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[1] A new technique is presented for estimating time-averaged, upper ocean geostrophic
velocity from a combination of altimeter data and subsurface float data. The technique
makes uses of the strong relationship between sea-surface height anomaly and
anomalous velocity at depth to reduce mesoscale eddy variability in subsurface float
displacements. The technique is demonstrated on a region in the North Atlantic that was
well sampled by Argo floats. The 2004 through 2006 time-averaged density field was
estimated from the surface to 2000 db by combining altimeter and hydrographic data
from the floats. In addition, a reference velocity field was estimated at 1000 db based on
a combination of altimeter data and subsurface float displacements. The reference
velocity field was combined with geostrophic shear based on the density field to
produce a three-dimensional estimate of geostrophic velocity from the surface to 2000 db.
The Gulf Stream transport in the upper 2000 db is estimated to be 76 Sv at 73�W. In
addition, an estimate of the 3-year average dynamic height at the surface was
computed by combining the 1000-db reference dynamic height and the time-averaged
density field.

Citation: Willis, J. K., and L.-L. Fu (2008), Combining altimeter and subsurface float data to estimate the time-averaged circulation

in the upper ocean, J. Geophys. Res., 113, C12017, doi:10.1029/2007JC004690.

1. Introduction

[2] Since 2000, the Argo project (http://www.argo.net)
has sought to build a global ocean observing system based
on subsurface floats that is capable of measuring the mid-
depth circulation and stratification of the World Ocean. The
floats provide estimates of subsurface velocity by drifting at
a prescribed depth for a period of several days. The
displacement between the float’s final and initial positions
provides an estimate of the time integrated velocity at depth.
[3] Having recently reached its goal of 3000 floats in the

global ocean, the Argo array is now producing observations
of the mid-depth circulation at an unprecedented rate. A
number of previous studies have used subsurface float
displacements to estimate the mid-depth circulation [Davis
et al., 1992; Davis, 1998, 2005; Lavender et al., 2000,
2005]. In addition, Mercier et al. [1993] determined ocean
circulation using hydrographic and float data in an inverse
model; Rio and Hernandez [2004] used hydrographic,
altimeter and surface drifter data to estimate the surface
circulation. Nevertheless, the Argo and altimeter data pro-
vide complementary information about the circulation of the
upper ocean and that has yet to be fully exploited.
[4] In particular, altimetric measurements of sea-surface

height (SSH) anomalies provide information about ocean
circulation on regional to global scales. Through the geo-
strophic relations, the spatial derivatives of SSH can be used

to infer geostrophic velocity at the ocean surface. Further-
more, velocity anomalies at the surface often penetrate to
depths of 800 m or more [Roemmich and Gilson, 2001].
This suggests that altimeter data may be able to provide
velocity information that is complementary to the Argo float
displacement data.
[5] As noted by Davis et al. [1992], one of the largest

sources of error in estimates of mean ocean circulation
based on subsurface float displacements is caused by
temporal variability related to the vigorous mesoscale eddy
field. Because altimeter data provide information about
anomalous geostrophic velocity, they may be used to
remove some of the eddy variability from the subsurface
displacement data. In this way, the complementary nature of
the two observing systems is exploited to make improved
estimates of the time-averaged circulation.
[6] In addition to the displacement data, Argo floats

provide temperature and salinity profiles that can be used
to infer velocity shear through the geostrophic relations.
This allows us to vertically extend the velocity information
provided by the float displacements to provide a full, three-
dimensional estimate of the geostrophic circulation.
[7] Although both Argo and altimeter data now provide

global coverage, the present analysis is performed using
data from a somewhat limited region in order to make the
problem more tractable. This allows for a more thorough
comparison of the circulation estimate with previous results
and for a more detailed description of the technique and its
application. For these reasons, the present study was limited
to data from the North Atlantic, north of 33�N. This region
was chosen because of its global importance, as the circu-
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lation in the far North Atlantic encompasses the source
waters for the global thermohaline circulation. In addition,
Argo data has been relatively abundant in the North Atlantic
for some time. Finally, a number of previous estimates of
subsurface circulation have been produced from indepen-
dent subsurface float data [Lavender et al., 2000, 2005] and
will provide a basis of comparison and a means of evalu-
ating the fidelity of the proposed technique.
[8] In the present study, the relationship between satellite

altimeter measurements and subsurface float data is
demonstrated, and a technique is presented for combining
the two data sets to estimate the time-averaged (2004 to
2006), three-dimensional geostrophic velocity field for
the N. Atlantic. The remainder of the article is organized
as follows. Section 2 discusses the data sets used in the
present estimate. Section 3 discusses how the Argo data
are combined with SSH to estimate the time-averaged
circulation. Results from the estimate of the upper ocean
geostrophic velocity field are presented in section 4.
Discussion and conclusions are given in section 5.

2. Data

2.1. Argo Data

[9] The goal of the Argo project has been to build and
maintain a uniformly distributed, global array of 3000
autonomous floats that continuously monitor the circulation
and properties of the world’s oceans. Data from the Argo
array of profiling floats were gathered from the U.S. Global
Ocean Data Assimilation Experiment, Global Data Assem-
bly Center (USGODAE GDAC) [http://www.usgodae.org/
argo/argo.html] and form the core of the present velocity
analysis. The instruments that make up the array are isobaric
profiling floats including APEX, SOLO and PROVOR
floats. The floats operate by inflating a small, external
rubber bladder to adjust their buoyancy and vertical position
in the water column. The float’s duty cycle begins by first
diving to a specified depth and drifting with the ocean
current for a period of several days. At the end of the drift
period, the floats ascend and drift at the surface for a short
time in order to fix their new position and transmit collected
data via satellite. During either ascent or descent, the floats
also dive beyond the drift depth, typically to a maximum
depth of 2000 db, in order to produce a temperature and
salinity profile.
2.1.1. Float Displacements
[10] Between the beginning of 2004 and the end of 2006,

