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ABSTRACT

This work investigates the numerical time stability of the Lagrangian-averaged shallow water a model (SW-
a). The main result is an analytical estimate for the maximum allowable time step. This estimate shows that as
the grid is refined the time step becomes independent of the mesh spacing and instead depends on the length
scale, a, a parameter of the model. The a model achieves this result through changes in the equations of motion
that reduce the frequency of the linear waves at high wavenumbers. This type of reduction in the frequency of
high-wavenumber waves is also a characteristic of time-implicit numerical methods. Consequently, an analogy
is drawn between the two by comparing the numerical method’s modified equation to the partial differential
equation of the a model. Fourier analysis and numerical simulations are also used to compare a third-order
Adams–Bashforth a model simulation to the well-known implicit numerical method of Dukowicz and Smith.

1. Introduction

The Navier–Stokes a (NS-a) equations, introduced
in Holm et al. (1998), filter the fluid motion that occurs
below some length scale, a. The length scale, a, is the
average correlation length associated with the covari-
ance tensor for the fluctuating displacement j(x, t)jj
5 x(x0, t) 2 (x0, t) of a Lagrangian fluid parcel tra-x
jectory away from its Lagrangian mean trajectory with
the same fluid label x0. In fact, it is temporal averaging
in Hamilton’s principle that leads to a dynamical spatial
filtering in the resulting equations of motion. The longer
the time averages over the Lagrangian mean trajectories,
the larger the length scale a. This connection between
the time and space averaging is discussed in Holm
(1999).

In practice, a represents the smallest active scale in
the solution below which the dynamics at smaller scales
are regarded as passive. These small scales, instead of
being diffused as occurs in many Eulerian averaging
methods, are ‘‘dragged,’’ or ‘‘swept,’’ by the fluid mo-
tion of the large scales.

The solution behavior and turbulence properties of
various forms of the a model have been explored in
numerous numerical simulations. The NS-a model
equations were discussed in Chen et al. (1998, 1999a,b).
The corresponding modifications of the quasigeostroph-
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ic equations (QG-a) were tested numerically in Holm
and Nadiga (2003) and Nadiga and Margolin (2001).
The 2D Euler-a equations were investigated in Nadiga
and Shkoller (2001), and the shallow water version of
the a model was studied in D. Holm et al. (2003, un-
published manuscript). The effects of the a model on
turbulent spreading of shear layers were compared with
standard large eddy simulations (LESs) in Geurts and
Holm (2002, 2003). These numerical tests show various
improvements due to the a regularizations over standard
subgrid-scale models.

The a model’s fluid stability properties have also been
discussed in the literature. The a model’s effect on el-
liptical instability was presented in Fabijonas and Holm
(2003), where shifts in both the onset and growth rates
due to the a-turbulence modification were found. Like-
wise, the onset of instability shifts to lower wavenum-
bers for two-layer baroclinic instability (Holm and Win-
gate 2004, manuscript submitted to J. Phys. Oceanogr.).
They also showed that the Lagrangian averaging, be-
cause it retains important conservation laws, preserves
the fundamental stability mechanism found for the unav-
eraged case, a phenomenon not shared by Eulerian-av-
eraged methods.

In this work the numerical stability of the shallow
water a model (SW-a) is investigated. First the a model
is reviewed, then its plane wave solutions are presented.
Next, section 2 connects the a model to time-implicit
numerical methods through the use of the modified
equation. Following that, in section 3 an asymptotic
estimate of the maximum allowable time step for the
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linearized SW-a equations is presented. This result
shows that the SW-a time step restriction becomes in-
dependent of N, the maximum resolvable wavenumber,
as in a time-implicit formulation of the SW equations.
In fact, the SW-a model and time-implicit numerical
methods share a similar philosophy in that they both
lower the frequency of the high wavenumbers to allow
a larger maximum allowable time step. This naturally
leads to a comparison between them in section 4 for
pure gravity waves by Fourier analysis and numerical
simulations. Afterward the impact of the a-model for-
mulation on Rossby waves is briefly discussed, (section
5). Section 6 gives a summary of the principal results.

a. Review of the shallow water a model

The Lagrangian-averaged derivation of the a model
(Holm et al. 1998) produces equations that are more
computable than the NS equations. For example, Foias
et al. (2001) show that these equations have a finite
dimensional attractor and have proved existence and
uniqueness in the strong form for periodic domains,
which has not been proved for the NS equations.

Unlike many other averaged versions of the NS equa-
tions, the NS-a equations preserve the basic transport
structure of the NS equations. For example, they have
a Kelvin circulation theorem and conserve energy in an
H 1 norm [see Eq. (7)]. In addition, the NS-a equations
are a pseudomomentum closure (see Holm 2002) to the
generalized Lagrangian mean (GLM) equations of An-
drews and McIntyre (1978). The NS-a equations reg-
ularize the NS equations through nonlinear dynamics,
not through added dissipation.

