing could be avoided,
but as Hibon and Evgeniou (2005) suggest, this hind-
sight information may not be of much practical value in
operations.

A l t h o u g h W A M G L O B , W A M A U S , a n d
WAMMES all have different spatial resolutions and
different wind forcing fields, the nesting procedure
raises the possibility that their errors would be highly
correlated and in phase. Therefore, there is the poten-
tial to improve the OCF results by using only one of
these models. This possibility was investigated. The av-
erage pairwise correlation of errors for the three Aus-
tralian models was 0.78 while the remaining pairwise
correlations averaged 0.58. Thus, there is considerable
redundancy of information among the Australian mod-
els.

The impact of error cancellation due to the compos-
iting of component model forecasts can be investigated
using the difference between the event average of the
individual model bias-corrected absolute errors and the
absolute value of the corresponding average bias-
corrected error. If all of the errors have the same sign,
the difference between these averages is zero, whereas
if cancellation had maximum impact, then the differ-

FIG. 3. Raw model forecasts and observed significant wave heights (Hs; m) at the shallow-
water site 55028 (Cairns). Note that the model forecasts are often more than twice the
observed value and the errors are accentuated whenever the observed Hs increases.
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ence would be the average of the absolute errors. Nor-
malizing the outcomes by the average of the absolute
errors produces a cancellation index between 0% when
there is no benefit from error cancellation and 100%
for the maximum benefit of cancellation. The index can
then be averaged over all events to give a measure of
which combinations are most useful. The average can-
cellation index for the three pairwise Australian model
combinations was 6.4% compared to an average of
12.8% for the remaining combination of pair.

Hence, both cross-correlation and cancellation im-
pact considerations suggest that a better result could be
achieved by using only one of the Australian models, or
better, by consolidating them. A comparison of the re-
sulting OCF (consolidated Australian models, the
UKMO model, and the WWIII), the original OCF
(Table 3b), and the linearly corrected WWIII (Table
3c) is provided in Table 5. As expected, the consoli-
dated OCF slightly outperforms the original OCF. It
also outperforms the linearly corrected WWIII.

e. Training period

The impact of different training periods on the com-
positing method performance was consistent across
deep- and shallow-water sites. Bias-correction methods
stabilized by five or nine events with only negligible
changes in bias, MAE, RMSE, SI, or V with further
increases in training set size. The errors of the linear-
regression-corrected composites decreased more slowly
as the training set increased but had stabilized by 13
events. As would be expected, MM performed poorly
with a small training set but stabilized by 17 events and
continued to exhibit very small improvements as the
training set size increased thereafter. The results for
bias correction agree with those of Stensrud and Yus-
souf (2005) and WE05.

5. Summary and further work

The OCF scheme has been applied to forecasts of Hs,
in both deep and shallow water, at locations where ob-
servations of Hs are available. Our shallow-water re-
sults differed markedly from those in deep water. Four

of the shallow-water sites are within the complex
bathymetry of the Great Barrier Reef, where models
have insufficient spatial and bathymetric resolution and
shallow-water physics needed for the task. Day-to-day
variations in Hs in shallow water are small compared to
deep water; consequently, the 24-h persistence proved a
far better predictor than the wave models in shallow
water. The best model in shallow water was the highest-
resolution model, WAMMES, but as the bias correc-
tion shows this was due to its smaller bias. Once bias
was removed, the models performed similarly in cap-
turing about 50% of the daily variation in Hs. This re-
sult suggests that to capture the dynamics of shallow-
water waves accurately, a specialized shallow-water
wave model, such as the Simulating Waves Nearshore
model (SWAN; Booij et al. 1999) may be needed.

In deep water, the models performed far better than
persistence. The best forecasts were obtained from a
“composite of composites” in which models with highly
correlated errors were combined before being included
in the performance-weighted bias-corrected forecast.
This technique slightly outperformed the linear-
regression-corrected best model.

The broad conclusions are that

• in deep water, a 20%–30% improvement over model
forecasts of Hs can be achieved using the OCF strat-
egy of performance-weighted compositing of bias-
corrected model forecasts; and

• in shallow water, the strategy of compositing model
forecasts after linear correction can yield a 60%–70%
improvement over raw model forecasts of Hs.

Multimodel, multilinear regression, the most com-
plex of the correction and compositing schemes, was as
good as other correction and composite strategies used,
but no better than the simpler strategies.

Potential for improvement

There are various avenues that could be pursued to
improve these results. One option is to include more
and better wave models in the compositing. The
present study was limited to those models that were

TABLE 5. As in Table 3a but a comparison of a composite from (WAMGLOB � WAMAUS � WAMMES)/3, and U.K. and
WWIII models against OCF (as in Table 3b) and against the linear-corrected WWIII (as in Table 3c).

Model Bias (m) MAE (m) RMSE (m) XAE SI% V%

OCF (composite) 	0.01 0.28 0.40* 2.47 22 73
OCF 0.00 0.29 0.42 2.59 23 70
WWIII 0.01 0.29 0.42 2.60 22 72

* The mean not the median value.
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available in real time at the bureau; however, there are
numerous forecasting centers that operate global wave
models (see, e.g., Bidlot et al. 2002) and further benefits
might be expected with the use of models from other
centers.

Further work could improve the use of observational
data, for example, by smoothing the hourly buoy data
over several hours to represent model time scales bet-
ter. This study has not addressed forecasts of wave pe-
riod but could be extended to do so. The inherent noisi-
ness of the peak-period data, however, suggests that it
would be difficult to obtain significant improvements in
forecasts of peak period through compositing. Mean
wave period could be a viable alternative, although it is
less commonly used as a forecast product. The exten-
sion of the technique to use wave direction data (if
available) in a multivariate scheme might improve the
results at the shallow-water sites.

There is ongoing research at the bureau to extend the
site-based NWP OCF scheme to a grid-based scheme
and thus provide corrected forecasts at every grid point
in a domain instead of just those locations at which the
observations are routinely available. If multiple surface
wind fields were available, the OCF technique could be
applied to obtain the best possible forecasts of surface
marine winds, perhaps using scatterometer data as the
verifying observations. The resulting surface wind fore-
casts could then be used to force a wave model. Under
the assumption that most of the error in wave forecasts
arises from errors in the surface winds (in deep water at
least), this should lead to improved predictions of
ocean waves.

There are also connections here with data assimila-
tion methods that could be explored further. For ex-
ample, the corrections based on the training sets could
feed into estimates of the magnitude of the model pre-
diction error that are required for data assimilation
schemes. Indeed, the relationship between the correc-
tions at neighboring sites could shed some light on the
spatial scales of the model error, another little known
but essential component of data assimilation schemes
(see, e.g., Greenslade and Young 2004).
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