approximately 304 Argo floats were either deployed or
drifted into the North Atlantic, north of 33�N. During this
time, these instruments produced about 12,500 float dis-
placements in this region, or about 360 float years of data.
[11] Displacements are computed by subtracting the po-

sition of a float at the end of its subsurface drift period from
the position where it began its subsurface drift. This
provides a time integrated estimate of velocity at the drift
depth of the instrument. Unlike acoustically tracked floats,
however, Argo float positions are determined using the
ARGOS satellite network. Floats must therefore rise to the
surface in order to determine their position. Several position
fixes are usually obtained while the float drifts at the
surface. However, floats often drift for a short period at
the surface before satellite communication can be estab-

lished and again between the time of the last ARGOS
position fix and the beginning of its next dive. This
unmeasured drift introduces error into the subsurface dis-
placements, and hence, the estimates of subsurface velocity.
The final and initial subsurface positions of the floats must
therefore be extrapolated using the positions and timing
information measured during its drift at the surface.
[12] The technique suggested by Park et al. [2005] was

used to extrapolate the unmeasured surface drift. This
involves fitting a linear drift along with an inertial velocity
to the surface position fixes. The resulting trajectory is used
to extrapolate to the time at which the float surfaced (the
‘‘ascent end’’ time) and the time that it began its next dive
(the ‘‘descent begin’’ time). Unfortunately, the ‘‘ascent end’’
and ‘‘descent begin’’ times are often inaccurate or go
unreported by the float. Park et al. computed these times
precisely using engineering data from the ARGOS trans-
missions. However, since the engineering data are not
widely available to the public, the ‘‘ascent end’’ and ‘‘descent
begin’’ times were approximated for floats that did not
directly report them, such as SOLO-type instruments.
[13] Only about 25% of the displacements in the study

region had usable ‘‘ascent end’’ or ‘‘descent begin’’ times.
For the remaining 75%, these times had to be approximated.
This was done by adding time to the first and last ARGOS
position fixes for a given surface trajectory. The amount
added was chosen so that the float’s total time at the surface
equaled the duration that the float was programmed to stay
at the surface. If the float’s programmed surface time was
not reported, it was estimated by calculating the difference
between the times of the first and last ARGOS position fixes
for each cycle of a given float. The maximum value of this
difference between the first and last fixes was then used as
an estimate of the total time a float was programmed to stay
at the surface.
[14] In cases where neither the ‘‘descent begin’’ nor the

‘‘ascent end’’ times were available, equal amounts of time
were added to the times of the first and last position fixes. If
only one was known, the excess time was added to the
unknown end of the trajectory. These assumptions were
tested using floats that contained valid ‘‘descent begin’’ and
‘‘ascent end’’ times and were found to give an RMS error of
about 1 hour. This corresponds to a 1.8 km RMS error in
displacement, averaged over the surface trajectories in the
study region.
[15] Ascent and descent times range from 2 to 10 hours

depending on the type of float and whether or not it
measured a profile during transit. Using an estimate of
geostrophic shear based on the density field described in
section 3.1, position errors due to unmeasured drift during
ascent and descent were estimated as described by Park et
al. [2005]. Assuming a 10 hour ascent time, parking depth
of 1000 m and profile depth of 2000 m, the median
displacement error due to shear was 130 m, and 68% of
errors were less than 180 m. These errors, combined with
the errors due to unknown ascent and descent times, and the
�2 km error in the extrapolation technique reported by Park
et al., suggest an overall uncertainty of 2.7 km for displace-
ments in the study region. For 10-day displacements, this
corresponds to a 0.3 cm/s uncertainty in the subsurface
velocity estimates. As shown below, this error is much
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smaller than sampling errors related to unresolved meso-
scale variability.
[16] Although the recommended parking depth for Argo

floats is 1000 m, only about 36% of float displacement data
available in the study region actually parked at depths
within 100 m of this depth. About 50% parked at depths
close to 1500 m and 11% parked close to 2000 m, with the
remainder parking at intermediate depths. Figure 1 shows
float displacements at the three different depths, with data
from each float represented by a single color.
2.1.2. Profile Data
[17] In situ temperature and salinity profiles from Argo

floats were used to estimate the density field. All of the
profile data containing pressure errors as discussed by Willis
et al. [2007, 2008] have now been corrected or flagged as
discussed on the Argo Web site (http://www-argo.ucsd.edu/
Acpres_offset2.html). These profiles were therefore includ-
ed in the present analysis provided they were flagged as
‘‘good’’ in the metadata. Delayed-mode data were used where
available, and Argo quality control flags were used to eliminate
spurious measurements. Additional quality control was per-
formed in two steps. First, all data were grouped together in
10� latitude bands and visually inspected to remove gross
outliers. Profiles were then divided into 5� � 5� horizontal
boxes and a standard deviation check was performed in
each box. Profiles were compared with temperature and
salinity from the WOCE gridded hydrographic climatology
[Gouretski and Koltermann, 2004, hereafter WGHC] and
profiles with data more than three standard deviations away
were removed. The profiles were then linearly interpolated
onto a uniform 10 db grid for analysis. This yielded about
12,000 usable temperature and salinity profiles in the study
region.
[18] Density anomalies relative to the WGHC were used

to compute density maps and for comparison with altimeter
data. Although the majority of floats obtained temperature
and salinity measurements to a depth of 2000 db, about 10%
of floats were missing data below 1000 db, and another 10%
were missing data below 1500 db. Density anomaly profiles
for these data were ‘‘extended’’ to 2000 m using the
technique suggested by Smeed and Alderson [1997]. Errors
in this technique were tested using complete profiles in the
region and found to give RMS errors in dynamic height of
only 1.1 cm and 0.6 cm, profiles with no data below 1000 m
and 1500 m respectively. As discussed below, these errors

are small compared with the sampling errors caused by
unresolved mesoscale variability.

