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The linear superposition model is a common and useful tool to deal with irregular wave 
problems. However, time-series of surface and other wave related quantities created by 
this method do not contain higher order components. To enhance the capability of the 
method with respect to nonlinearity, a superposition method based on a LAGRANGEian 
view of the linear wave theory (superposition of orbital positions rather than EULERian 
components) is performed. The method is demonstrated on examples of regular waves 
and irregular wave trains in deep water, but can be applied in shallower water, too. 

1. Introduction 

To deal with irregular sea waves (e.g create time-series of surface and 
kinematics for theoretical investigations, hydraulic model tests, and numerical 
calculations, or simulate zero-crossing wave height and period statistics), the 
linear superposition model is a most common and useful tool. But time-series 
generated by this method do not contain higher order components and bound 
long waves, when superposition is carried out in the usual EULERian way. 

One step towards inclusion of higher or lower order components is what 
e.g. Sand (1982) and Sand and Mansard (1986) have introduced with 2nd order 
higher harmonics and bound long waves. 

Woltering (1996) followed an other way during investigations of wave 
kinematics in regular waves. It came out, that a LAGRANGEian approach gives 
information on higher harmonics (usually named as nonlinearities) 
straightforward from elements of linear wave theory. This approach will be used 
in the following to include nonlinearities in irregular wave trains. 

2. LAGRANGEian Treatment of Regular Waves in Deep Water 

The LAGRANGEian approach is demonstrated by the example of the surface of a 
regular wave in deep water. The following Figure 1 is well known as the 
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principle, to explain how a wave surface propagates, related to the orbital 
movement of water particles. 

 

 
 

Figure 1: Surface of a regular deepwater wave (H = 20 m, T = 10 s) from LAGRANGEian treatment of 
linear wave theory 

 
A precise construction of the surface from the (circular) orbital path 

obviously does not result in the sinusoid of the linear theory (but in a highly 
nonlinear surface) and corresponds to the results of the first wave theory 
published by Gerstner (1804), which in the literature often is mentioned as an 
exact solution (e.g. Wiegel 1964). 

Such a surface in space can be calculated with the formulae given by the 
theory of Gerstner. However, we get the same results by using the equations of 
the orbital path from the linear wave theory and calculate the surface as the 
sequence of succeeding surface points from equally spaced orbital paths along 
the known wave length (this is what the figure shows and what is the principle 
of the LAGRANGEian approach). 

The result, however, is a number of surface points, which are nor equally 
spaced. The disadvantage of not equally spaced results (neither in time nor in 
space), can easily be overcome by letting the computer find by iteration the 
positions of orbital centres, which result in surface points equally spaced. Of 
course one is not restricted to calculate in space domain, as was used for easy 
presentation here, it is as straightforward to do this calculations in time domain. 
Such surfaces or time-series can be analyzed then by Fourier transformation to 
get the higher order components. 

Based on the deep water equations of linear wave theory, a number of wave 
surfaces where calculated by the LAGRANGEian approach and analyzed by 
Fourier technique with respect to the higher order components 

In Figure 2 the magnitude of the higher harmonics of a wave surface, 
calculated from the orbital paths according to linear wave theory for a 5 m wave 
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with 10 s period, is compared with results according to Fenton’s Fourier Series 
Wave Theory. 

The results are plotted as relative amplitudes, which are obtained by 
dividing all components, inclusive the first, by H/2 (the half wave height). 
Besides a linear vertical axis (left diagram in the figure), a logarithmic vertical 
axis has been used, to highlight the tendency of differences. The crosses are 
results according to Fenton (ACES 1992), the line results from the 
LAGRANGEian approach. 

 

 
 

Figure 2: Comparison of (relative) higher order components after FENTON (ACES 1992) with results 
from LAGRANGEian treatment of linear wave theory (deepwater) (H = 5 m, T = 10 s) 

 
Using the linear wave theory in a LAGRANGEian way gives excellent results 

(higher harmonics up to any order). 
In Figure 3 results from steeper waves, 5 m, 10 m and 15 m wave heights 

are given. 
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Figure 3: Comparison of (relative) higher order components after Fenton (Aces 1992) with results 
from LAGRANGEian treatment of linear wave theory (deepwater, H = 5 m, 10 m and 15 m, T = 10 s) 

The results are good for steep waves, too. Some scatter in the very high 
orders might be due to the limited exactness of the input data, which were 
Fourier analyzed just from the output of the ACES program, which produces 
two decimals only. 

