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The theoretical foundation of a wave–ice interaction model is reported in Part 1 of this study. The model
incorporates attenuation of ocean surface waves by sea ice floes and the concomitant breaking of the floes
by waves that determines the structure of the marginal ice zone (MIZ). A numerical implementation of
the method is presented here. Convergence of the numerical method is demonstrated, as temporal and
spatial grids are refined. A semi-analytical method, which does not require time-stepping, is also devel-
oped to validate the numerical results, when dispersion is neglected. The wave energy lost during ice
breakage is parameterized, as part of the numerical method. Sensitivity studies are conducted in relation
to the energy loss and also dispersive effects, the choice of the attenuation model, the properties of the
wave field, and sea ice properties such as concentration, thickness and breaking strain. Example simula-
tions intended to represent conditions in the Fram Strait in 2007, which exploit reanalyzed wave and ice
model data, are shown to conclude the results section. These are compared to estimates of MIZ widths
based on a concentration criteria, and obtained from remotely-sensed passive microwave images.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Predictions of wave and ice conditions in the marginal ice zone
(MIZ) are becoming increasingly important in the era of climate
change and enhanced access to the Arctic Ocean. However, con-
temporary sea ice models do not contain information on floe sizes,
and contemporary wave models generally do not extend into the
ice-covered ocean. Modeling the interactions of ocean surface
waves with sea ice is necessary to rectify these conspicuous omis-
sions, because (i) floe sizes in the MIZ are far smaller than those in
the ice interior due to wave-induced ice breakage (Toyota et al.,
2006), and (ii) the presence of the ice-cover strongly attenuates
the waves (Wadhams et al., 1988), acting as a low-pass filter, and
hence is a necessary additional consideration when modeling the
transport of wave energy in the MIZ.

Part 1 of this investigation (Williams et al., 2013) describes a
waves-in-ice model (WIM) that extends the work of Dumont
et al. (2011) (hereafter referred to as DKB). The WIM provides pre-
dictions of (i) the ice floe size distribution (FSD) resulting from
wave-induced flexural breakage of the ice cover, and (ii) the wave
spectrum within the ice cover. The model includes two interrelated
sub-components. First, a wave attenuation model that calculates
the proportion of wave energy that is reflected by floe edges, and
lost to dissipative processes, as a function of the number of ice floes
encountered along the propagation path. Second, an ice breakage
model that decides when the strain imposed by the passing waves
on the ice cover is sufficient to cause fracture and how the result-
ing FSD evolves.

The FSD provided by the WIM will allow floe-size-dependent
processes to be modeled in the MIZ. The smaller floe sizes in the
MIZ are potentially important for thermodynamic exchanges such
as lateral melting between the atmosphere, ice and ocean; dy-
namic exchanges, e.g., form and skin drag coefficients; and rheol-
ogy, i.e., how horizontal stresses relate to deformation rates.
Floe-size-dependent thermodynamic and dynamic models have
been developed (e.g., Shen et al., 1986; Steele et al., 1989; Feltham,
2005), but can only be tested in fully coupled models once a floe
size parameter is incorporated in sea ice models.

In this paper, we place the model theory of Part 1 into a discrete
spatial and temporal framework for the purpose of numerical
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Table 1
Default model parameters.

Quantity Symbol Value

Ice thickness h1 1–4 m
Ice concentration c1 0.75
Water density q 1025 kg m�3

Ice density qice 922.5 kg m�3

Gravitational acceleration g 9.81 m s�2

Brine volume fraction tb 0.1
Incident significant wave height Hs 3 m
Incident peak period Tp 6–10 s
Minimum floe size in FSD Dmin 20 m
FSD cut-off length Dunif 200 m
Initial value of Dmax Dinit 500 m
Fragility P 0.9
Number of broken pieces n 2
Number of spatial grid cells Nx 91
Grid size Dx 5 km
Time step Dt 400 s
Number of spectral components Nx 31
Minimum wave period T30 ¼ 2p=x30 2.5 s
Maximum wave period T0 ¼ 2p=x0 23.8 s
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calculations. As part of the numerical scheme, we propose a meth-
od to simulate the wave energy lost during ice breakage. Semi-ana-
lytical schemes are devised for two limiting cases of wave energy
loss. These two schemes neglect dispersion, which is shown to
have a negligible affect on the FSD.