2.2. Altimeter Data

[19] Gridded, sea-surface height anomaly fields contain-
ing data from multiple satellite altimeters were obtained
from AVISO (http://www.aviso.oceanobs.com). The delayed
mode product, DT-MSLA ‘‘Upd’’ was used for the period of
the study. These data are provided on a 1/3�� 1/3�Mercator
grid, with one map every 7 days.
[20] The AVISO data are supplied as anomalies relative to

a seven-year mean of the sea-surface height field. The goal
of the present analysis is to determine the mean geostrophic
circulation in the N. Atlantic for the period from the
beginning 2004 through the end 2006. For consistency,
the time-average over this period was removed from the
AVISO data prior to the analysis.

3. Combining Altimeter and Float Data

3.1. Density

[21] In order to fully exploit the velocity information
contained in the altimeter and Argo data, it is necessary to
first estimate geostrophic shear using the Argo profile data.
This is used to combine float displacement data from
different depths as well as to estimate the three-dimensional,
time-averaged geostrophic velocity field. An estimate of the
time-averaged density field is therefore computed first.
[22] A number of previous studies [Gilson et al., 1998;

Willis et al., 2004] have shown that sea-surface height
variability is strongly correlated with changes in upper
ocean density. Furthermore, Willis et al. [2003] showed that
combining altimeter and profile data can provide estimates
of upper ocean density variability with less error than either
data set individually.
[23] In the present analysis, a technique similar to the one

used by Willis et al. [2003] is used to reduce the sampling
error caused by the mesoscale eddy field. The eddy variabil-
ity in the density field is estimated using the AVISO SSH
anomaly maps and linear regression coefficients of SSH onto
density anomaly as a function of position and depth.
[24] The spatially varying mean over the period of

interest (January 2004 through December 2006) is first
removed from the SSH fields. Regression coefficients a(x,
y, z) of SSH anomaly onto density anomaly were then

Figure 1. Float displacements by parking depth. All displacements for a given float have the same
color. From light to dark, shading indicates bathymetry <4000 m, <3000 m, <2000 m, <1000 m, and
<500 m.
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computed in 4� longitude by 2� latitude by 10 db pressure
bins from the surface to 2000 db using density anomaly
profiles and SSH interpolated to the time and location of
each profile. Figure 2 shows the spatial distribution of the
regression coefficients as well as the depth dependence of
their basin average.
[25] In the notation of Willis et al. [2004], the estimate of

time-averaged density is computed as:

restimate ¼ rprofile � a� SSH
n o

þ a� SSH ð1Þ

[26] Here, the curly brackets represent objective mapping
[Bretherton et al., 1976] and the over bar represents the time
average over the study period. The last term in (1) equals
zero by design, as the time average of the SSH maps over
the study period was removed at the outset. Equation (1)
therefore reduces to an objective map of the density
anomaly profiles with some of the temporal variability
removed using the regression coefficients and altimeter
data. This is similar to the ‘‘combined estimate’’ approach
used by Rio and Hernandez [2004] to estimate the mean
dynamic topography using altimeter and in situ data.
[27] Subtraction of a � SSH significantly reduces the

variance of the density anomaly data in the study region. To
test this, profile data were divided into independent sets,
before and after 1 July 2004. The latter set were used to
determine a, and the former set were used to test the effect
of subtracting a � SSH from the density anomaly data.
Although only half of the data were used to compute a for
this experiment, there were no significant differences between
this estimate of a and the ones computed using all of the data.
Using data beyond the 2004 through 2006 period of the time
average, this included about 17,500 profiles after to 1 July
2004 and about 9600 profiles before. Figure 3 shows the RMS
variability of density anomaly versus depth, with and without
subtraction of a � SSH. The ratio of the variance is also
shown. On average, the variance is reduced by about 32%.
Although the variance is reduced at all depths, the largest
reduction occurs around the depth of the thermocline. This
improves signal to noise ratio and suggests that when the
altimeter data are used, fewer observations are required to
produce a stable estimate of time-averaged density for the
study period.

[28] Prior to computing the objective maps, density
anomaly data were averaged in 1=4� � 1=4� bins. The
geographic center of the profiles in each bin was computed
and used along with the bin averages as input data for the
objective map. This reduced the number of observations
used in the objective map to about 8100, making it
computationally feasible on a modern workstation.
[29] The covariance function used for the objective map

of density was similar to the two-scale function suggested
by Willis et al. [2004]. However, the large-scale exponential
term was replaced with a Gaussian term and the small-scale
Gaussian term was replaced with the covariance function
used by Rio and Hernandez [2004]:

rirj
D E

¼ 1=2 1þ r þ 1=6 r2 � 1=6 r3
� �

exp �rð Þ þ 1=2 exp �R2
� �� �

þ n dij;

ð2Þ

where

r ¼ sqrt xi � xj
� �2

=l2x þ yi � yj

	 
2

=l2y

� �
;

R ¼ sqrt xi � xj
� �2

=L2
x þ yi � yj

	 
2

=L2
y

� �
:

Here, (x, y) are the positions of the bin-averages, lx and ly
are zonal and meridional scales of the short-scale part of the
covariance function, and Lx and Ly are zonal and meridional
scales of the large-scale part. The noise to signal ratio, n,
represents temporal variability as well as sub-mesoscale
variations and instrument noise that will be excluded from
the mapped fields. This form was found to fit the observed
data covariance extremely well (Figure 4).

