
On the Highest and Other Solitary Waves

James Witting

SIAM Journal on Applied Mathematics, Vol. 28, No. 3. (May, 1975), pp. 700-719.

Stable URL:

http://links.jstor.org/sici?sici=0036-1399%28197505%2928%3A3%3C700%3AOTHAOS%3E2.0.CO%3B2-I

SIAM Journal on Applied Mathematics is currently published by Society for Industrial and Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Jul 5 16:07:37 2007

http://links.jstor.org/sici?sici=0036-1399%28197505%2928%3A3%3C700%3AOTHAOS%3E2.0.CO%3B2-I
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/siam.html


S l A M  J .  APPL. MATH. 
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ON THE HIGHEST AND OTHER SOLITARY WAVESX 

JAMES WITTINGt 

Abstract. For solitary waves an expansion parameter which differs from those previously em- 
ployed permits calculation to extremely high order. The observed behavior of the coefficients entering 
the power series for the position or velocity field yields much information about the nature of singu- 
larities in the solution. The principal conclusions are, (i) the wave of maximum amplitude has a non- 
dimensional amplitude z 3,/3/2n and a nondimensional speed (Froude number) 2 (3$/7~)'/~. 
(ii) All previous theories employing an expansion parameter are incomplete. (iii) The various series 
relating Froude number to amplitude, recently advanced to the ninth order, are asymptotic. 

For undular bores direct numerical calculations show that (i) the relationship between relative 
elevation and relative velocity given by long wave theory is approached for the "ahead of" and 
"behind" an undular bore even when the bore is generated in ways which kiolate the conditions of 
the long wave theory, (ii) the amplitude of first crest of an undular bore approaches a finite limit, 
approximately at an exponential rate, and (iii) the distance between the first two crests increases 
without bound, approximately logarithmically. 

Most of this paper deals with the solitary wave, a subject which has been 
studied for more than one hundred years. If time permits, I shall present some 
preliminary results of numerical calculations of a first cousin to the solitary 
wave, the undular bore. 

Figure 1 sets the stage for the solitary wave research. At the top of the figure, 
we see a schematic drawing of the profile of a solitary wave. When viewed from a 
coordinate system in which the fluid away from the bump is at rest, the profile is 
one of unchanging shape and it travels at a constant speed. The results of ex- 
periments and approximate theories all confirm the fact that many disturbances 
which initially have horizontal scales sufficiently larger than the fluid depth evolve 
to a succession of solitary waves. We can also view the solitary wave from a co- 
ordinate system in which the profile is stationary. The problem is then one of a 

PROFILE IS OF UNCHANGING SHAPE 
1 

WAVE OF MAXIMUM AMPLITUDE 
/ 

FIG.1. Solitary waves 

* Received by the editors April 3, 1974. Presented by invitation at an International Symposium 
on Modern Developments in Fluid Dynamics in honor of the 70th birthday of Sydney Goldstein, 
held at Haifa, Israel, December 16-23. 1973. 

t Ocean Sciences Division, United States Naval Research Laboratory, Washington, D.C. 20375. 
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two-dimensional, incompressible, irrotational steady flow. In this coordinate^ 
system, the velocity and the depth at each infinity are the same, denoted here by 
U for velocity and h, for depth (see Fig. 1). It may be true that a solitary wave 
can exist all the way up to a breaking wave. By the argument of Stokes [see, e.g., 
Lamb (1932)l the half-angle at the crest must then be 60". The body of theory for 
the solitary wave is obviously not complete unless it includes a prescription for 
computing accurately the shape and other properties of the solitary wave from 
small amplitudes to the wave of maximum amplitude. To date, there is not a 
complete solitary wave theory, although numerous papers have been written 
about solitary waves in recent and distant history, starting with the original ob- 
servations of Russell in the 4th and 5th decades of the last century. 