We restrict ourselves to the SW-a equations, origi-
nally derived in Holm (1999), on a b plane,

d
Tv 1 =u · v 2 f 3 u 1 =p 5 n=(H=v), (1)

dt

]h
1 = · (Hu) 5 0, (2)

]t

where

21 a
2 2p 5 gh 2 |u | 2 ( |=u | ), (3)

2 2

d ]
5 1 u · =, (4)

dt ]t
2Hv 5 [H 2 a =(H=)]u. (5)

Here H 5 h 1 hB is the total height of the fluid, hb

is the mean depth to the bottom, h is the deviation of
the free surface from the mean depth H, f is the Coriolis
parameter, and n the viscosity. There are two velocities
in this formulation: v is interpreted as the Lagrangian
mean velocity, while u is the smoother Eulerian mean
velocity. The Eulerian mean velocity advects the La-
grangian mean velocity. The pseudomomentum closure

to GLM, Eq. (5), relates these two velocities. In addition
there is an extra advection term on the left-hand side
of (1). These subtle changes in the nonlinearity, along
with the redefined pressure in Eq. (3), cause the large
scales to sweep length scales smaller than a. While a
thorough examination of this phenomenon is beyond the
scope of this work, this sweeping is examined for the
linear case and manifests itself in changes to the dis-
persion characteristics of the linear waves that reduce
the frequency of the high wavenumbers. The effect of
using the Helmholtz operator to smooth the advecting
velocity is not dissipative because with n 5 0 Eqs. (1)–
(5) are time reversible.

In deriving these equations the Eulerian mean dis-
placement fluctuation covariance is modeled as ^jj&E 5
a2I, which replaces the tensor with a scalar (Holm
1999). This reduces the covariance tensor of the fluc-
tuations to its isotropic homogeneous form. In practice
a is the length scale below which the smallest scales
are swept, not damped, by the fluid. We restrict our-
selves to the case where a is a constant.

With n 5 0, these equations possess the following
Kelvin’s circulation theorem:

d
(v 1 R) · dx 5 0, (6)Edt

g (u)

where g(u) is the fluid loop in the smoothed, Eulerian
mean velocity and conserve energy,

1 d
2 2 2 2 2d x[H(u 1 a |=u | ) 1 gh ] 5 0, (7)E2 dt

and potential vorticity,

d Qpv
5 0, (8)1 2dt H

Q 5 ẑ · curl(v 1 R), (9)pv

where Qpv is the vertical component of the potential
vorticity, and curlR(x) 5 2V(x) 5 f (x) is the rotation.
In the limit as a goes to zero, we recover the shallow
water equations.

Domaradzki and Holm (2001) formulate the a model
as an LES model written only in terms of the smoothed
velocity, u. Numerical experiments replacing the Helm-
holtz operator, as in Eq. (5), with filtering have been
carried out in Geurts and Holm (2002, 2003).

These equations have linear wave solutions similar
to those of the SW equations. The two time scales of
interest are tg 5 L/U, where L is a typical horizontal
length scale and U is a typical velocity scale for gravity
waves, and tr 5 1/blr for Rossby waves. The Rossby
deformation radius is lr 5 / f o, and the beta param-ÏgHo

eter b 5 ]y f is the beta-plane approximation. Next the
plane wave solutions for gravity waves and Rossby
waves are discussed.
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FIG. 1. Nondimensional frequency vs wavenumber for gravity
waves. The a model closely approximates the gravity wave frequency
for low wavenumbers but reduces the frequency for high wavenum-
bers. When ka 5 `, it recovers the dispersion relation for SW gravity
waves.

b. Plane waves solutions of the a model

1) PURE GRAVITY WAVES

To examine the maximum allowable time step we are
principally interested in the fastest waves allowed by
the system of equations. For SW these are the pure
gravity waves that are unaffected by rotation. To find
these waves we set the rotation to zero and assume a
flat bottom so that hb 5 Ho. We then nondimensionalize
with time scale tg, velocity scale U, length scale L, and
height scale Ho and then linearize and rewrite in terms
of the divergence (d 5 ux 1 yy) and height to obtain

1
2] d 1 ¹ h 5 0, (10)t 2F

] h 1 d 5 0, (11)t

2 2d 5 (1 2 a ¹ )d, (12)

where F 5 U/ , is the Froude number.ÏgHo

Upon substituting (12) into (10) the system of equa-
tions is clearly inherently implicit because of the linear
operator, a2¹2]t, acting on . So, for nonzero a thesed
equations resemble a modified form of time-implicit dif-
ferencing, which is discussed more in section 2.

Substituting in the Fourier modes for the dependent
variables with nondimensional wavenumbers (k, l) 5
L(k9, l9) and v 5 Lv9/U (where the primes denote the
dimensional quantities), we find the nondimensional dis-
persion relation to be

2kh2v 5 org 2 2 2F (1 1 a k )h

2kh2v 5 , (13)g 2 2F [1 1 (k /k ) ]h a

where 5 k2 1 l2 and ka 5 1/a is the a wavenumber.2kh

This dispersion relation is shown in Fig. 1. The solid
line is the case for a 5 0, the SW equations. The other

three lines show the effect of increasing a (reducing
ka). For large values of ka the frequency of the low
wavenumbers is unchanged. As ka decreases, the band-
width of waves that mimic the frequency of the SW
gravity waves decreases. Eventually the frequency for
all wavenumbers is zero. The effect of incorporating the
small scales on the large through the Lagrangian av-
eraged a model is to slow down the frequency of the
high wavenumbers.