Figure 2. (left) Linear regression coefficient of SSH onto
500 m density anomaly. (right) Regression coefficient
versus depth, averaged over the study region.

Figure 3. (left) RMS variability of density anomaly versus
depth before and after subtraction of a � SSH. (right) The
right panel shows the ratio of variance before and after
subtraction of a � SSH. For the purposes of this
calculation, data were divided into two independent sets
as described in the text. Regression coefficients calculated
using one set were used to test variance reduction in the
other.
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[30] To determine the appropriate choices for the noise to
signal ratio and the zonal and meridional covariance scales,
the depth-averaged covariance for density anomaly function
was estimated from the 1=4� data. A nonlinear fit of (2) to
the estimated covariance gave zonal and meridional scales
of Lx = 1330 km, and Ly = 763 km for the large-scale term,
and lx = 76.7 km, and ly = 52.9 km for the small-scale term.
The zero-lag bin was not included as part of the fit and the
noise to signal ratio was estimated as the ratio of variances
above and below the peak of the resulting covariance
function at the zero lag. A noise to signal ratio of 0.96
was found to be appropriate for the covariance of the raw
data, and 0.86 for the SSH-corrected data. The smaller noise
variance of the SSH-corrected density anomalies reflects the
reduced mesoscale and temporal variability, as expected
from Figure 3. The noise to signal ratio does not reflect all
of the 24% variance reduction because there is also a
reduction in covariance at non-zero lags when the scaled
altimeter data is subtracted. This is expected, as the tempo-
ral variability in both SSH and subsurface density also
contains variance on a wide range of length scales. For
consistency, the same covariance scales were used at all

depths. Although this restriction is not theoretically neces-
sary, previous work has suggested that the shape of the
wave number spectrum is relatively depth independent for
variability in the upper 800 m of the ocean [Zang and
Wunsch, 2001]. Furthermore, the a posteriori test of the
covariance function described below suggests that the lack
of depth dependence was not problematic.
[31] The bin-averaged density data were objectively

mapped onto a 1=4� � 1=4� � 10 db grid. Figure 5 shows
the 2004 through 2006, time-averaged density fields at the
surface, 500 db, 1000 db, and 1500 db. The sharp gradient
across the western boundary current as well as the subpo-
lar gyre boundaries are clearly visible for all depths except
the surface. In addition, the Mann eddy [Mann, 1967] is
visible as a low-density bulls-eye at just offshore of the
North Atlantic Current at 42�N. Figure 6 shows the map
of skill associated with the density maps, where skill is
defined as one minus the ratio of the estimated error
variance to the expected signal variance. A skill of 0.7
(0.9) implies an RMS error of 0.3 (0.2) kg m�3 at the
surface, 0.06 (0.03) kg m�3 at 500 db, 0.03 (0.02) kg m�3

at 1000 db, and 0.01 (0.005) kg m�3 at 1500 db.

Figure 4. (left) Zonal and (right) meridional depth-averaged density covariance. Solid lines are
computed from bin-averaged density data and dashed lines show model covariance.

Figure 5. (upper left) Time averaged density field at the
surface, (upper right) 500 db, (lower left) 1000 db, and
(lower right) 1500 db.

Figure 6. Skill in the density field. Contours go from
0.3 to 0.9 with a spacing of 0.2. The median skill value
in the study region was 0.90.
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[32] Because the skill map and error estimates are some-
what sensitive to the choice of covariance function, an a
posteriori test of the statistical assumptions was performed by
comparing the mapped product with the original density data.
The covariance field was recomputed after subtracting the
mapped density field from the density data. The resulting
covariance function had no significant structure at any depth
and the noise variance was comparable to the noise to signal
ratio used in the objective map. This suggests that the choice
of length scales and noise to signal ratios was justified and
that the lack of depth dependence in the covariance function
did not significantly impact the estimate.

3.2. Absolute Subsurface Velocity

3.2.1. Combining Float Displacements With Altimeter
Data
[33] The horizontal gradients of density can be used to

determine geostrophic velocity based on the thermal wind
equations. Such estimates, however, have always suffered
from lack of knowledge of the two-dimensional reference
velocity field. Subsurface float displacements from the Argo
array now provide direct observations of the reference
velocity at depth. Nevertheless, significant temporal aver-
aging is required in order to estimate the time-averaged
circulation because of the vigorous mesoscale eddy field. As
with the density data, it is possible to reduce the effects of
the mesoscale variability using SSH data. The approach
adopted here is similar to that of Niiler et al. [2003] who
used altimeter data to reduce temporal variability in surface
drifter data.
[34] In order to reduce eddy-variability in the subsurface

float displacement data, anomalous geostrophic velocity at
the surface is calculated from SSH anomaly using the
geostrophic relation:

fu ¼ �g
@h
@y

; �fv ¼ �g
@h
@x

; ð3Þ

where h(x, y, t) is SSH anomaly and f is the Coriolis
parameter that varies with latitude. For each float displace-
ment, the anomalous geostrophic surface velocities, u and v,
are linearly interpolated to the time and location of the
beginning subsurface position. A trajectory is then com-
puted by integrating the velocities forward in time by an
amount equal to the float’s subsurface drift period. The
vector displacement from the beginning to end of the
virtual trajectory is referred to as the ‘‘pseudodisplacement’’
(Figure 7).
[35] Roemmich and Gilson [2001] showed that dynamic