Theses examples are all related to the surface, but can be applied on orbital 
velocities as well. 

In earlier publications (Woltering 1996, Woltering and Daemrich 
1994a,b,c,d and 1995a,b) the behaviour of the LAGRANGEian approach is 
described with respect to mean water level, mass transport, wave length and 
vorticity. Thus in the following, only a short summery is given. 

A nonlinear surface calculated by the LAGRANGEian approach has a mean 
water level which is Δh lower than the initial one (Δh is the horizontal 
asymmetry of the wave, the difference between crest height and half of the wave 
height). According to Figure 4 it is obvious that a volume Δh⋅L is lost. 
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Figure 4: Position of mean water level 
 

It can be shown, that this corresponds to the volume of water which is 
transported via mass transport during a single wave period. Thus one can argue, 
that in reality the mean water level will not go down, as the following wave will 
contribute with the same quantity, and balance the “loss”. 

This mass transport, on the other hand, can be derived immediately from the 
linear theory orbital paths. Assuming for a moment no mass transport, and 
taking the centres of the orbital paths fixed: in the same way as a “non-linear 
surface” can be constructed, a “non-linear” velocity time-series can be 
constructed in a certain fixed location, which can be seen as a velocity probe 
location (Figure 5). 
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Figure 5: EULERian horizontal velocity from LAGRANGEian orbits 
 

This EULERian time series has obviously a negative mean, like the surface 
has. This can be estimated roughly already from the velocities under the crest 
and under the trough. The velocity under the crest is from a smaller orbit and 
lower, compared to the higher velocity from the bigger orbit during passage of 
the trough. So, assuming fixed centres of the orbital path or “closed orbits”, 
would result in a “negative“ EULERian mean velocity. Again it is easy to show, 
that the profile of this negative mean current is the mass transport profile, with a 
negative direction (Figure 6). 
 

 
 
Figure 6: Negative EULERian current from closed orbits and mass transport according to the theory 
of Gerstner 

Thus the information on the mass transport profile can be derived from the 
orbital path, too. Superposing this to the LAGRANGEian kinematics from the 
closed orbits, the correct orbital velocity information is available. 

Adding the mass transport velocity at the still water level to the linear wave 
theory propagation velocity, propagation velocity and wave length become non-
linear, dependent on the wave height Figure 7. 
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Figure 7: Wave length variation with wave height 
 

It can be shown that the theory of Gerstner is not irrotational, which is a 
stigma for a respectable wave theory. However, the amount of rotation in the 
theory of Gerstner is exactly due to the “negative current”, when closed orbits 
are assumed. So, adding the mass transport velocity profile, the theory of 
Gerstner and the LAGRANGEian approach are irrotational. 

3. LAGRANGEian Treatment of Irregular Wave Trains in Deep Water 

The superposition of a simple wave group from two sinusoidal wave 
components, which is the standard situation for irregular waves, is treated first. 
Again deepwater is assumed for simplicity. Wave heights in both components 
are H = 5 m, wave periods are 10 s and 8.33 s (0.1 Hz an 0.12 Hz). The results 
from the LAGRANGEian superposition are shown in Figure 8. 
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Figure 8: LAGRANGEian superposition of two linear waves 
 

First, on the right of Figure 8 (time-domain), in the upper part the composed 
wave group with peaked crests and flatted troughs is to be seen, in the middle 
the isolated sum of the higher harmonics, and in the lower part, the isolated 
bound long wave. 

On the left, the results of the Fourier analysis of the time-series are shown. 
The two initial main components are to be seen at frequency positions 5 and 6, 
components at the double frequencies (positions 10 and 12), and even more 
important, the interaction component 11 between. This is already well known 
from the 2nd order theory. But there are also components of 3rd order and higher, 
and components immediately adjacent the second main component. 
Additionally, there is a bound long wave. 

For comparison, 2nd order results according to Sand and Mansard are shown 
in Figure 9. 
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Figure 9: Second order results according to Sand and Mansard, 1986 and Sand, 1982 
 
Results look similar. The magnitudes of the higher harmonics in fact are 

close, the bound long wave component, which is calculated here according to 
Ottesen Hansen (1978), is clearly lower. 