2) ROSSBY WAVES

Nondimensionalizing Eqs. (1)–(2) using the Rossby
wave time scale tr, instead of the gravity wave time
scale tg, and keeping only terms O(Ro) and higher,

(] 1 u ] 1 u ] )(R z 1 b0y) 1 d 5 0, (14)t 1 x 2 y o

2Ro(] 1 u ] 1 u ] )h 1 B d 5 0, (15)t 1 x 2 y

2 2 2c 5 (1 2 a ¹ )c , z 5 ¹ c,

u 5 2c , u 5 c , h 5 c , (16)1 y 2 x

where Ro 5 U/( f oL), B2 5 /L2, and b0 5 bL/ f o.2lr

Writing this in terms of the vorticity z 5 y2x 2 y1y, and
the divergence 5 u1y 1 u2y, rescaling to the tg timed
scale (to be consistent with the last section) and line-
arizing, we obtain

1
2 2 2] ¹ (1 2 a ¹ )c 1 b9c 2 ] c 5 0, (17)t x t2B

where b9 5 bL2/U. Then the a-model dispersion re-
lation is

2kb9
v 5 orr 2 2 2 2k (1 1 a k ) 1 1/Bh h

2kb9
v 5 . (18)r 2 2 2 2k [1 1 (k /k ) ] 1 kh h a r

As in the case of the gravity waves, a has the effect of
slowing down the frequency of the high wavenumbers.
Figure 2 shows this effect for three different cases. The
solid line is the case when a 5 0 and shows the usual
maximum frequency at the Rossby deformation wave-
number, kr 5 1/B2. The dashed line is the case when
ka k kr. The effect is twofold. First, the a model shifts
the maximum of the curve to a lower wavenumber;
second, most of the wavenumbers to the right of the
maximum are close to those of the unaveraged equa-
tions, while those to the left have lower frequencies. If
we define the deformation wavenumber as the place
where the Rossby wave frequency is a maximum, then
the a modification defines a new deformation wave-
number, , that depends on both a and kr. This newakr

deformation wavenumber is

1
a 2 2 2k 5 2 Ï26k 2 6k Ïk 1 12kr a a a r6

∀ k , k , 0. (19)a r
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FIG. 2. Nondimensional frequency vs wavenumber for Rossby
waves for b9 5 1. The solid line, ka 5 ` shows the usual maximum
at the Rossby deformation radius kr. The dashed line, ka k kr, reveals
two effects. First, the a model shifts the maximum to the lower
wavenumber. Second, most of the wavenumbers to the right of the
maximum are faithfully approximated, while those to the left have
lower frequencies. The dotted line shows the case when ka , kr. The
maximum is substantially shifted to the right, and the frequency at
high wavenumbers is zero. If the Rossby deformation wavenumber
is located where the frequency is the maximum then one key effect
of the model is to define a new deformation wavenumber, , kr

akr

[Eq. (19)].

Therefore, the Rossby deformation radius for equations
that describe the slow time dynamics through the a
model occurs at a lower wavenumber than for the SW
equations that describe the unaveraged, instantaneous
dynamics.

2. Connection to implicit time differencing

To understand the impact of using Lagrangian aver-
aging to model the effects of small scales on the large,
its linear analysis is compared to that of implicit-in-time
numerical methods.

The a model is derived from Hamilton’s principle
through Lagrangian averaging and represents the mean,
or slow-time dynamics of the fluid. It changes the non-
linearity considerably, making a detailed analysis dif-
ficult. But, as shown above, it makes interesting changes
even in the linear theory. In particular, the a model
lowers the frequency of the waves at high wavenumbers,
because the high-wavenumber motions are accounted
for in the large-scale motion through the Lagrangian
averaging. This linear behavior is similar to implicit
time differencing in partial differential equations. They
both result in unconditional numerical stability through
modifications to the linear dispersion and damping prop-
erties of the high-frequency waves that cannot be re-
solved by a given time step.

In this section I elaborate on this connection between
the a model and implicit numerical time differencing
through the use of the modified equation (see Hirt 1968;
Warming and Hyett 1974). The modified equation is
derived by expanding each term of a difference scheme
in a Taylor series and then eliminating time derivatives

higher than some order by algebraic manipulation. This
equation represents the actual partial differential equa-
tion solved by the given numerical method.

At the end of this section I show a semi-implicit nu-
merical discretization of the linear gravity waves that
mirrors the explicit discretization of the a model’s linear
waves. This connection is helpful in understanding the
linear behavior of the a model, but I am in no way
suggesting this discretization should replace others used
in the literature because of the impact of the nonline-
arity, which is beyond the scope of this work.

We begin by examining the backward-in-time dis-
cretization of Eqs. (10)–(12). Since we want to compare
the implicit time difference of the SW equations to the
a model, we set a 5 0,

Dt
m11 m 2 m11d 2 d 1 ¹ h 5 0, (20)

2F
m11 m m11h 2 h 1 Dtd 5 0. (21)

Above, the superscript indicates time level, m is at time
level t, and m 1 1 is at time level t 1 Dt. We next
apply a Taylor expansion to the terms about time level
m 1 1/2,

m11/2
Dt ]d

m11 m11/2d 5 d 1 ,1 22 ]t

m11/2
Dt ]d

m m11/2d 5 d 2 ,1 22 ]t

m11/2
Dt ]h

m11 m11/2h 5 h 1 ,1 22 ]t

m11/2
Dt ]h

m m11/2h 5 h 2 ,1 22 ]t

and substitute these into Eqs. (20)–(21) while dropping
terms higher order than Dt2,

1 Dt
m11/2 2 m11/2 m11/2] d 1 ¹ h 1 ] h 5 0, (22)t t2 1 2F 2

Dt
m11/2 m11/2 m11/2] h 1 d 1 ] d 5 0. (23)t t2

Algebraic manipulation gives

2Dt 1 Dt
2 2 21 2 ¹ ] d 1 ¹ h 5 ¹ d, (24)t2 2 21 24F F 2F

2Dt Dt
2 21 2 ¹ ] h 1 d 5 ¹ h. (25)t2 21 24F 2F

When Dt 5 0 Eqs. (24) and (25) become the SW equa-
tions for gravity waves given in Eqs. (10)–(12) with a
5 0. When Dt ± 0 the additional terms on the left-hand
side represent changes in the dispersion of the waves
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while the terms on the right-hand side represent diffu-
sion.