height and geostrophic velocity anomalies associated with
eddies in the subtropical North Pacific extended from the
surface to a depth of at least 800 m, decreasing in amplitude
and tilting slightly eastward with depth. This suggests that
anomalous geostrophic surface velocities observed by the
altimeter may have a subsurface signature as well. Numer-
ous other studies [Gilson et al., 1998; Wilson et al., 2002;
Guinehut et al., 2006, etc.] have also demonstrated a
relationship between altimeter data and subsurface veloci-
ties. To test for such a relationship in the present data,
pseudodisplacements were compared with observed 1000 db
displacements for the region from 50�W to 40�W, 33�N to
36�N (Figure 8). A clear correlation exists between the
pseudodisplacements and the observed displacements, with
the pseudodisplacements consistently overestimating the
observed displacements.
[36] A linear regression of observed displacements onto

pseudodisplacements was computed. For the data shown
in Figure 8, the regression coefficients were found to be
0.23 ± .05 in the zonal direction and 0.22 ± 0.05 in the
meridional direction, where error bars represent the 95%
confidence interval. No significant differences were found
between meridional and zonal regression coefficients in
the study region. This suggests that the regression coef-
ficients used to project SSH anomalies onto the subsur-
face displacements can be simplified to a single factor, b,

Figure 7. A pseudo-displacement (white arrow) computed by advecting an imaginary particle through
the geostrophic velocity field implied by SSH for the duration of subsurface drift of an Argo float.
Background field is SSH. Contour interval is 2 cm.
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which multiplies h in equation (3). Although more
sophisticated treatments may be possible that account
for features such as the eddy tilt observed by Roemmich
and Gilson [2001], this choice still allows for significant
reduction of eddy variability in the displacement data.
[37] The regression coefficients, b, that project SSH

anomaly onto subsurface displacements were computed in
10� longitude by 3� latitude bins and separately for data
from each of the three drift depths (Figure 9). Although bins
of this size were necessary in order to achieve sufficient data
density, the regression coefficients were computed on a 2�
longitude by 1� latitude grid using overlapping bins. A
mean velocity was computed for each bin and removed
from the observed displacements prior to computing the
coefficients. As no significant differences were found between
meridional and zonal coefficients, the meridional and zonal

components of each displacement and pseudodisplacement
were treated as independent observations in the calculation of
the regression coefficient.
[38] Also shown in Figure 9 are the correlation coeffi-

cients, r, between observed and pseudo displacements each
of the three depths. At 1000 m, the correlation between SSH
and subsurface velocity are greater than 0.5 in most regions.
At 1500 and 2000 m, the correlations are smaller but remain
above 0.3 in most regions. In the Labrador Sea, west of the
southern tip of Greenland, high correlations are observed in
both the 1500 m and 2000 m velocity data. The significant
correlation between SSH and velocities at depths of 1000 m
and greater suggests that either deep baroclinic or barotropic
variability is significant in the North Atlantic. This region
also contains vigorous eddies that extend deep into the
weakly stratified water column of the Labrador Sea [Lilly et
al., 2003]. This is consistent with the results of Guinehut et
al. [2006] who found that SSH variations in the North
Atlantic could not be fully explained by baroclinic variabil-
ity in the upper 700 m or by Sverdrup transport.
[39] Once computed, the regression coefficients and SSH

data were used to reduce eddy variability in the float
displacement data. An adjusted pseudodisplacement was
computed by interpolating the regression coefficient for
the appropriate drift depth to the location of each observed
displacement. The regression coefficient, b, was then mul-
tiplied by h in equation (3), which was integrated over the
subsurface drift period. The resulting adjusted pseudodis-
placement was then subtracted from the observed displace-
ment. This reduces the basin-average variability of subsurface
velocities from displacement data from 7.8 cm/s to 6.7 cm/s.
[40] To further illustrate the reduction in eddy variability,

bin averages of meridional and zonal velocity were esti-

Figure 8. Comparison of observed displacements and
pseudo-displacements from 184 Argo floats drifting at
1000 db between 50�W to 40�W, 33�N to 36�N (dots). Solid
line shows regression coefficient, dashed lines show 95%
confidence interval for regression coefficient.

Figure 9. Coefficient of regression (top row) of pseudo-displacements onto observed displacements for
each of the three drift depths. Also shown are the correlation coefficients, r, for each depth (bottom row).
Only regions with correlations significant at the 95% level are plotted.
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mated from the displacements on a 1� grid (Figure 10).
Although a finer grid was used to make objective maps as
described below, the 1� grid allows for sufficient observa-
tions in most bins to produce a stable, long-term average.
Eddy variability is estimated relative to the 1�means. Again,
data were divided into independent sets to test the effect of
variance reduction. However, because coverage at different
drift depths changed significantly over the study period, this
was accomplished by placing every other displacement from
a given float into opposite sets. One set was used to determine
the coefficients b and the other was used to test the effects of
variance reduction. Almost all regions have reduced vari-
ability after subtracting the adjusted pseudodisplacements
and the median reduction in variance was 24%. This
represents a 24% reduction in the noise-to-signal ratio
for estimating the time-averaged velocity.
3.2.2. Objective Mapping
[41] Techniques for analysis of subsurface float dis-

placement data have been developed and applied in
several previous studies, including those of Davis
[1998, 2005] and Lavender et al. [2000, 2005]. In the
present study, we use the technique developed by Davis
[1998] to objectively map geostrophic pressure and velocity
from the SSH-corrected float displacements.
[42] Observations from the three different drift depths

were combined to estimate the time-averaged velocity at
1000 db. To do so, geostrophic shear was calculated from
the time-averaged density field (Figure 5) using the thermal
wind equations and adjustments were made to the 1500 db
and 2000 db float displacements.