Here, we consider one-dimensional transects of the ocean sur-
face only, although the full numerical algorithm can be generalized
to two-dimensional ocean surfaces. The one-dimensional restric-
tion, however, provides a convenient setting to test the sensitivi-
ties of the WIM to the key numerical and physical parameters.
Idealized incident wave and ice conditions are used to investigate
the influence of the grid size, time step, the wave damping param-
eter, wave energy lost during ice breakage and breaking strain on
the FSD produced by the WIM. Numerical experiments are also
conducted with ‘realistic’ input data that represent the Fram Strait
in 2007. In the absence of measured FSD data to validate the WIM,
we compare our MIZ width predictions, i.e., the length of the inter-
val of ice cover broken by waves, with MIZ widths based on a con-
centration criteria, using AMSR-E satellite data.
Spectral resolution Dx 7.5 � 10�2 s�1

Breaking probability threshold Pc e�1 � 0:37
Flexural strength rc 0.27 GPa
Effective Young’s modulus Y� 5.5 GPa
Breaking strain ec 4:99� 10�5

Breaking significant strain Ec ¼ ec
ffiffiffi
2
p

7:05� 10�5

Viscous damping parameter C 13:0 Pa s m�1
2. Statement of the problem

We consider a one-dimensional transect x 2 ½0;X2� of spatially
varying ice concentration cðxÞ and thickness hðxÞ. We typically
use X2 ¼ 450 km. The transect is discretized into Nx grid cells with
uniform widths Dx ¼ X2=Nx. The ice edge is located at x ¼ X1 such
that the open water region is ½0;X1� and the ice-covered region is
½X1;X2� (see Fig. 1). In our idealized simulations, we use an expo-
nential thickness profile of the form

hðxÞ ¼
0 for 0 < x < X1;

h1 0:1þ 0:9 1� e� x�X1=Xhð Þ� �� �
for X1 < x < X2;

(
ð1aÞ

and a uniform concentration

cðxÞ ¼
0 for 0 < x < X1;

c1 for X1 < x < X2:

�
ð1bÞ

For realistic simulations, the concentration and thickness profiles
are taken from the TOPAZ operational forecasting system (Sakov
et al., 2012). The parameter Xh in (1a) was chosen to be 60 km to
approximate TOPAZ thickness outputs. Table 1 lists the default val-
ues of all parameters.

The wave energy is described by the spectral density function
Sðx; x; tÞ, where x ¼ 2p=T is the angular frequency and T is the
wave period. The wave spectrum is defined in both the open ocean
and the ice-covered ocean, after having undergone some attenua-
tion. The incident wave spectrum is prescribed at x ¼ 0. Because
data obtained from operational wave models are usually given
0 X1

h

X2

incoming wave
spectrum (Hs, Tp)

h(x) = h [0.1 + 0.9(1 e (x X1)/Xh)]
h

xXh

Fig. 1. Schematic figure illustrating the ice thickness profile in relation to the
incident wave field. We assume the latter is prescribed at x ¼ 0 using a Bretschne-
ider spectrum of the form (2), parameterized in terms of the significant wave height
Hs and peak period Tp. The thickness and concentration are either given by (1) or
are taken from TOPAZ model outputs.
parametrically in terms of the significant wave height Hs and the
peak period Tp (Ochi, 1998; WMO, 1998), we use the Bretschneider
two-parameter spectrum (Bretschneider, 1959), i.e.,

Sðx; 0; tÞ ¼ SBðx; Tp;HsÞ ¼
1:25H2

s T5

8pT4
p

e�1:25ðT=TpÞ4 : ð2Þ

Note that in the realistic experiments Hs and Tp evolve in time caus-
ing the incident wave spectrum to be temporally dependent. It may
be possible to obtain more detailed incident wave spectra in the fu-
ture—for example spectra with a parameterization of swell as well
as wind waves, or the full frequency and directional spectrum.

The FSD is characterized by two spatially varying floe length
parameters Dmaxðx; tÞ and hDiðx; tÞ, the maximum floe length and
average floe length, respectively, which also evolve with time.
The detailed parameterization of the FSD is presented in Section 4.1
of Part 1.

3. Theoretical preliminaries

In this section we recap key definitions and ideas from Part 1.

3.1. Wave statistics

Let the displacement of the (horizontal) air-ice interface be
giceðx; tÞ. Assuming the ice can be represented by a thin plate mod-
el, the horizontal strain in the plane of the wave is

e ¼ h
2
@2

xgice; ð3Þ

where h is the ice thickness. The main statistics we are interested in
are the mean square values of these quantities, hg2

icei and he2i. These
give us the significant wave height Hs and the significant strain Es:

Hs ¼ 4hg2
icei

1=2
; Es ¼ 2he2i1=2

: ð4Þ

The dominant wave period TW also plays a role as it defines a dom-
inant wavelength kW that, if breaking occurs, determines the maxi-
mum lengths of the consequent broken floes. It, like hg2

icei and h�2i,
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is defined in terms of integrals involving the wave spectrum S (see
equations 5 and 12 of Part 1).