Table 1 is helpful in outlining the status of solitary wave theory before this 
work was started. A key piece of knowledge was provided by Friedrichs and 
Hyers (1954), who gave an existence proof of solitary waves. To describe their 
structure, most theorists have expanded the solitary wave parameters entering 

TABLE1 

A schematic outline of the current body of solitary wave theory 


Solitary waves of finite amplitude exist (Friedrichs and Hyers (1954)) 

y = 1 + a, sech2"@x [ y  -= fluid depth t k,] 
n =  1 

m 


a -= a,: F 2  = 1 + b,a + b2a2 + . . .  + b9a9 + O(alo) 
n =  1 

b, : Russell (1 844); Boussinesq (1871); Rayleigh (1876); McCowan (1891). (1 894); 
Benjamin and Lighthill (1954); Others. 

b,: Korteweg and de Vries (1895) [in principle]; Weinstein (1926) 
h, : Long (1956) 
b9 : Fenton (1972) 

F i  = 1.6568; a, = 0.8284 (f0.0010) Yamada (1957) 

F2  = 1.4455: a = 0.4804 ( f0.0010) Yamada (1958) 


the solution in powers of some small parameter related to the amplitude. The 
expansion for the profile shown at the top of Table 1 is a typical example. The 
expansion parameter can be a, the ratio of the amplitude of the solitary wave to 
h,. Everything entering the free surface boundary condition is expanded in 
powers of a, including, for example, the square of the Froude number, F 2 . In the 
original experiments on the solitary wave, Russell was able to relate F 2  to the 
amplitude with an empirical formula which, in retrospect, is correct to the first 
order in a. Theorists have derived the same result to the first order. Boussinesq 
was first, but many distinguished authors have continued to provide different 
insights into the structure of the solitary waves to this order, usually in a more 
general work. Implicit in the work of Korteweg and deVries (1895) is a solution 
correct to the second order in a (the explicit calculations can be found in Wen- 
hausen and Laitone (1960)). Weinstein (1926) also computed to the second order 
but made an error. Following this, in 1956, Long computed the relationship 
between the Froude number and amplitude which is correct to the fifth order in 
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amplitude. Finally, in a massive work, Fenton recently computed using the 
expansion to the ninth order in amplitude. The sampling of theories involving 
expansions shown in Table 1 is incomplete; many important papers are not 
listed there, though those shown are representative. 

There are also some numerical approaches to the problem of the solitary 
wave which do not rely upon an expansion of the form shown at the top of Table 
2. In particular, Yamada (1957), (1958) published the results of numerical studies 
of solitary wave structure. In 1957 he presented results for the wave of maximum 
amplitude. His analysis led to values of the square of the Froude number F t  and 

TABLE2 

Principal results o f t k i s  work 


m 


y = 1 + 1 a ,  sech2"i g x  x More 
n =  I 

m 


"More" might be n 1 + 1a,, sech2" 
m = l  n 

Fenton's 9th order solution is correct in the limit 
a -. 0 : i.e., 

the amplitude a, given in Table 1. Later he also computed the structure of a 
second high-amplitude wave. Now the result of Fenton's ninth order expansion 
should agree with the nonmaximum amplitude wave computed by Yamada, but 
it does not. The two differ by some 0.02 in amplitude, an amount far greater than 
the cited errors in Yamada's paper and far greater than expected contributions 
from any term ignored by Fenton. Furthermore, Fenton extrapolated his results 
to obtain conditions for the wave of maximum amplitude, and these yield an 
amplitude of approximately a = 0.85. This also is not in agreement with the 
results of Yamada. Thus, at the present time we see there is something wrong with 
one or other class of theory, barring numerical errors. I think that I have found 
the source of this discrepancy. Figure 2 again displays a solitary wave profile. It 
can be shown that at the tails of the solitary wave the profile must be exponential, 
as shown in Fig. 2. Because in this portion of the solitary wave the disturbance 
from a still medium is very small, linear theory can be applied. A "dispersion 
relationship" emerges which is of the form F Z  = tan (P)/PThis is analogous to the 
ordinary dispersion relation for linear sinusoidal waves, which go as y = 1 + E eikx. 
There the dispersion relation is F~ = tanh(k)/k in the same dimensionless 
units used here. Note that if we set ik = fi we arrive at the dispersion relation 
shown at the center of Fig. 2. This dispersion relation is sketched at the bottom 
of Fig. 2. Note that for a given Froude number greater than 1 there exists infinitely 
many values of which satisfy the dispersion relation. In all theories of the solitary 
wave which rely upon an expansion, the expansion is taken about F2= 1, and 
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EXPONENTIAL DECAY 
= 1 + . . B ~ +  o(dox i  

tan (P)~2.-
P 

FIG.2. The  linearized parts of solitary waves 
Uppermost: Solitary wave 
Center: Dispersion relation 
Lowermost: Sketch of the dispersion relation 