[43] As in the study of Davis [1998], weighted, space-
time averages of displacement data were used as input to the
objective map. The space-time averages were initially
computed on a 1/4� � 1/4� grid but were re-centered to
the position-weighted average of the data for each grid
point. Also, as recommended by Davis et al. [1992], all
averages were computed by weighting the measurements by
the duration that the float was submerged to produce
unbiased estimates. Although a number of Argo floats are
programmed to have different subsurface drift periods, the
majority (about 78%) drift for 10 days, so these averages
differ only slightly from simple averages.
[44] The covariance function for geostrophic pressure was

chosen to have a similar functional form as the covariance
function for the density maps. However, a dependence on
barotropic potential vorticity was also included as recom-
mended by Lavender et al. [2005]. This gives the following
functional form:

pipj

D E
¼ 1=2 1þ r þ 1=6 r2 � 1=6 r3

� �
exp �rð Þ þ 1=2 exp �R2

� �� �
� exp �Wð Þ þ n dij; ð4Þ

for geostrophic pressure covariance, where W = (z i � z j)
2/

(z i
2 + z j

2). Here z is barotropic potential vorticity, or f/H,
where f is the Coriolis parameter and H is the water depth.
[45] Davis [1998] and Lavender [2001] showed that the

covariance functions needed to map geostrophic pressure
and velocity from displacement data can be derived from
the geostrophic relation and they are proportional to the

Figure 10. Variability of subsurface displacements in one-degree squares (top left) before and (top
right) after subtraction of adjusted, pseudo-displacements. The lower left panel shows the difference
between the two upper panels and the lower right shows the number of observations in each one-degree
square. For the purposes of this calculation, data were divided into two independent sets as described in
the text. Regression coefficients calculated using one set were used to test variance reduction in the other.
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spatial derivatives of the covariance function for geostrophic
pressure. Estimates of the 2-D spatial-lag covariance
functions huui, hvvi, and huvi were computed from the
1=4� bin-averaged velocities and a nonlinear fit was used
to determine the length scales. Zonal and meridional
covariance scales were estimated to be Lx = 983 km, and
Ly = 273 km for the large-scale term, and lx = 111 km, and
ly = 83.4 km for the small-scale term. Figure 11 shows that
the observed covariance functions are in excellent agreement
with those derived from (4). As for density, the noise to
signal ratio was determined by comparing the covariance
function at zero lag with the data variance. A noise to signal
ratio of 2.8 was found to be appropriate for the covariance of
the raw data, and 3.0 for the SSH-corrected data. Again, both
the amplitude of the covariance function and the noise
variance were significantly reduced by the SSH-correction.
However, for the displacement data, the reduction in signal
variance was slightly larger than the reduction of noise
variance. This is the reason for the slight increase in the
noise ratio of the SSH-corrected data.
[46] After applying the geostrophic shear adjustment to the

deep displacements, reducing the eddy variability and aver-
aging in 1=4� bins, objective maps [Bretherton et al., 1976] of

the time-averaged velocity and geostrophic pressure at
1000 db were computed (Figure 12). To the south of the
Gulf Stream, the tight recirculation gyre is clearly visible. As
in the density fields, the Mann eddy is also well-resolved in
the three-year average velocity estimate. In the northern part
of the domain, the deep subpolar gyre is denoted by blue and
purple regions in the contour map of dynamic height. In
addition, the recirculation gyres along the northern and
western boundary of the subpolar gyre first described by
Lavender et al. [2000] are visible within the purple contours.
[47] Figure 13 shows the skill map associated with the

1000 db dynamic pressure and velocity maps. A skill of 0.7
(0.9) results corresponds to an RMS error of 1.9 (1.1) cm in
dynamic pressure or 3.8 (2.2) cm/s in velocity.
[48] At the suggestion of one reviewer, an additional

calculation was carried out to verify that the errors sug-
gested by Figure 13 are reasonable. Two independent
estimates of 1000 db dynamic pressure were computed by
randomly splitting the 12,500 displacement observations
into two independent groups. Comparing these two inde-
pendent estimates with each other provides an independent
assessment of the errors in the estimate as well as a means

Figure 11. Observed and model covariance functions for displacement data versus zonal and meridional
lag.
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of verifying the error estimates computed using the objec-
tive mapping technique.
[49] The difference between the two independent esti-

mates is shown in Figure 14, along with its probability
distribution function (PDF). In the regions with skill greater
than 0.05, the RMS difference between the two independent
estimates was 1.7 cm. This is in excellent agreement with
the RMS error predicted by the skill maps of the two
estimates.
[50] To test how well the error computed using the

objective mapping technique predicts the differences shown
in Figure 14, an error estimate was made by averaging the
skill maps from the two independent estimates together and
scaling them as follows: error = sqrt(A * (1 � sk)), where A
is the signal variance used in the mapping procedure and sk
is the average skill map. The difference between the two
estimates of dynamic height was then normalized using this
error map. The PDF of the normalized error is very close to
the standard normal distribution, with approximately 69%
of the two independent estimates falling within one standard

error of each other as predicted by the objective mapping
error. This suggests that the error estimates based on
Figure 13 are realistic and that the objective mapping
procedure returns realistic error estimates when appropriate
statistical assumptions are made.

4. Results

[51] The thermal wind equations were used to estimate
geostrophic shear from the density maps described in
section 2. Using the 1000 db maps of velocity as a

Figure 12. Time-averaged circulation at 1000 db mapped from SSH-corrected float displacements. Left
panel shows dynamic height in cm (contour interval is 1 cm). Right panel shows the corresponding
velocity field. Regions with skill less than 0.6 are not plotted. Note that red vectors are plotted at 1/3 the
scale of the blue vectors. Bathymetry is shaded as indicated in Figure 1.