Any number of choices in the time differencing will
result in different modified equations. Any form of im-
plicit time differencing results in dispersion truncation
error terms that resemble those on the left-hand sides
of Eqs. (24)–(25). It is these terms that result in the
dispersion relations such as (13) that yield numerical
time stability. To obtain a modified equation similar to
that of the a model, choose

Dt
m11 m 2 m11d 2 d 1 ¹ h 5 0, (26)

2F
m11 m m11/2h 2 h 1 Dtd 5 0. (27)

Applying a Taylor expansion to the term about m 1 1/2
and retaining up to terms of order Dt2, we arrive at

2Dt 1 Dt
2 2 21 2 ¹ ] d 1 ¹ h 5 ¹ d, (28)t2 2 21 24F F 2F

] h 1 d 5 0. (29)t

The only difference between the above equations and
Eqs. (10)–(12) is the additional diffusion term on the
right-hand side of Eq. (28). From these equations we
see the a model is ‘‘born’’ implicit (Caramana 1991)
in that a models obtain terms of the form a2¹2] t that
when discretized lead to spatially coupled systems. The
connection between the parameter a and the time step
Dt is seen simply as a2 5 Dt2/4F 2. Therefore, to lowest
order, choosing an a for the a model is similar to choos-
ing a time step in an implicit method. This implies in
a generic sense that for the linearized equations there
is a similar type of spatial averaging in both cases.

This connection allows us to understand the linear
behavior of the a model in terms of familiar implicit-
in-time numerical discretizations. But the a-model
equations describe the Lagrangian mean motion, while
the implicit-in-time method is simply a numerical dis-
cretization of the unaveraged motion of the SW equa-
tions. Equations (28)–(29) are not necessarily a good
numerical discretization for the unaveraged, nonlinear
SW equations.

3. Estimate for the maximum allowable time step

An estimate for the maximum allowable time step is
obtained by examining the asymptotic stability prop-
erties of the fastest-moving waves of the system. For
the SW equations these are the highest-wavenumber
gravity waves supported by the numerical mesh.

We discretize in time and apply the Fourier method
in space. Then, for some vector U, we consider

dU
5 LU, (30)

dt

where L is the matrix resulting from the Fourier de-
composition of Eqs. (10)–(12). The time-stepping meth-

od is asymptotically stable if for a sufficiently small Dt
. 0 the product of Dt and every eigenvalue of L denoted
by vg, lies in the domain of absolute stability,

v Dt # C.g (31)

If Eq. (31) is true, then some spatial norm of the nu-
merical solution at some fixed time, tn, is bounded for
t → `. Parameter C, the maximum for the domain of
stability is well known for many method-of-lines ap-
proaches (see Canuto et al. 1988). For example, for the
third-order Adams–Bashforth method, C 5 0.723.

We next denote the highest wavenumber as k 5 l 5
N and substitute into vg, given by Eq. (13) and then
substitute that expression into Eq. (31) and solve for
Dt:

C
Dt # , (32)

vg

2 2CFÏ(1 1 2a N )
# , (33)

2Ï2N

and as N → `,

Dt # CFa. (34)

This shows that for fixed a, as the number of modes in
the solution increases, the maximum allowable time step
for the a model becomes independent of N. Finally, we
compare Eq. (34) to that for the SW equations,

CF
Dt # . (35)

Ï2N

The maximum allowable time step for the SW equations
decreases linearly with N, the highest wavenumber,
while for the a model it becomes independent of N.

Time-implicit numerical methods also slow down the
frequency of the highest wavenumbers. In fact, the a
model and time-implicit numerical methods share the
same philosophy in that both methods modify the fre-
quency of the high wavenumbers in order to attain high-
er maximum allowable time steps. The similarity and
difference will become clearer in the next section.

4. Pure gravity waves

In section 2 a connection was established between
the a model and implicit numerical schemes. Through
two very different mechanisms (one dynamical, one nu-
merical), they slow down the frequency of the high
wavenumbers and can therefore take a time step beyond
the explicit time step limit of the SW equations.

The principal aim of this section is to study the nu-
merical differences between an explicit formulation of
the SW-a model to the familiar time-implicit method of
Dukowicz and Smith (1994, hereafter DS94). We begin
with a Fourier analysis of both to compare amplitude
and dispersion errors and then compare numerical sim-
ulations.
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a. Fourier analysis

Define l 5 e2ivDt or l 5 | l | e2i Re(vDt), where v can
be either the dispersion relation for the Rossby or gravity
waves, Re(vDt) is the phase per unit time step, and | l |
is the amplification factor.