only the lowest value of b entering the dispersion relation is used. Indeed, the 
expansion converges only up to a value of b of 7112, and the possibility of higher 
modes entering the solution are excluded. Only McCowan (1891) makes explicit 
reference to the fact that other values of p do satisfy this dispersion relation. 
Based upon the particular form of his expansion, however, he argues that only 
the lowest value of f l  can enter his solution. Unfortunately, the form of his ex- 
pansion parameter is not the only one that can be used, and other forms do not 
rule out the inclusion of higher values of b. There seems, therefore, to be nothing 
fundamental about the demand that only the lowest value of be included in the 
solution. Indeed, the major result of this work is to show that the higher values of 
b are necessary to obtain the solution and that expansions such as Fenton's are 
only asymptotic, and never converge to a correct solution. 

Table 2 shows a summary of the results of the work described here. We 
shall demonstrate that the solution in an expansion of the form used by Fenton 
and others is incdmplete. The form of a candidate set of functions which are 
necessary to complete the solutions is shown in Table 2. Furthermore, I shall 
present what I consider to be very strong arguments to demonstrate that the 
wave of maximum amplitude has an amplitude a! = 3$/2n. This result is ob- 
tained by examining the structure of the singularities in an expansion, and the 
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numerical results agree within reasonable error bounds to  the approximate 
results of Yamada for the wave of maximum amplitude. Finally, I argue that 
Fenton's ninth order solution is correct in the limit that the amplitude approaches 
zero, but is incorrect, i.e., it diverges, for any finite value of a. This is simply the 
definition of an asymptotic series, and asymptotic series are frequently quite 
accurate. In fact, the series computed by Fenton differs from accurately computed 
solitary waves by only a few percent at most. 

Equations (1) and (2) show the nondimensionalization used in the theory 
described here : 

The starred variables represent, in order of their appearance, the horizontal and 
vertical components of position, the velocity potential, and the stream function; 
h ,  denotes the still water depth (more precisely, in a coordinate system where 
the profile is stationary, h ,  is the depth at infinity); F denotes the Froude number 
(~jJgh,) ;g denotes the acceleration of gravity. With this nondimensionalization, 
the value of the stream function for the surface streamline is 1, and the value of 
y at infinity is 1. 

The boundary conditions are that the normal velocity at the bottom vanishes, 
that the velocity at infinity is horizontal and unity, and that the pressure is constant 
along the free surface. Following Stokes' recasting of the theory of Stokes waves 
in 1880, we choose 4 and $ to be the independent variables, x and y being de- 
pendent. With this choice of independent variables, the boundary of the fluid is 
specified in advance, a significant advantage over letting x and y be the independent 
variables. The mathematical statement of the bottom, sides and upper boundary 
condition is given in (3)- (5) , where the surface pressure is set to zero: 

(5) y + S F ~ ( U ~  = 1 + + F ~for $ = 1.+ v2) 

We construct the complex variables z and w as shown in (6)<7): 

(6) z = x + iy, 

The square of the fluid speed is 

The Bernoulli relation equation (5) then becomes 
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The particular feature which distinguishes this theory from all other theories 
which expand in powers of amplitude is the choice of an expansion parameter. 
Here we choose to expand about the point at infinity in the form given by 

where 

This form of expansion is chosen in order to permit the calculation of very high 
order terms, as will soon appear. The expansion given by (10)-(11) is an expansion 
about the point at w = - co.The boundary conditions at the bottom are satisfied 
if all of the parameters a, are real. The boundary condition at - co is obviously 
satisfied, although the boundary condition at + co is not obviously satisfied. If a 
solitary wave exists for the preassigned value of fi, we should be able to write 
down an expansion of the solitary wave about the point at  + co,and use nu- 
merically-generated analytic continuation procedures to connect the two ex-
pansions. For definiteness, consider Fig. 3, which shows the mapping of the 
w-plane of Fig. 3a into the q plane of Fig. 3b. The region occupied by the fluid 
maps into a wedge of interior angle fi. There may be singularities which prevent 
the expansion from converging. We show these as a + singular point and a 
- singular point. (It turns out that singularities must come in conjugate pairs if 
all a, are real.) Analytic continuation procedures can be used anywhere except 
near singular points. 