Figure 13. Skill map of 1000 db circulation. Contours go
from 0.4 to 0.9 with a spacing of 0.1. The median skill value
in the study region was 0.80.

Figure 14. Difference between estimates of 1000 db
dynamic height made from 2 independent sets of displace-
ment data (upper-left panel). The RMS difference is 1.7 cm.
The upper-right panel shows the probability distribution
function (PDF) of the differences from the upper-left panel.
The lower-left panel also shows the difference, but divided
by the error predicted from the objective map. The lower-
right panel shows the PDF of the scaled differences (blue)
along with the standard normal distribution with zero mean
and unit variance (red).
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reference, a three-dimensional estimate of the circulation
was constructed. This estimate represents the three-year
time average of the geostrophic, horizontal circulation in
the North Atlantic from the surface to 2000 db.
[52] In addition to velocity, steric height from the

surface relative to 1000 db was computed. By adding this
to the 1000 db dynamic height from section 3.2, a time-
averaged estimate of surface dynamic height was con-
structed (Figure 15). Because the 1000 db dynamic height
is used as a reference, the estimate of surface dynamic
height is limited in extent by the 1000 m isobath.
[53] The surface expression of the subpolar gyre is visible

in the purple shaded contours in Figure 15. In addition, the
Azores current is just visible at the southern edge of the
study region as an eastward flowing current centered at
34�N and beginning at about 45�W.
[54] Figure 16 shows a velocity section across the Gulf

Stream at the location illustrated by the white line in
Figure 15. This is the same section occupied by Meinen
[2001]. At the surface, the peak velocity of the current is 40 ±
2 cm/s, and the difference in dynamic height across the Gulf
Stream is 95 ± 3 cm. This is significantly slower than the peak
surface velocity estimated byMeinen of about 60 cm/s for the
Eulerian average at this section (see Meinen’s, Figure 8).
[55] This discrepancy between the peak surface velocities

is caused by a slowing of the Mann Eddy [Mann, 1967]
between the mid-1990s and the mid-2000s. Figure 17 shows
sea-surface height and surface geostrophic velocity aver-
aged over the period of the present study (2004 through
2006) and the period of the study of Meinen [2001] (August
1993 through February 1995). This was computed by
combining the mean SSH estimate shown in Figure 16 with
the 14-year record of SSH variability from AVISO. The
more vigorous Mann Eddy is clear from both the higher
peak in SSH as well as the more positive and negative lobes
in surface velocity for the earlier period. The 60 cm/s peak

velocity for the earlier period in Figure 17 is in excellent
agreement with that of Meinen [2001].
[56] The total transport of the current in the upper 2000 m

was 70 Sv for the section shown in Figure 16. Meinen
[2001] reported a baroclinic transport for the upper 2000 m
of the North Atlantic Current of 57 Sv across this section.
Assuming an average bottom depth of 4300 m andMeinen’s
[2001] estimate of barotropic transport, the total transport of
the North Atlantic Current would be about 74 Sv for the
upper 2000 m for the period 1993–95. This is slightly
higher than the 70 Sv estimate for our 2004–06 estimate,
but well within Meinen’s 14 Sv error bounds. It may also
reflect interannual variability in the transport.
[57] At 73�W, Halkin and Rossby [1985] estimated the

mean transport of upper 2000 m the Gulf Stream to be 88 Sv.
Along the same section in the present estimate (not
shown), we estimate the transport to be 76 Sv. This is

Figure 15. Surface dynamic height averaged over the period from 2004 through 2006. The contour
interval is 5 cm. Map is limited to regions of skill greater than 0.6 and by the 1000 m isobath as discussed
in the text. The white line shows the ‘virtual transect’ along which velocity is plotted in Figure 15.

Figure 16. Velocity versus pressure and distance along the
transect shown in Figure 14. North is to the left and negative
velocities (into the page) represent flow to the northeast.
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somewhat lower than the mean value reported by Halkin
and Rossby, but it is not outside the range of transports
estimated from individual transects. Nevertheless, the pres-
ent study also encompasses a period of slowing for the
Gulf Stream at 73�W. This is illustrated by a time series of
the difference between the maximum and minimum SSH
along this section (Figure 18) computed from the AVISO
record of SSH variability and mean SSH from the present
study. The steady decrease beginning in early 2004 implies
a slowing of the surface transport during this period.

5. Discussion

[58] A new technique for combining altimeter and Argo
data to estimate upper ocean circulation has been presented.
The technique makes use of the high temporal and spatial
resolution of the altimeter data to remove some of the eddy
variability from both hydrographic and subsurface displace-
ment data. Figures 3 and 10 show the reduction in eddy-
variability obtained by using the altimeter data. This
amounts to a reduction of the noise-to-signal ratio of about
32% in density and 24% in subsurface velocity from float
displacements.
[59] The effect of the altimeter data can also be illus-

trated by comparing estimates of the 1000 db circulation
with and without subtraction of the mesoscale eddy
variability (Figure 19). In most regions, differences between
the two estimates are of order 1 to 2 cm in dynamic
height, or 0.5 to 1 cm/s in velocity. Note that the regions
with the largest differences are also those with the most
eddy variability (see Figure 10). In the estimate of 1000 db
dynamic height made using no altimeter data (not shown),
boundary currents in both the polar and subtropical gyres
appear generally noisier, with more closed or broken
contours than the estimate shown in Figure 12. Although
use of the altimeter data primarily affects the small-scale
features of the time-averaged circulation, it also removes
some of the temporal variability in the Gulf Stream, the
East and West Greenland Currents and the North Atlantic
Current. In the SSH-corrected estimate, these currents
range from 2 to 5 cm/s faster at 1000 db and appear as
sharper gradients in the estimate of 1000 db dynamic