As discussed in Appendix A of Part 1, we assume the displace-
ment due to a wave with the single frequency x follows a sinusoi-
dal profile

giceðx; tÞ ¼ Re½Aiceeiðjx�xtÞ�; ð5Þ

where jðx;CÞ satisfies the dispersion relation for ice-covered
water, as follows

Fj4 þ qðg � dx2Þ � ixC
� �

j ¼ qx2: ð6Þ

In (6) F is the flexural rigidity of the ice, qice is the ice density, h is
the ice thickness, C is the damping coefficient and P is the water
pressure. The parameter C contributes to a drag pressure
(�C@tgice) that is proportional to the particle velocity and which
is usually absent from the thin plate formulation. The rigidity is
given by F ¼ Y�h3

=12ð1� m2Þ, where Y� is the effective Young’s
Modulus and m ¼ 0:3 is the Poisson’s ratio.

Let kiceðxÞ ¼ Kðx;0Þ be the real positive root of (6) when C ¼ 0.
When C > 0, this root becomes complex, and j � kiceðxÞ þ idðx;CÞ,
where d > 0 is small enough to be ignored on small-scale computa-
tions, and only makes a significant contribution to large scale wave
attenuation. Also let

WðxÞ ¼ gkice

x2 jT j; EðxÞ ¼ h
2

k2
iceWðxÞ; ð7Þ

W is a factor that approximately converts the wave amplitude in
open water, A, to the wave amplitude in ice, i.e., Aice �WA, and T
is the transmission coefficient for a wave traveling from a region
of open water into an ice-covered region (Williams and Porter,
2009), which depends on both x and the ice properties involved
in (6). Similarly the strain amplitude is EW � EA.

We now define the following integrals over frequency:

mn½gice� ¼
Z 1

0
SðxÞxnW2ðxÞdx; ð8aÞ

mn½e� ¼
Z 1

0
SðxÞxnE2ðxÞdx: ð8bÞ

These integrals can be used to determine the expected response to a
given wave field in a way that allows for the possibility of construc-
tive and destructive interference between frequencies. Our main
quantities of interest are then given by

hg2
icei ¼ m0½gice�; he2i ¼ m0½e�; TW ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0½gice�
m2½gice�

s
: ð9Þ

If kW ¼ kiceð2p=TWÞ is the real part of the wavenumber j when the
period is TW, the dominant wavelength referred to earlier is given
by kW ¼ 2p=kW. The probability of the strain amplitude exceeding
the breaking strain �c is

Pe � PðEW > ecÞ ¼ exp
�ec

2he2i

� �
: ð10Þ
3.2. Breaking criterion

To determine whether the ice will be broken by waves, we de-
fine a critical probability threshold Pc such that if Pe > Pc the ice
will break. If it breaks, the maximum floe size is set to
Dmax ¼maxðkW=2;DminÞ where Dmin is the size below which waves
are not significantly attenuated and is set to 20 m (Kohout and
Meylan, 2008). These two quantities, Dmin and Dmax, determine
the FSD (see Section 4.1 of Part 1).

From (10), the criterion Pe > Pc can be written in terms of Es, ec

and Pc as

Es > Ec ¼ ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2= log Pcð Þ

q
: ð11Þ
Thus the single parameter Ec combines the effects of both ec and Pc.
Consequently, testing the sensitivity of the WIM to Ec allows for the
combined effects of our choice of Pc and also of uncertainties in the
breaking strain ec, which are considerable. Note that if
Pc ¼ e�1 � 0:37, the breaking criterion becomes Es > ec

ffiffiffi
2
p

, which
is the same as for a monochromatic wave.

3.3. Floe size distribution

Following DKB and Toyota et al., 2011, we use a fractal breaking
model that predicts the FSD from Dmax and Dmin. We assume floes
that break produce n2 pieces, and that the fragility of the floes
(the probability that a floe will break) is fixed at P. We use n ¼ 2
and P ¼ 0:9.

We determine the mean floe size from the formula of DKB:

hDi ¼
PM

m¼1ðnPÞ
mPM

m¼1ðn
2PÞm

; M ¼ lognðDmax=DminÞ
� 	

; ð12Þ

where b�c denotes rounding down to the nearest integer. The FSD is
discussed in more detail in Section 4.1 of Part 1.