Now we plug (10) into (9)and equate terms in equal powers of q. At the order 
qO,we have a restatement that the Bernoulli constant in (5) is correct. At the 
order q1 we obtain the dispersion relation shown earlier in Fig. 2. The value of 
a ,  is arbitrary. At the order q2 and higher, the value of a, is given by 

I In- 1 
1 


a, = 
sin (fin) - fiF2cos (fin) 

where f and g are readily derived but complicated functions of the indices 1, m, 
n, fi and F'. Note that each a j  appearing on the right-hand side of (12) has j < n. 
Thus, by an iterative process, one can start with n = 2 and compute each a, 
from previously computed a j .  Computations to very large values of n can be 
accomplished without excessive computer time. 

We should note that, although a ,  appears to be arbitrary, the resulting 
solution does not depend in any significant way upon the choice of a , .  We have 
not yet specified the horizontal coordinate of the crest in this theory. A change 
of a ,  merely shifts the position of 45, marking the crest. The resulting calculations, 
if the expansion is complete, should generate a solitary wave for any value of a , ,  
the only differences among solutions with different initial values of a ,  being a 
horizontal translation of the profile. 
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FIG.3. Tlze mapping of the w-plane (3a)onto the q-plane (3b) 
Tlze function q = e4" 

For four values of P-10-6, 7118, 7114 and 7113-a,, was computed to n 2 200. 
In three of these four cases a startling regularity emerged: the signs of a, are 
periodic in n. This fact enables us to locate the directions of the singularities, i.e., 
the angles _+ain Fig. 3. In order to arrive at this conclusion, we need a theorem 
from the theory of complex variables (see Hille (1959, pp. 133, 136)). To  make use 
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of the theorem, to be defined shortly, we rotate the solution for dzldw by an 
angle 0 : 

For the three cases, values of 0 can be chosen so that the signs of each of the real 
part of the jth coefficient of pj is the same. Specifically, for 

dz to 

-= 1 + 1 nj3an[cos (no) + i sin (nO)]pn, 
d w n =  1 

all a, cos 0 have the same sign. The theorem found in Hille (1959) states that if 
a, cos no keeps the same sign for arbitrary n greater than some N, a singularity 
lies on the real axis of p. We use this theorem to identify the position of the singu- 
larity for all those values of j3 for which the signs of the original series are periodic. 
Table 3 lists a summary of the results for those cases run. For j3 = which 
governs a wave of minute amplitude, the period is 2 and the direction of the 

TABLE3 
Position and nature of singularities 

N o  of P o s ~ t ~ o n  Nature a Perlod 
terms s ~ n g u l a r ~ t ~ e s  slnguiarltles 

1 
200 2 near n z cc ----

l + ~ 

- 200 8 to 40 near +3/4n unknown 
8 

n 
- 200 4 ;  reg. f4 2  unknown
4 

+ 0.002 200 4 ;  irreg. - -
4 

\ 0.003 200 4 to 150 - -
4 

-
n 

55 1 6 ;reg. + n13 (z- zo)cc (w-
3 

\ 0001 200 6 ; irreg.
3 

singularity in q-space is very close to n. The singularity is so nearly a simple pole 
that I cannot imagine that the singularity in the limit j3 + 0 is anything other 
than a simple pole. For the case j3 = 7114, I think that a = f2j3 = fn/2 exactly. 
This opinion is based upon more than the fact that a change in the value of j3 
lying between 0.002 and 0.003 upsets the periodicity in the signs of a,. More to the 
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point, a small change in the value of P, for example, 0.001,produces a series which 
tends toward an upset periodicity at some higher value of n. We shall come back 
to this later. In the case of n/3,calculations have been carried all the way to n = 55 1. 
The position of the singularities lies at or very close to f7113.The nature of this 
singularity is that demanded by a wave of maximum amplitude, because when 
the singularities are at k n / 3 ,  one of the singularities lies on the free surface of 
the fluid. 