height. This is the reason for the coherent features visible
along the Gulf Stream in Figure 19.
[60] Although the length scales used for the objective

maps were carefully modeled to agree with the observed
covariances, it is helpful to test the sensitivity of these
results to the choice of covariance function. To do so, the
velocity estimate along the section studied by Meinen
[2001] was recomputed using a variety of different values
for the short-scale part of the covariance function, lx.
Figure 20 shows the dependence of the maximum velocity
and Gulf Stream transport as a function of lx. Values of lx
ranged from 50 to 150 km in increments of 10 km. For
simplicity, values of ly were also increased in 10 km
increments from 30 to 130 km and the short length scales,
lx and ly, for the subsurface velocity maps and the density
maps were held the same. Relaxing these assumptions or
allowing the large length scales, Lx and Ly, to vary did not
significantly change these results.

Figure 17. (left) Time-averaged SSH and (right) surface velocity along the section studied by Meinen
[2001] for the period of the present study (solid line) and the period of the data used by Meinen [2001]
(dashed line). Note the Mann Eddy, centred at 450 km, is more vigorous in the earlier period. The
temporal record of SSH was constructed by combining the mean SSH estimates from Figure 12 with the
AVISO record of SSH variability.

Figure 18. SSH difference across the Gulf Stream along
the section studied by Halkin and Rossby [1985]. The thin
line shows the weekly time series and the thick line shows
the one-year running mean. Note the decline in surface
transport after 2004.
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[61] Reducing the covariance length scale generally
increases the peak surface velocity of the Gulf Stream until
the scales become comparable to the 1=4� bins used as input
to the objective maps; however, the transport begins to fall
off for values less than about 90 km. Transport also
decreases as scales become too long. However, for the
range of scales that provides the best agreement with the
covariance functions estimated from the data (approx. 70 to
120 km), transport estimates range from 69 to 70 Sv and
maximum velocities range from 39 to 41 cm/s. The rela-
tively narrow range of velocities and transports shown in
Figure 20 suggests that these estimates are robust with
respect the choice of parameters in the model covariance
function.
[62] The sea-surface height field computed here is based

on observations that are largely independent from data used
in previous estimates. To investigate agreement between
these estimates, Figure 21 shows the difference between our
estimate of surface dynamic height and those of Niiler et al.
[2003], Rio and Hernandez [2004], and Jayne [2006]. In
order to avoid introducing real interannual to decadal

variability into these differences, the temporal baseline of
each estimate was shifted to the period from 2004 through
2006 using the AVISO maps. For instance, the estimate of
Niiler et al. [2003] represents a time average over the period
from October 1992 through October 2002. For comparison
with the present estimate, it was adjusted as follows:
SSHNiiler � SSH92–02 + SSH04–06, where SSHNiiler is the
estimate of Niiler et al., and SSH92–02 and SSH04–06 are
averages of the AVISO maps over the periods 1992 through
2002, and 2004 through 2006, respectively.
[63] The best agreement occurs between the present

estimate and that of that of Rio and Hernandez [2004].
The RMS difference between the SSH estimates is 5.1 cm,
and the RMS difference in velocity is 6.6 cm/s. Neverthe-
less, the north-south gradient across the Gulf Stream is
significantly larger in the present estimate than that of Rio
and Hernandez or any of the other estimates considered.
This could reflect a difference in mapping length scales. Rio
and Hernandez used scales of 200 km in this region, which
is significantly larger than the short scales used here. In
addition, Niiler et al. [2003] averaged data in 1� � 1�

Figure 19. Difference between estimates of 1000 db dynamic height with and without using altimeter
data to reduce the eddy noise. Contour interval is 0.5 cm.

Figure 20. Peak surface velocity and upper 2000 db Gulf Stream transport through the section studied
by Meinen [2001] as a function of the zonal scale used in the covariance function.
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squares prior to mapping, rather than the 1=4� squares used
here. This may have filtered out some of the smaller scale
variability in that estimate. Further investigation will be
required to fully determine the cause of this discrepancy.
[64] The RMS difference between the present estimate

and that of Niiler et al. [2003] is 5.5 cm (6.6 cm/s in
velocity). This is in good agreement with the 4.1 cm error
reported for the estimate of Niiler et al. [2003] and a median
error in the present estimate of 2.5 cm over the study region.
[65] Finally, the estimate of Jayne [2006] has an RMS

difference of 7.2 cm (8.6 cm/s) with the present estimate.
Some of the difference between these two estimates is likely
related to the 300 km spatial smoothing that is required to
reduce errors in data from the GRACE satellites used by
Jayne. This is particularly true in the regions with strong
spatial gradients such as the Gulf Stream.
[66] If the SSH-corrected Argo data are not used, the

RMS difference between the three estimates is 5.5 cm
(Rio05), 5.8 cm [Niiler et al., 2003], and 7.5 cm [Jayne,
2006] for SSH, or 8.0 cm/s, 8.0 cm/s and 9.6 cm/s for
surface velocity, respectively.
[67] The technique presented here can be applied to data

in most regions across the globe to make robust estimates
upper ocean circulation every 2 to 3 years. This will make it
possible to estimate large-scale changes in ocean circulation
on interannual time scales. As the effects of human induced
climate change begin to appear in the ocean’s general

circulation, data from satellite altimeters and the Argo array
of profiling floats will provide important tools for detecting
these signals and understanding the ocean’s role in global
warming.
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