In this point, we do not have an explanation, yet. We are still investigating 
whether this “depression” represents the driving quantity of the mass transport 
only, which should, however, be partly compensated by opposite transport (back 
flow) due the local variations of drop gradients (in regular waves the “Δh” 
requires a contribution from the following wave, see Chapter 2). It shall not be 
speculated here further, as the proof e.g. in a physical model is not really 
without problems, due to the closed channel situation in hydraulic models. 

After this academic example, results from a real spectrum are presented. As 
an example, a typical linear spectrum for model testing (for simplicity and better 
figures with a relative short time series of about 20 waves) will be treated. 

The significant wave height is Hm0 = 0,15 m, the peak period is 
Tp = 1,25 sec. The spectrum has JONSWAP-shape for deep water. With a certain 
phase setting, this results in the time-series shown in Figure 10, when linear 
superposition is used. 
 



 10 

 
 

Figure 10: Linear spectrum and related time-series 
 

Applying the LAGRANGEian superposition, the non-linear spectrum shows 
up as follows (Figure 11): 
 

 
 

Figure 11: Non-linear spectrum from LAGRANGEian superposition 
 

The bound harmonics are isolated by complex subtraction. In the figure 
only the spectral densities are plotted, but of course there is also a phase 
information, which has to be considered.  

To get a better impression of the dimensions, amplitudes are plotted rather 
than energy densities in the following figures. 
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Figure 12: Amplitude spectrum from LAGRANGEian superposition 
 

The time-series related to the LAGRANGEian spectrum in comparison to the 
linear spectrum is shown in Figure 13: 
 

 
 

Fig. 13: Time-series from LAGRANGEian and linear superpositiontop: all bound components bottom: 
bound higher components only 

 
Applying the LAGRANGEian approach results in the higher order 

components and also gives information about bound long waves. This allows to 
use the valuable method of linear superposition with the linear part of a 
spectrum and to add via LAGRANGEian approach the bound harmonics. In the 
same way it is also possible to calculate the non-linear wave kinematics from the 
linear components. 

However, this requires the knowledge of the linear part of the spectrum. So, 
if one has to deal with a measured (real) wave train (which contains bound 
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harmonics), e.g. for calculating the pertinent orbital velocities or for calculating 
the variation of the wave train in space, the bound harmonics have to be 
eliminated before starting the process. 

Fortunately it came out that the whole process is good-natured. If the 
LAGRANGEian approach is applied to the non-linear spectrum and the bound 
components are determined from this, this is a good first estimate. Subtracting 
this first estimate from the non-linear spectrum, one gets a first estimate of the 
linear part. Now, applying the LAGRANGEian approach to this “first” estimate, 
results in an improved estimate of the true bound harmonics. This again is 
subtracted from the non-linear spectrum and the whole process is repeated. It 
has to be repeated several times. It depends on the width of the linear spectrum, 
how fast the process converges. 

In Figure 14 some steps of the “growing” of the linear spectrum are shown. 
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Figure 14: Estimation of linear spectrum from non-linear spectrum 

It is important to estimate the significant frequency range of the linear 
spectrum and to apply the LAGRANGEian approach only to this. In model tests it 
might be quite easy. In real measured wave trains from nature there might be 
more problems, besides the up to now not tackled problem of directionality. 

4. Summary and concluding remarks 

The LAGRANGEian approach allows to calculate the non-linear surface and 
spectrum from linear components of any spectral shape. In the same way orbital 
velocities can be treated. 

For deep water conditions the good agreement with the best wave theories 
has been shown for regular waves. From this and from comparison with 2nd 
order calculations of higher harmonics according to Sand and Mansard (1986) 
the results are absolutely trustworthy for the higher harmonics. 

The results are reasonable in shallower water, too. However up to now with 
the input from present linear wave theory, the higher harmonics tend to be 
underestimated. This subject is under progress at present. 

By iterative calculations with the LAGRANGEian approach, the linear part of 
non-linear wave trains or spectra can be extracted. This allows an improved use 
of the superposition method for simulation in frequency domain. 

The method itself gives a good insight in the nature of non-linearity and 
mass transport. 

It has to be solved the problem of the bound long wave components, where 
the LAGRANGEian approach determines higher amplitudes than resulting from 
the method of Ottesen Hansen (1978). 
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