Table 4 lists what is meant by regular and irregular in Table 3, using as an 
example the case P = 7114. If the periodicity in the signs is going to continue to 

TABLE4 
Dejnition of regularity in Izigh-n sequences 

0.228445 
-0.179990 For a = n14 : 

a190 , a191 
= 1 - 0.000008 

0.288582 
a190 a191

0.221958 For = n/4 + 0.001 : -- 5 --= I + 0.02 
-0.174882 '194 '195 

-0.107373 
0.280592 
0.215818 

-0.170046 
-0.104403 

extremely high values of n, the ratio a,  ,,/al ,,should be approaching the same 
limit as a,,,/a, ,, . The ratio of ratios should be of the order of n2.As can be seen 
from Table 4, we are well within the expected bounds, and n/4 cannot be very 
different from the value of P which would place singularities at i n / 2 .  On the 
other hand, a change in P of 0.001 produces a series for which the ratio of the 
ratios is not of the order of n2.We expect that this series will ultimately have upset 
periodicity. 

By applying a similar analysis to the case = n/3, we can show that only 
if = n/3 i 0.00001 does the ratio (a3,-2/a3,+1)+ (a3,/a,,+,) stay within 
1 fO(n2)for large n. I have faith that P = n/3 exactly, and has no other value 
close by, for the wave of maximum amplitude. This faith is nourished by the 
prominence of the integer 3 in the nature of the singularity, but, of course, I can 
offer no rigorous proof that n/3 marks the wave of maximum amplitude exactly. 

One troublesome flaw in this set of arguments is that for the case of 71/3we 
are not exactly certain that we are computing the structure of the solitary wave. 
In the case of = n/4,we know that we are not. In Fig. 4 we show a sketch of the 
profiles of the streamlines for various values of the stream function. The original 
series derived from (10H12)is employed for -co < 4 < 0.3. For each value of 
$ a  polynomial in 4 is constructed using data centered at 4 z 0.5.The polynomial 
is then used to compute x and y in the domain -0.3 < 4 +0.2; this procedure 
is, then, an analytic continuation beyond the original radius of convergence (it is 
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FIG. 4. Sketches of tlze streamlines for fl = 7r/4 after analytical continuation ( le f t ) .  Tlze sketch at 
the right shows t l ze jrs t  ignored eigenfunction. Its inclusion improces crest alignment 

not, however, a very efficient one but serves the purpose here). Notice that the 
crests are not aligned in the figure. If the crests are not aligned, there is no way of 
forming analytic continuation from the other side and completing the calculation 
of a solitary wave. On the other hand, there is nothing arbitrary about the cal- 
culation shown here using only the lowest value of p permitted by the dispersion 
relation. Evidently, something is missing from the theory, and we think that we 
have identified the missing component. In Table 5 we show, for five values of the 
stream function, the streamline slope, ay/d$,  and the value of x for f i  = 7114. We 
identify the crest position as that value of 4 which marks the radius of convergence 
of the expansion and call this $ = 0. By the simple expedient of adding a con- 
tribution of the lowest "eigenfunction" permitted by the dispersion relation, 
which occurs for p = 4.54, we are able to greatly improve the solution. We choose 
the amplitude to be 0.0295 for the contribution from this mode, in order to make 
ay/a$ vanish at the crest of the wave. The inclusion of this term greatly improves 
the structure of the solutions. The variance in ay/d$ at $ = 0 is reduced by a 

TABLE5 

Effect of adding the most important contribution of tlze higher modes 
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factor of three, and the variance of x(0, $) is reduced by a factor of ten. Also, the 
solitary wave amplitude is improved by a factor of approximately three. Thus; 
we conclude that our incomplete solution can be improved by the addition of the 
most important term ignored. The inclusion of all of the missing terms will 
probably lead to a symmetrical solution. For the case P = 7113, the amplitude of 
a potential missing term is less than 0.005. Figure 5 compares the profile of the 
improved solution with that given by the second order theory of Korteweg and 

-I I I I I I 
0.0 	 1.O 2.0 3.0 4.0 

DISTANCE FROM THE CREST IN UNITS OF STILL WATER DEPTH, x 

FIG.5. Comparison of the projles of a solitary wave having fl = 4 4 ;  x : this theory: -: second 
order theory from Wehausen and Laitone (1960) 

deVries (1895) as found in Wehausen and Laitone (1960). The two theories produce 
very similar profiles. For values of x greater than 1.5 this theory is the more 
accurate; for values of x less than 1.5 the other theory is the more accurate. 

The basic mathematical conclusions of this research are given as follows. 
(a) The singularity closest to the fluid lies above the crest at a value of $ 

given approximately by $ = (71 - 2P)lP; this relation is probably exact for 
p = 7113, p = n/4and P + 0. 