4. Wave energy transport in the MIZ

4.1. Continuous equations

The energy balance equation for waves in the ice-covered ocean
is

1
cg

DtSðx; x; tÞ ¼ Rin � Rice � Rother � Rnl; ð13Þ

(Masson and LeBlond, 1989; Meylan and Masson, 2006; Ardhuin
et al., 2010), where cg is the group velocity and Dt � ð@t þ cg@xÞ.
The source terms Rin, Rice and Rother represent, respectively, the wind
energy input, rates of energy loss to (or due to) the sea ice and the
total of all other dissipation sources (e.g., friction at the bottom of
the sea, losses from wave breaking or white-capping, Ardhuin
et al., 2010). These are all quasi-linear in S. The Rnl term incorpo-
rates fully non-linear energy exchanges between frequencies (Has-
selmann, 1962; Hasselmann, 1963).

In the present study we consider only wave attenuation caused
by the presence of ice cover. Our simplified equation is therefore

1
cg

DtSðx; x; tÞ ¼ �Rice � �âðx; x; tÞSðx; x; tÞ; ð14Þ

where â is the dimensional attenuation coefficient, i.e., the rate of
exponential attenuation per meter. We model the wave attenuation
as being the sum of linear wave scattering at floe edges and a vis-
cosity term; this is discussed in detail in Section 4.2 of Part 1. The
attenuation coefficient is not explicitly dependent on S, but changes
suddenly when the wave energy (or more specifically the significant
strain Es) becomes large enough to cause ice breakage. This added
subtlety is unique to our model and its predecessor DKB.

As discussed in Section 3.1 of Part 1, Eq. (14) represents advec-
tion of S at the group velocity cg followed by its attenuation using
â. This can be seen by considering the above problem, between
breaking events, in the Lagrangian frame. The resulting expressions
are

dx
dt
¼ cgðx; x; t�Þ and ð15aÞ

d
dx

Sðx; x; tÞ ¼ �âðx; x; t�; S�ÞSðx; x; tÞ; ð15bÞ

where t� is the last time breaking occurred at x, and
S�ðx; xÞ ¼ Sðx; x; t�Þ. Thus, we have separated the problem into an
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advection problem (in which we solve DtS ¼ 0) and an attenuation
one. In our numerical scheme presented in the next section, we
solve (14) by alternately advecting and attenuating.

4.2. Full numerical implementation

Let us discretize our space, time and frequency variables using

Space : xj ¼ jDx ðj ¼ 0;1; . . . ;NxÞ;
Time : tn ¼ nDt ðn ¼ 0;1; . . . ;NtÞ;
Frequency : xr ¼ x0 þ rDx ðr ¼ 0;1; . . . ;NxÞ:

We choose x0 and Dx so that 31 periods between 2.5 s and 25 s are
included. For all temporal indices n, spatial indices j and frequency
indices r, we use the shorthand notations

cj ¼ cðxjÞ; hj ¼ hðxjÞ;
cg;r ¼ cgðxrÞ; Sn

j;r ¼ Sðxr ; xj; tnÞ;

Dn
j ¼ Dmaxðxj; tnÞ; Dn

j

D E
¼ hDiðxj; tnÞ:

The Courant number is ðCÞr � cg;rDt=Dx 2 ð0;1� (for r ¼ 0;1; . . . ;Nx).
It represents the proportion of one grid cell a wave of a given fre-
quency travels in one time step.

For j ¼ 1; . . . ;Nx, we also let

Wj;r ¼WðxrÞ; Ej;r ¼ EðxrÞ; ð16Þ

observing that we will need these to approximate the integrals (8).
Note that W and E have an implicit dependence on the ice proper-
ties, which is why Wj;r and Ej;r depend on the index of the grid cell as
well as the frequency index.

Following DKB, our numerical implementation (which we call
N1) proceeds as follows.

1. Initialization. For r ¼ 0;1; . . . ;Nx:
We initialise the problem by setting the incident wave spec-
trum and initial FSD to:
S0
j;r ¼

SBðxr; Tp;HsÞ for j ¼ 0;1;2;
0 for j ¼ 3;4; . . . ;Nx;

�
ð17aÞ

and D0
j ¼ D0

j

D E
¼

Dinit if cj > 0;
0 if cj ¼ 0:

�
ð17bÞ
Here Dinit is an arbitrarily chosen (relatively large) value. By invok-
ing (17b) at j ¼ 0;1;2, we can apply (2) via the Neumann condition
@xSðx; 0; tÞ ¼ 0 during the advection step. Note that this implies
@tSðx;0; tÞ ¼ 0, since the advection equation is DtS ¼ 0. We need
three points initially constant, as we advect S using a second order
method.
2. Time integration. For n ¼ 1;2; . . . ;Nt:

For r ¼ 0;1; . . . ;Nx:
(i) Advection. In our integration we alternate between advection
and attenuation. The advection is done by solving the equation
DtS ¼ 0 using the Lax-Wendroff scheme (a second order direct
space–time method) with Superbee flux limiting (Roe, 1986)
and a Neumann boundary condition, as mentioned above. The
scheme is stable for Courant number Cr 2 ð0;1� and has very lit-
tle numerical diffusion for 0:1 KCr < 1. We perform the advec-
tion over the whole domain in one step, mapping Sn�1

j;r onto an
unattenuated intermediate spectrum Ŝn

j;r (8j ¼ 1;2; . . . ;Nx).
For j ¼ 1;2; . . . ;Nx:
We now apply attenuation and the subsequent integration over
frequency locally, i.e., we consider each cell separately. We
reset m0½gice� ¼ m2½gice� ¼ m0½e� ¼ 0, and these integrals are cal-
culated cumulatively as we loop through the frequencies. For
r ¼ 0;1; . . . ;Nx:
(ii) Attenuation. We calculate the attenuation coefficient and the
attenuated wave spectrum to be
ân
j;r ¼

aj;rcj

Dn�1
j

D E and ð18aÞ

Sn
j;r ¼ bSn

j;r exp �ân
j;rcg;rDt


 �
; ð18bÞ
where aj;r ¼ aðxj;xrÞ is the non-dimensional attenuation coefficient
(cf. Section 3.1 of Part 1).
(iii) Integration over frequency. The integrals over frequency are
approximated using Simpson’s rule, i.e.,
Z 1

0
f ðxÞdx �

Z xNx

x0

f ðxÞdx �
XNx

r¼0

wrf ðxrÞ: ð19Þ
Thus we can update the integrals we need as the r loop proceeds:
m0½gice� ¼ m0½gice� þwrS
n
j;rW

2
j;r; ð20aÞ

m2½gice� ¼ m2½gice� þwrx2
r Sn

j;rW
2
j;r ; ð20bÞ

and m0½e� ¼ m0½e� þwrS
n
j;rE

2
j;r : ð20cÞ
(iv) Floe breaking. Having completed the frequency integration, the
significant strain, Es and the dominant period TW is obtained from
(4) and (9) following Section 3.2 of Part 1. If Es > Ec ¼

ffiffiffi
2
p

ec, the
ice breaks, and we reduce the maximum floe size to
Dn

j ¼maxfDmin;minfkW=2;Dn�1
j gg, where kW ¼ 2p=kiceð2p=TWÞ

is the wavelength corresponding to TW and the ice properties in
the cell. We then calculate the new average floe size hDn

j i from
(12).

3. Define the MIZ. At the end of the integration, the point xj is
defined to be inside the MIZ if the corresponding cell contains
ice and if ice breakage has occurred in that cell, i.e., if
0 < DNt

j < Dinit (j ¼ 0;1; . . . ;Nx). The MIZ width, LMIZ, is then
the distance from the ice edge to the last point in the MIZ,
which includes any internal polynyas. We also define DMIZ as
the maximum floe size in this region.

If Cr ¼ 1 the waves travel one grid cell every time step and hence do
not experience any attenuation from any ice they break, as the bro-
ken ice is always behind them. However, if Cr < 1, waves travel less
than a grid cell per time step and must therefore pass through a pro-
portion of this broken ice before escaping the cell. This is because we
use a well-mixed grid cell, as opposed to a partial grid cell. The pro-
portion of broken ice the wave must pass through in a grid cell is
1� Cr , i.e., it increases as the Courant number Cr decreases. In our
numerical results we will show that the FSD is insensitive to the
exact amount of broken ice the waves travel through if the maxi-
mum Courant number C ¼maxfCr jr ¼ 0;1; . . . ;Nxg is less than
approximately CK 0:7. This represents an equilibrium between
the wave field and the FSD, which will be discussed in Section 4.3.
In addition, while the scheme depends on the initial floe size Dinit

for C � 1, it does not in the limit C ! 0, and therefore for CK 0:7.

4.3. Semi-analytical schemes

The N1 scheme described in the previous section is a general
numerical implementation of the WIM that is applicable to any
ice and wave conditions. In particular, it can deal with wave dis-
persion (wave speed dependent on frequency), and it is generaliz-
able to two horizontal dimensions. However, if we neglect
dispersion we can derive semi-analytic methods for the C ! 1
and the C! 0 limits. The purpose of doing this is twofold: (i) to
check our numerical method; and (ii) to produce a much faster
algorithm to determine MIZ width, as the frequency loop is only
inside a single spatial loop instead of being within both spatial
and temporal loops (as in the N1 algorithm). Of course, if we wish
to know the wave spectrum at a particular time in the ice—for
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example, if we wish to know when a group of large waves will
reach a certain point, dispersive effects must be considered.
Notwithstanding, it will be shown in Section 5.1 that the predicted
FSD is insensitive to the effects of wave dispersion. Finally, we note
that generalizing semi-analytical methods to the two-dimensional
situation is challenging and that the numerical model is necessary
to overcome the added complexity of the extra dimension. When
we set Cr ¼ 1 for all r in the N1 scheme, all of the ice breakage is
caused by the lead waves as they always travel through unbroken
ice. The waves do not suffer additional attenuation due to floes that
have been freshly broken. Accordingly, in this situation it is
possible to calculate the breaking penetration, and hence the
width of the MIZ, just by considering the attenuation of the lead
waves (referred to hereinafter using the superscript ‘lw’). We
denote the semi-analytic method that reproduces the Cr ! 1
(r ¼ 0;1; . . . ;Nx) limiting case by A1. This method is essentially
the same as that of Vaughan and Squire, 2011. The wave spectrum
when the lead wave is at a given position x is given explicitly by