1) ADAMS–BASHFORTH DISCRETIZATION OF SW-a

First we discretize Eqs. (10)–(12) with a common
time-stepping scheme, the third-order Adams–Bashforth
method (AB3), and compare the numerical phase speed
and amplitude with their analytical counterparts in Eq.
(13):

Dt 23 16 5
n11 n 2 n 2 n21 2 n22d 2 d 1 ¹ h 2 ¹ h 1 ¹ h ) 5 0, (36)

21F 12 12 12

23 n 16 n21 5 n22
n11 nh 2 h 1 Dt d 2 d 1 d ) 5 0, (37)112 12 12

n
n 2 2d 5 (1 2 a ¹ )d . (38)

FIG. 3. Damping factor and frequency vs for AB3. This is theQ
usual stability diagram for an AB3 discretization of SW gravity waves
with the exception that the CFL parameter is instead of Q, whereQ
Q2 5 dt2 , and the two are related by Eq. (40).2kh

Using the Fourier method for the spatial discretization,
we then substitute d 5 l exp[i(kx 1 ly)] and h 5d̂
lĥ exp[i(kx 1 ly)] into Eqs. (36)–(38), where 52kh

k2 1 l2 and take the determinant and set it equal to zero
to produce the characteristic equation:

22 2Dt k 23 16 5h2 4 2(l 2 1) l 1 l 2 l 1 .
2 2 2 1 2F (1 1 a k ) 12 12 12h

(39)

When a 5 0, we recover the characteristic polynomial
for the shallow water equations. Denote

2 2 22 Dt k QhQ 5 5 . (40)
2 2 2 2 2F (1 1 a k ) (1 1 a k )h h

Figure 3 shows the numerically computed amplification
factor and phase error, versus . This is the usual sta-Q
bility result for an AB3 discretization of SW gravity
waves except that represents the Courant–Friedrichs–Q
Lewy (CFL) number, instead of Q, where Q2 5 Dt2 .2kh

This plot shows that for numerical stability,

Q # C, (41)

where the explicit stability limit is marked on the figure
with a diamond. Substitute Eq. (40) into (41),

2 22Dt kh
# C. (42)

2 2 2!F (1 1 2a k )h

We parallel the analysis of section 3 by substituting the
highest wavenumber ( 5 2N 2) into Eq. (42), and tak-2kh

ing the limit as N → `,

Dt
# C. (43)

Fa

Finally, we solve for Dt,

Dt # CFa. (44)

This result is the same as Eq. (34). That is, the maximum
allowable time step becomes independent of N.

Exploring the relationship between , the a model’sQ
CFL parameter, and Q, the usual CFL parameter, we
plot Eq. (40) in Fig. 4. When ka 5 ` (a 5 0), the CFL
parameters are identical. As ka increases, the CFL pa-
rameter for the a model decreases relative to the SW
CFL parameter, stabilizing the method. Though not plot-
ted here, when ka 5 0 (a 5 `), is zero for all fre-Q
quencies and wavenumbers, making the SW-a equations
unconditionally stable.

Figure 5 shows the maximum allowable time step for
F 5 1, computed by solving Eq. (42) for Dt:

2 2CFÏ1 1 a kh
Dt , . (45)

kh

For a 5 0 we find the 1/k behavior we expect. As a
increases, the maximum allowable time step asymptotes
to CFa in k and becomes independent of wavenumber.
The larger a, the larger the maximum allowable time
step.
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FIG. 4. This figure shows how /Q changes for a given ka andQ
wavenumber where is the modified CFL parameter for the a model,Q
and Q is the usual CFL parameter. The solid line, for ka 5 ` (a 5
0), shows that the CFL parameter for the SW-a model is the same
as for the SW equations. As ka decreases the CFL parameter for the
a model decreases relative to the SW CFL parameter stabilizing the
method.

FIG. 5. Maximum allowable time step of Eq. (45) vs wavenumber.
For a 5 0 we find the 1/k behavior we expect for SW gravity waves.
As a increases the maximum allowable time step asymptotes to Ca
in k and becomes independent of wavenumber.

FIG. 6. Amplification factor, denoted by | l | , and phase error, de-
noted by v/vr, vs Q, the CFL parameter, for the near-optimal param-
eter choices for the semi-implicit method of DS94.

2) IMPLICIT FREE SURFACE DISCRETIZATION OF SW

In this section we compare the a model of the previous
section to the method of DS94 because it is the method
employed in the widely used Parallel Ocean Program
(POP) ocean model (Dukowicz et al. 1993). In their meth-
od, DS94 use the time-implicit method for the 2D bar-
otropic equations to advance the fastest-moving waves,
while using a more accurate explicit numerical scheme
to advance the slow, 3D baroclinic modes. We focus only
on their time-implicit method for the 2D barotropic equa-
tions, which are very similar to the SW equations studied
in this paper. We repeat the DS94 discretization and anal-
ysis here for completeness:

2Dt
n11 n21 2 md 2 d 1 ¹ h 5 0, (46)

2F
n11 n uh 2 h 1 Dtd 5 0, (47)

where,
m n11 n n21x 5 mx 1 (1 2 m 2 g)x 1 gx , (48)
u n11 nx 5 ux 1 (1 2 u)x , (49)

where x can be either h, d, or in later sections c. Sub-
stituting d 5 le , h 5 le ĥ, into the above, weik x ik xh hd̂
obtain the characteristic polynomial

22Q
2 2(l 2 1)(l 2 1) 1 [ml 1 (1 2 m 2 g)l 1 g]

2F

3 (ul 1 1 2 u) 5 0. (50)

Figure 6 shows numerically computed amplification fac-
tors and dispersion errors versus Q, where Q2 5
Dt2 , for their near-optimal parameter choices, m 5 g2kh

5 1/3, u 5 1:
2 2 2Q 5 Dt k .h (51)