(b) A solution including only integral powers of the lowest P satisfying the 
dispersion relation is incomplete, except in the limit P + 0. 

From these mathematical conclusions we infer the following. 
(a)The wave of maximum amplitude has the following properties : 

subject to the reservation that our solution is incomplete and that the functions 
needed to complete the solution may shift singularities somewhat. The estimate 
that the amplitude of the missing function is O(0.005) suggests that a may be 
incorrectly given in (1 5) by an amount O(0.005) and F2may be incorrect by O(0.01). 

(b) Fenton's series solution, and by implication, all series expansions in- 
volving only integral powers of /I,is asymptotic. By asymptotic we mean that in 
the limit a + 0 it yields the correct result, and that for a > 0 it diverges. In the 
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limit a + 0, j3, + 0, so that the lowest value of PI f r  0 satisfying the dispersion 
relation is larger than MPo for arbitrarily large M .  Thus, an expansion in powers 
of Po should approach the correct result at Po + 0. Because the series leaves out 
part of the solution for finite a, however, it cannot converge. The number of terms 
which should be retained for maximum accuracy probably exceeds nine for all 
values of amplitude, since Fenton overestimates F2  = F2(a) with nine terms and 
the second through the ninth are negative. 

(c) Finally, we can understand why the expansion given by McCowan 
(1891), which satisfies the free surface boundary condition to high accuracy, is 
not particularly accurate. He writes the first term in a power series expansion in 
powers of q' = tanh ( 0 ~ 1 2 ) .The mapping of the w-plane shown in Fig. 3a to the 
9'-plane is shown in Fig. 6. McCowan's expansion parameter is q'. From this 
work, we note that the singularities are as close as the edge of the solitary wave 

F I G .  6. The mapping of Fig. 3a onto the q'-plane. The function q' = tanh (flw12) 

for all values of j3 > 44.Thus, we cannot expect McCowan's apparently accurate 
calculation to be very good except when j3 << n/4,which limits its validity to small- 
amplitude solitary waves. 

In the time that remains, I shall discuss some preliminary calculations of the 
evolution of the undular bore. Unlike the analytical/numerical approach to the 
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structure of the solitary wave, we use here a raw numerical approach. The marker 
and cell method for computing the structure of time-dependent flows with a free 
surface is employed. This work is a joint effort with B. D. Nichols of the Los 
Alamos Scientific Laboratory performing the calculations on the Los Alamos 
computer facility. The motivation is the fact that the lowest order description 
appropriate for the evolution of fairly long waves, the Korteweg-deVries equation, 
has recently been shown to possess remarkable properties (see, e.g., Zabusky and 
Kruska1(1965), Zabusky (1967), (1968), Gardner et al. (1967), Lax (1968), Miura 
et al. (1968), Kruskal et al. (1970), Witting (1972)). Solitary waves according to the 
Korteweg-deVries equation run right through another, interacting nonlinearly, 
but emerging as the same solitary waves as before. Peregrine (1966) studied the 
evolution of the undular bore by numerical integration of a variant of the 
Korteweg-deVries equation. By means of direct numerical calculations we sought 
to determine whether the qualitative statements about undular bores which arise 
from the approximate Korteweg-deVries equation are true of "actual" (i.e., 
inviscid, incompressible but fully nonlinear) undular bores. Figure 7 illustrates 
the problem at hand. For most of the examples run, we have still water to the 

tSTILL 

nzno 

- __C 
u>o u>uo 

STILL 

FIG.7 .  Sketch o f  the profile and Puid speeds for undular bores; (a) initially; (b)later. The horizontal 
scale is greatly compressed 

right and a semi-infinite block of higher water to the left which moves with a 
constant speed. The fluid everywhere has an initial velocity prescribed by that 
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given by the (exact) long wave theory: 