Slwðx; xÞ ¼ Sðx;0;0Þ exp �
Z x

0
âðx; x0;0Þdx0

� �
: ð21Þ

We can also calculate the moments for the lead wave

mlw
e ðxÞ ¼

Z 1

0
Slwðx; xÞE2ðxÞdx and ð22aÞ

mlw
n ðxÞ ¼

Z 1

0
xnSlwðx; xÞW2ðxÞdx; ð22bÞ

which give us the significant strain and the dominant wave period:

Elw
s ðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlw

e ðxÞ
q

; and T lw
W ðxÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlw

0 ðxÞ
mlw

2 ðxÞ

s
:

We can then find the width of the MIZ, i.e., the distance over which
the ice cover is broken, LMIZ, by solving Elw

s ðLMIZÞ ¼ Ec . In practice, we
still discretize the problem as before to calculate the integral (21) in
which â varies spatially, but we no longer have to consider the time
dimension. The FSD is calculated as a function of x from the wave-
length corresponding to T lw

W ðxÞ.
The precise A1 algorithm proceeds as follows.

1. Initialization. For r ¼ 0;1; . . . ;Nx; j ¼ 0;1; . . . ;Nx:
We set the incident wave spectrum and initial FSD to be
Slw
0;r ¼ SBðxr; Tp;HsÞ; ð23aÞ

and D0
j ¼ D0

j

D E
¼

Dinit if cj > 0;
0 if cj ¼ 0:

�
ð23bÞ
2. Propagation of the lead waves. For j ¼ 1;2; . . . ;Nx: Reset the fol-
lowing integrals to zero: mlw

0 ½gice� ¼ mlw
2 ½gice� ¼ mlw

0 ½e� ¼ 0.
For r ¼ 0;1; . . . ;Nx:
(i) Advection. The waves move from one grid cell to the next
without the effects of time-stepping and the Courant number C:
Ŝlw
j;r ¼ Slw

j�1;r : ð24Þ
(ii) Attenuation. We calculate the dimensional attenuation coef-
ficient from the initial FSD, so breaking effects do not influence
the transmission of the waves. The energy S is also reduced
accordingly at this point.

a c

âj;r ¼ j;r j

D0
j

D E ; and ð25aÞ

Slw
j;r ¼ bSlw

j;r exp �âj;rDx
� �

: ð25bÞ
(iii) Integration over frequency. We update the integrals that we need
mlw
0 ½gice� ¼ mlw

0 ½gice� þwrS
lw
j;r W2

j;r ; ð26aÞ

mlw
2 ½gice� ¼ mlw

2 ½gice� þwrx2
r Slw

j;r W2
j;r ; ð26bÞ

and mlw
0 ½e� ¼ mlw

0 ½e� þwrS
lw
j;r E2

j;r : ð26cÞ
(iv) Floe breaking. Having finished the frequency (r) loop, we can

calculate Elw
s and T lw

W from (26c). If Elw
s > Ec then the ice breaks,

giving a maximum floe size Dlw
j ¼maxfDmin;minfklw

W=2;D0
j gg,

where klw
W is the wavelength corresponding to T lw

W and the thick-

ness hj. Calculate the new average floe size hDlw
j i.

3. Define the MIZ. When the lead waves have left the domain, i.e.,
after the j loop has been completed, we can define the MIZ as in
the N1 scheme.

We denote the scheme that approximates the FSD in the C ! 0
limit by A0. It is produced by reversing the order in which we apply
breaking and attenuation in the A1 scheme. More precisely, we
move the attenuation loop over r (A1 algorithm, step 2.ii) to after
the breaking step (A1 algorithm, step 2.iv) and replace (25a) with

âj;r ¼
aj;rcj

hDlw
j i

: ð27Þ

Under the A1 scheme, the lead waves travel through the ice rel-
atively unhindered, leaving broken ice in their path. The energy
they lose is due to viscous damping and scattering at the relatively
few floe edges they meet on their way, which is inversely propor-
tional to the initial floe size Dinit. Under the A0 scheme, the waves
at a certain point have the same energy as if they had to travel
through all the broken ice they produce. Therefore, the wave spec-
trum inside the broken ice is the result of an equilibrium between
attenuation and breaking and is more stable.