Comparing Figs. 3 and 6, we first see that the a model

does not appear to be unconditionally stable, unlike
DS94. But it can be made so by increasing a, thus
reducing , as shown in Fig. 5. As a is increased, theQ
time step increases, and the solution to the a model, the
modeled Lagrangian mean solution, incorporates more
of the small scales on the large, moving further away
from the instantaneous solutions of the SW equations.
In the time-implicit numerical method a similar effect
happens—the larger the time step, the further the so-
lutions are from the instantaneous SW solutions.

b. Numerical test case

In the case of SW-a the time step gain originates from
the Lagrangian mean solutions of the partial differential
equation (PDE). That is, the small scales have been
incorporated into those of the large in the solutions to
SW-a, which subsequently slows down the frequency
at the high wavenumbers. This allows a larger time step
to be taken. The method of DS94 also allows a time
step beyond the explicit limit through the implicit nu-
merical formulation of the unaveraged SW equations. I
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FIG. 7. Test case solution at t 5 0 at y 5 1.521 708 94.

wish to further examine the differences in these two
methods. Therefore, this section focuses on the com-
parison of a single, simple test case, described below.
Both the a-model numerical solutions and the DS94
solutions to the exact solutions of the SW equations are
compared to examine their behavior relative to the unav-
eraged SW equations.

To draw out the effects of SW-a and DS94 in different
wavenumber parts of the solution I focus on a test case
comprised of a superposition of high- and low-wave-
number waves. Again, this investigation is restricted to
the linear equations for pure gravity waves (no rotation).

Rewrite Eqs. (10)–(12) as

1
] y 1 ] h 5 0, (52)t 1 x2F

1
] y 1 ] h 5 0, (53)t 2 y2F

] h 1 ] u 1 ] u 5 0, (54)t x 1 y 2

2 2v 5 (1 2 a ¹ )u. (55)

An analytical solution to these equations is

k
u 5 cos(xk 2 vt) cos(yl),1 2F vA(k, l, a)

y 5 A(k, l, a)u (56)1 1

l
u 5 2 sin(xk 2 vt) sin(yl),2 2F vA(k, l, a)

y 5 A(k, l, a)u (57)2 2

h 5 cos(xk 2 vt) cos(yl) and
2 2 2A(k, l, a) 5 [1 1 a (k 1 l )]. (58)

We superimpose a k 5 l 5 20 solution with a k 5 l 5
3 solution:

tu 5 a u | 1 a u | , (59)1 3 1 k5l53 20 1 k5l520

tu 5 b u | 1 b u | , (60)2 3 2 k5l53 20 2 k5l520

th 5 c h | 1 c h | , (61)3 k5l53 20 k5l520

where the coefficients are chosen to be a3 5 b3 5 c3

5 0.9 and a20 5 b20 5 c20 5 0.1. Figure 7 depicts a
one-dimensional slice at y 5 1.521 708 94. We integrate
the a-model and DS94 in time until t 5 4.44, the time
to propagate a wavenumber-1 solution one period.

1) RESULTS FOR THE TEST CASE FROM FOURIER

ANALYSIS

Now we evaluate at the L2 norm of the error for the
high and low frequencies of the test case.

We define the L2 norm as:

1/22p 2p1
2\w\ 5 |w | dx dy , (62)2L E E21 24p 0 0

where w is a function defined on (x, y) ∈ (0 . . . 2p, 0
. . . 2p). We choose this function to be the error between
the exact solution and the computed solution, w 5 hexact

2 hcomputed. Recalling that h 5 ĥ | l | ne fromc2iv nDt ik xr he
our analysis in section 3 we can compute the L2 norm
of the error for both DS94 and the a model by

1/22p 2p1 c2iv t n 2iv t 2g g\w\ 5 |e 2 |l | e | dx dy .2L E E21 24p 0 0

(63)

These errors are a function of wavenumber and time.
We plot the L2 errors in Fig. 8. Figure 8a shows the L2

error for both wavenumbers. For the high-wavenumber
solution, both DS94 and the a model make the same
error relative to the instantaneous SW equations by the
time t 5 4.44. The error for the low wavenumber, 3, is
less in the case of the a model by about a factor of 2.

Now define an amplitude and phase L2 error as
1/22p 2p1amp n 2\w\ 5 (1 2 |l | ) dx dy , (64)2L E E2[ ]4p 0 0

1/22p 2p1 cphase 2iv t 2iv t 2g g\w\ 5 |e 2 e | dx dy ,2L E E21 24p 0 0

(65)

where vg is Eq. (13), and | l | and are computedcvg

numerically using either Eq. (39) in the case of the a
model or Eq. (50) in the case of DS94.

Figure 8b shows the amplitude L2 error, \v versusamp\ 2L

time. We see that both DS94 and the a model make the
maximum possible amplitude error for the highest wave-
number. However, for the lowest wave number the a
model makes almost no amplitude error, while DS94
makes some amplitude error from its damping. Fur-
thermore, Fig. 8c shows once again that both the a
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FIG. 8. (a) The L2 errors described by Eq. (63); (b) \v ; and (c)amp\ 2L

\v , where vg is Eq. (13), and | l | and are computed nu-phase c\ v2L g

merically using either Eq. (39) in the case of the a model or Eq. (50)
in the case of DS94.

FIG. 9. Parameter as a function of a for three different timeQ
steps and two different wavenumbers, one high frequency (20), the
other low (3). The stability limit for AB3 is drawn as a straight line.
For the largest time step and highest wavenumber the CFL parameter
exceeds the explicit limit.

model and DS94 make high errors for the high-wave-
number solution. For the low wavenumber, the DS94
phase error is less than that of the a model.