(16) U = 0,  

where 

If the slope is small initially, we expect that disturbances initially propagate only 
toward the right, steepen to form a continuously evolving undular bore, perhaps 
with reflections toward the left. When the initial slope is steeper, so that at least 
at early times vertical accelerations are not negligible when compared to the 
acceleration of gravity, we expect two sets of disturbances, one propagating to- 
ward the right, steepening to form an undular bore, and the other propagating 
toward the left as a wave of depression which unsteepens. The Korteweg-deVries 
equation is capable of describing waves traveling in only one direction. Initially 
we wished merely to compare our results with Peregrine's, and so we started with 
a profile which had small initial slope; indeed, we encountered only waves prop- 
agating toward the right. We then relaxed the assumption of small slopes and 
generated the bores with a piston moving into still water. For most runs, the 
piston accelerates uniformly until a speed u is attained, and moves at u thereafter. 
By fixing u but varying the acceleration, we are able to vary the fluid's vertical 
acceleration near the piston, in particular, to values larger than g. For a while, 
the elevation above still water at the piston is not that given by the long wave 
relationship. Nonetheless, after transients die out (this takes several Jhilg), 
the fluid near the piston is horizontal and has a height given by (17) exactly (to 
the limits of the numerical experiment-approximately four significant figures). 
I have found no way of either deriving or understanding this results on analytical 
grounds. 

Returning to the initial aims of the numerical experiment, we find that indeed 
there is qualitative agreement between actual water waves and the results of the 
Korteweg-deVries equation. Figures 8a-8g show the evolution of the undular 
bore in time. We nondimensionalize x based upon the still water depth and time 
based upon the still water depth and g. Note that the amplitude of the first wave 
grows in time and the distance between the first two crests also increases in time. 
An important qualitative result of the Korteweg-deVries equation is that the 
first wave approaches a solitary wave, i.e., it grows but continues to grow no 
further. A second result of the Korteweg-deVries equation is that the first two 
crests separate logarithmically in time. Conclusions are based upon runs having 
u, = 0.1 and u, = 0.25. For both bores the first crest grows at a rate which is very 
close to being of the form 
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FIG.8g 

FIG.8. Profiles of undular bores as a function of time. The initial value u ,  = 0.1 

where a(u,) increases with increasing u,. The distance between the first two crests 
grows like 

for times greater than approximately twenty. 
A detailed comparison between our results anu those of Peregrine (1966) is 

possible for the case u, = 0.1. The rates of evolution and the wave amplitudes 
differ by an amount which is of the order of the square of the amplitude. This is 
the order of the first term neglected in the KoretwegdeVries equation. These 
results are only preliminary ;we expect to report the results of the full computations 
at a later time. 

As is so often the case, in both the solitary wave study and the undular bore 
study, unexpected and rather surprising results emerged. In the case of undular 
bores, the relationship between the elevation above still water depth and the 
speed of the fluid given by the long wave theory is preserved even though initial 
or boundary conditions flagrantly violate the conditions under which the theory 
is valid. This is certainly grist for a theorist to chew. In the case of the solitary 
waves, I started computing, confident that the solution of the solitary wave 
would be carried to an order higher than imagined using other methods. Instead, 
we find that expansion methods, while here perhaps producing the conditions for 
the wave of maximum amplitude, are inadequate unless all possible modes are 
included-a formidable task indeed. 
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Note added in proof: In a recent article, Longuet-Higgins and Fenton (On the 
mass, momentum, energy and circulation of a solitary wave. 11, Proc. Roy. Soc. 
London Ser. A, 340 (1974), pp. 471-493) compute solitary wave properties to 
high accuracy, by using what essentially corresponds to 1 - u: as an expansion 
parameter (u, is the speed at the crest) and Pad6 approximants to speed conver- 
gence. They obtain high precision all the way up to the highest wave. Their work 
independently shows the asymptotic nature of expansions in powers of a .  Further-
more, they compute a = 0.827 for the highest wave, which agrees with the value 
cited here. Their theory still involves expansions, however, and an independent. 
assessment of their accuracy is in order. Therefore, J. Bergin and I have used the 
method of Yamada (1957) and a modern computer to make what we regard as 
highly accurate calculations of the highest wave properties, as well as those of 
weaker solitary waves. 

Preliminary results show virtually perfect agreement with the results of 
Longuet-Higgins and Fenton only up to amplitudes z 0.75. Thereafter, small 
differences show up. Our highest wave has an amplitude of 0.8332, which is 0.0062 
higher than the value cited in (15). If these preliminary new results are valid, 
then (i) forming a complete solution does shift the singularity for fl = 4 3  by 
0(0.005), and (ii) Pad6 approximants do not fully cure the problems associated 
with incomplete expansions. At this writing, the exact (to 3 decimal places) ampli- 
tude of the highest wave cannot be considered known. 
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