An issue that is related to the two limiting cases is the amount
of energy lost due to ice breakage. The A1 FSD is one extreme in
which no energy is lost during this process. The A0 FSD is another
critical point where the result of the amount of energy being lost is
the same as the attenuation loss due to propagating through any
broken floes that the waves themselves produce. Note that, if even
more wave energy than this is lost, the MIZ due to the lead waves
will initially be much narrower than the A0 MIZ, but following
waves will gradually extend it towards the A0 limit. If less than this
amount is lost during ice breakage, then we will be able to tell how
sensitive the FSD is to the exact amount by testing the sensitivity
of the N1 results to the C parameter, which moves the N1 FSD be-
tween the A1 and A0 limits.

5. Results

Table 1 lists the default model parameter values used in all sim-
ulations, unless otherwise specified. Attenuation model B from
(Bennetts and Squire, 2012) is used with the default value of the
viscous damping parameter, C ¼ 13 Pa s m�1. In the idealized sim-
ulations of Sections 5.1 and 5.2 we use the thickness and concen-
tration profiles of (1) (also see Fig. 1).

5.1. Sensitivity to the Courant number, dispersion and horizontal
resolution

Fig. 2 presents the model sensitivity of the different numerical
schemes to the Courant number in the case where dispersion is ne-
glected, i.e., Cr ¼ C 8 r ¼ 0;1; . . . ;Nx. Fig. 2(a) shows values of Dmax

along a transect. Results are produced by the numerical scheme
N1, in which the waves travel through proportions 0, 0.01, 0.05,
0.1 and 0.3 of the ice they break (i.e., with Courant numbers
C ¼ 1, 0.99, 0.95, 0.9 and 0.7). Results are compared to those ob-
tained by the two semi-analytical schemes A1 and A0. N1 and A1
agree exactly when C ¼ 1 while N1 and A0 agree as C decreases.



(a) (b)

Fig. 2. General properties of the WIMs. Dispersion is neglected, the incident wave
spectrum has Tp ¼ 9:5 s, and the ice thickness used in (1a) is h1 ¼ 4 m. (a) Values of
Dmax after using the A0 and A1 semi-analytic schemes, or the N1 scheme with the
indicated values of C. (b) Significant wave height at time t ¼ 2:02 h.

Fig. 3. Behaviour of numerical scheme N1 with maximum CFL number, C, and
comparision with the A0 and A1 semi-analytic schemes. (a, b) Dispersion is
neglected. The ice thickness used comes from equation (1a) with h1 ¼ 4 m. (c, d)
Dispersion is included. The ice thickness used is h1 ¼ 2 m.

Fig. 4. Behaviour of numerical schemes with grid size, Dx. (a) Value of LMIZ after
using scheme A1 (Dx ¼ 0:5 km), or N1 with C ¼ 1 and the indicated values of Dx; (b)
Same as (a), but with scheme A0 instead of A1, and N1 used with C ¼ 0:7 instead of
1. The ice thickness used in (1a) is h1 ¼ 3 m.
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Fig. 2(b) shows a snapshot in time of the significant wave height
as the waves travel further into the ice. We only show results for
N1 with C ¼ 1 and 0.9, and the semi-analytical schemes A1 and
A0 in this case. We see that Hs under the A1 scheme decreases
slowly and smoothly as the lead waves travel into the ice, only
being attenuated by unbroken ice. In contrast, under the A0
scheme, when the lead waves must travel through all the ice that
they break, the significant wave height decreases rapidly due to
the broken ice, until about x ¼ 110 km. This represents the end
of the A0 MIZ, where the waves reach unbroken ice and Hs drops
less rapidly.

Under the N1 scheme with C ¼ 1, we can see that, as expected,
the lead wave (the right-most circle) tracks the A1 curve exactly.
However, the following waves have heights that are several orders
of magnitude smaller. Inside the A0 MIZ, Hs for these waves tracks
the A0 curve, but drops below it outside this region. This is because
the lead wave with this Courant number is still able to break ice
outside the A0 MIZ, so the following waves are still traveling
through broken ice.

When C drops to 0.9, the wave heights under the N1 scheme fol-
low the A0 ones almost exactly. Only the two right-most points
(black dots) drop below the A0 curve as numerical error from the
advection algorithm begins to take effect. The A0 wave heights
thus represent a kind of steady-state or equilibrium solution.