2) RESULTS FOR THE TEST CASE FROM NUMERICAL

SIMULATIONS

In this section numerical simulations of the test case
are run at three different values of the time step, both
for DS94 and for the a model. In all three cases for the
a model the largest ka that gives a stable solution is
chosen. Figure 9 shows , the stability parameter forQ
AB3 as a function of a for all three time steps, for the
two wavenumbers used in the test case. The solid line
across the top of the graph is the stability limit for AB3.
When a 5 0, the method is stable for Dt 5 0.01 and
Dt 5 0.001. For the largest time step and highest wave-
number the CFL parameter exceeds the explicit limit.
Also, one observes that asymptotes to a constant asQ
a is increased, confirmation of the stability limit given
in section 3. For a stable solution, choose a to be the

smallest value that gives the desired value of . TheQ
values chosen for the test case are shown in Table 1.

Figure 10 shows the final solution for DS94 and the
a model for three different time steps. The top-left panel
is for Dt 5 0.001. The a model with ka 5 1000 is
indistinguishable from the analytical solution for a 5
0. DS94’s damping is already affecting the variability
of the solution, lowering the amplitude of the high-
frequency oscillations. The top-right panel shows the
case where Dt 5 0.01. At this time step the high-fre-
quency part of the solution is gone for DS94, leaving
the low frequency intact. The a model with ka 5 125
is preserving some of the high-frequency variability.
Finally the bottom panel shows the case for Dt 5 0.03.
Both DS94 and the a model (ka 5 29) have damped
the high frequencies. The difference is that DS94 has
also damped the low-frequency part of the solution
while the a model has preserved some of the amplitude,
but has introduced more phase error.

Figure 11 shows the L2 norm of the error for the test
case. The solid lines are the L2 error for the a model,
while the dots are for DS94. For the smallest time step
of the test problem, Dt 5 0.001, the a model’s error is
very small. DS94’s error increases over the period of
the calculation. As we increase the time step to Dt 5
0.01, the L2 norm of the error between the DS94 and
the a model is about the same. Finally, for the largest
time step, Dt 5 0.03, which is beyond the explicit sta-
bility limit, we see the L2 norm of the a model is, at
first, very large, and oscillates, eventually asymptoting
to roughly the same error as DS94 with the smaller time
step of Dt 5 0.01. For the same time step the error for
DS94 is larger.
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FIG. 10. The a model and DS94 at t 5 4.44 compared with the exact solution for three different time steps. (top
left) The case for Dt 5 0.001. The a model with ka 5 1000 is indistinguishable from the analytical solution for a 5
0. DS94’s damping is already affecting the variability of the solution, lowering the amplitude of the high-frequency
oscillations. (top right) The case where Dt 5 0.01. At this time step the high-frequency part of the solution is gone
for DS94, leaving the low frequency intact. The a model with ka 5 125 is preserving some of the high-frequency
variability. (bottom) The case for Dt 5 0.03. Both DS94 and the a model (ka 5 29) have damped the high frequencies.
The difference is that DS94 has also damped the low-frequency part of the solution while the a model has preserved
some of the amplitude but has introduced more phase error.

TABLE 1. The values of ka used in the test problem for the three
time steps.

Dt ka

0.001
0.01
0.03

1000
125

29 FIG. 11. The L2 error for DS94 and the a model as a function of
time for three different time steps.

5. Rossby waves

This section investigates the effect of taking a larger
time step on Rossby waves. In the semi-implicit method
of DS94, this subject is pursued to show that at large
time steps the Rossby waves are unaffected. In the case
of the a model, taking a large time step corresponds to
Lagrangian averaging over a longer time interval. This
means more of the smaller scales are incorporated into
the large. Here the Fourier analysis of an explicit dis-
cretization of the a model is shown and compared to
the implicit numerical scheme applied to the unmodeled
equations.

a. Adams–Bashforth

The same procedure as in section 4 is followed and
Eqs. (14)–(16) are discretized in time using AB3 and
the Fourier spectral method in space. Then the Fourier
analysis is applied to the discrete equations to find the
characteristic polynomial:

z z
2 n11 2 n¹ c 2 ¹ c 1 Dt(b9c 1 d ) 5 0, (66)x

n11 n z
2c 2 c 1 DtB d 5 0, (67)

23 16 5
z n n21 n22f 5 f 2 f 1 f . (68)

12 12 12

Substituting d 5 le , c 5 l ,kx1ly kx1lyd̂ e ĉ

2 2 2 2 2l (l 2 1)[B k (1 1 a k ) 1 1]h h

22 iDtF(l)B b9k 5 0, (69)

where

23 16 5
2F(l) 5 l 2 l 1 .

12 12 12

This can be written as

2k Dtb9kF(l)r2 2l (l 2 1) k 1 2 i 5 0, (70)h 2 2 2 21 21 1 k /k 1 1 k /kh a h a

where
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FIG. 12. Numerically computed amplitudes and phase speed errors for the SW-a equations for b9 5 1 and kr 5 3, where kr is the Rossby
deformation radius wavenumber. The characteristic equation has three roots, two computational modes, and one physical mode. Computational
mode 1 is alway stable. The solid line is for ka 5 ` (a 5 0), the dashed line represents ka 5 20, and the dotted line represents ka 5 2.
Computational mode 2 is more significantly affected by a. As we decrease the a wavenumber the solution becomes unconditionally stable.
The amplitude error in the physical mode asymptotes to zero. The phase speed error, for the lowest ka is significant, even for small k. Even
for large values of a, where the dispersion error is larger, the amplitude of the Rossby waves is reasonably approximated.

23 16 5
2F(l) 5 l 2 l 1 .

12 12 12

The numerically computed eigenvalues are shown in
Fig. 12 for kr 5 3 and three values of ka. As ka decreases,
the method becomes stable. Interestingly, for the lowest
value of ka plotted, the Rossby wave amplitude is re-
covered but the dispersion errors are large.

b. Implicit free surface

Here, the method of DS94 is applied to the linearized
QG equations. Their discretization is

2 n11 2 n21 b m¹ c 2 ¹ c 1 2Dt(mc 1 d ) 5 0, (71)x

n11 n 2 uc 2 c 1 DtB d 5 0, (72)

where the superscripts m and u refer to the equations
given by Eqs. (48) and (49). This gives the characteristic
polynomial

2 2k (l 2 1)(ul 1 1 2 u)h

21 2F(l)[l 2 1 2 Dtikm9B (ul 1 1 2 u)] 5 0,

(73)

where
2F(l) 5 ml (1 2 m 2 g)l 1 g, (74)

and can be written as
2 2 2k /k (l 2 1)(ul 1 1 2 u)h r

21 2F(l)[l 2 1 2 Dtik/k m9(ul 1 1 2 u)] 5 0.r

(75)

DS94’s optimal parameters are used in the comparison.
The numerically computed results are shown in Fig. 13.
DS94 and the a model have similar behavior for the

Rossby waves. That is, the amplitude is recovered for
large time steps, but the dispersion error increases.

6. Summary

It has been shown that the SW-a equations, which
describe the slow-time dynamics of a rotating shallow
water fluid, allow larger time steps than for the unav-
eraged SW equations. This is because the effects of the
high wavenumbers are incorporated into those of the
low wavenumbers through Lagrangian averaging. This
effect appears in the linear analysis as a slow down of
the frequency of the linear gravity waves at high wave-
number. The main result is an analytical estimate for
the maximum allowable time step [Eq. (34)]. This es-
timate shows that as the grid is refined, the time step
becomes independent of the mesh spacing and instead
depends on on the length scale, a, a parameter of the
model. Because of this result an analogy was construct-
ed between the a model and time-implicit numerical
methods through the use of the modified equation ap-
proach, and the a model was compared to the implicit
method of DS94. The a model achieves a higher max-
imum allowable time step through the Lagrangian-av-
eraged equations, while DS94 accomplishes a similar
goal, but through its numerical formulation.

There are many remaining issues. First, I have re-
ported that the linear analysis of the a model shows
that the larger a, the larger the time step one may take
and still retain numerical stability. The larger a, the
more the small scales are being incorporated into the
large. This is achieved in a novel way—through the
Lagrangian-averaging process in Hamilton’s principle.
I have not reported on its ability to accurately model
the mean fluid motion, but others have. The reader is
referred to the introduction where I cite many investi-
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FIG. 13. Numerically computed amplitude and phase errors for DS94 for Rossby waves. The
method is unconditionally stable, with no amplitude errors in the physical mode, but substantial
phase errors.

gators’ work. To elucidate the differences between the
a model and implicit methods, I have compared it to
the familiar numerical method of DS94. But having
done so I would like to point out an issue of efficiency.
Both DS94 and the a model rely on elliptic solvers.
DS94 only needs one elliptic solver, while the a model
requires two. This is not addressed in this work since
for the linear case the elliptic problems can be solved
exactly, but there is still a significant cost issue asso-
ciated with the global elliptic solvers. This issue is cur-
rently being investigated in Geurts and Holm (2002,
2003), where a general theory for replacing the elliptic
solvers with filters has been presented and tested for the
large eddy simulations of shear layers. Second, even
though I have not addressed the new nonlinearity of the
a model, its effect on the solutions to the PDEs is sig-
nificant, and therefore further investigation is needed.
Last, there is a need for a technique to estimate its value.
In the case of the SW-a, and other a models, there are
many ways to do this.

The first approach is to physically measure a2, which
is the square of the correlation length of the Lagrangian
trajectories. So far this approach has not lead to tangible
results because of the difficulty of measuring Lagrang-
ian trajectories in Eulerian numerical codes. The second
is to compute a based on fluid stability, which is ad-
dressed in another work (Holm and Wingate 2004, man-
uscript submitted to J. Phys. Oceanogr.). And the last
approach, described here, is to estimate a based on nu-
merical stability.

The idea is as follows: a represents the smallest scale
resolvable on a numerical mesh. Scales below a are swept
by the fluid until they are damped by the numerical meth-
od (or other kinds of dissipation). Scales larger than a
are more faithfully represented. Therefore, one approach
chooses the smallest a that leads to numerical stability.
In fact, one might call this an ‘‘artificial dispersion’’
method in which we solve Eq. (40) for a2:

2 2
2 2 2Dt k 2 Q Q 2 Qh2a 5 5 . (76)2 2

2 2Q k Q kh h

This equation can be used to compute a depending on
the desired time step. For example, if one wants to use
a CFL number of Q 5 2 in a simulation, but desires an
accuracy of 5 1/2, and has enough mesh points toQ
support a maximum wavenumber of K 5 30, then one
calculates a 5 0.129. Implicit time differencing also
controls dispersion and amplitude errors through the
choice in time step.
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