In addition to the above, the following conclusions can be in-
ferred from the results. First, the significant wave heights predicted
by the N1 scheme for all Courant numbers agree for the interval in
which they share broken ice, i.e., before the edge of the MIZ under
the A0 scheme. Second, DMIZ is not sensitive to the Courant number
for the N1 scheme, but LMIZ in the A1 and A0 limits consistently dif-
fers by a factor of about 1.6. However, the MIZ width rapidly drops
to the A0 value even for N1 with C ¼ 0:9. That is, below a certain
value, LMIZ is insensitive to C. As we expect that a significant
amount of wave energy will be lost during the breaking process,
this indicates little sensitivity to the precise quantity lost, explored
here by varying the Courant number.

In Fig. 3(a) and (b) we further investigate the sensitivity of N1 to
the Courant number as a proxy for energy loss. Results are shown
for both the maximum floe size, DMIZ, and the width of the MIZ LMIZ

as functions of the peak period, for a maximum ice thickness of
h1 ¼ 4m. It is again evident that the results of N1 converge rapidly
to those of A0, as the Courant number decreases.
In Fig. 3(c) and (d) we test the effect of allowing dispersion. Re-
sults are presented for maximum Courant numbers C ¼ 1 and 0.1.
The semi-analytical A0 scheme is also shown, and both N1 curves
lie almost exactly upon it. Thus DMIZ and LMIZ display very little sen-
sitivity to dispersion and when it is included the results are essen-
tially independent of C. As noted in Section 4.3, this is an extremely
useful result for computational efficiency in the later results of this
paper.

Two key conclusions can be drawn from Figs. 2 and 3. First, the
numerical scheme is not very sensitive to the energy lost during ice
breakage (parameterized by the Courant number) with the current
floe breaking parameterization. Second, dispersion is not necessary
to calculate the FSD. Consequently, it is valid to use the numeri-
cally efficient A0 scheme to test the sensitivity of the model to
the ice properties (Section 5.2) and for the realistic simulations
presented in Section 5.3.
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The final numerical issue that we investigate is the spatial res-
olution. Fig. 4 shows the convergence of the two numerical
schemes as the default grid size Dx ¼ 5 km is reduced ten-fold.
The MIZ width LMIZ converges a lot faster with C ¼ 1 than with
C ¼ 0:7. However, the latter only overestimates LMIZ by about one
or two grid cells, so using Dx ¼ 5 km will not produce significant
inaccuracies. High resolution ice-ocean models generally have grid
sizes of about 2–4 km, while coarser models use approximately
10–20 km. In both cases the errors should be well below the noise
level as the ice edge can be incorrectly located by as much as 40 km
in contemporary models.

5.2. Sensitivity to wave attenuation and ice properties

We first revisit Figs. 3 and 4 to investigate the sensitivity of MIZ
width to the ice thickness. Comparing the red A0 curves in
Figs. 3(d) and 4(b), we see that LMIZ for h1 ¼ 2, 3 and 4 m is respec-
tively about 15, 17 and 25 km when Tp ¼ 6 s, and about 48, 55 and
75 km when Tp ¼ 10 s. Thus doubling the thickness increases the
MIZ width by a factor of approximately 1.6. Thickness observations
are much more difficult to obtain than measurements of properties
such as concentration, so ice models rarely assimilate thickness. As
a result model predictions for thickness can be quite inaccurate.
Accordingly, the high sensitivity of our results to thickness is of po-
tential concern. Notwithstanding, the realistic simulations pre-
sented in the following section do not show such high variability
with changes to thickness.

Figs. 5(a) and (b) show the effect of varying the damping param-
eter C in attenuation model B on the width of the MIZ predicted by
our WIM. As expected, without the extra damping, i.e., when C ¼ 0,
waves can penetrate further into the ice-covered ocean and cause
more ice breakage. The change is most pronounced for large values
of the incident peak period. This is because scattering dominates
the attenuation rate for small to medium values of wave period.
The largest sensitity of the width of the MIZ to C is for the simula-
tion with thinner ice, shown in panel (a). This is because the flex-
ural rigidity F in (6) is proportional to h3, so it quickly begins to
dominate C at larger thicknesses, reducing the damping effect
(also see the discussion in Appendix A of Part 1).

We further note that the prediction of LMIZ for larger values of C
is less sensitive to changes in thickness. In these results doubling
Fig. 5. The effect of the attenuation model and ice concentration. (a, b) Values of
LMIZ after using the semi-analytic scheme A0 and attenuation model B with
C ¼ bC � 13 Pa s m�1 and the indicated value of bC . The ice thicknesses used in (1a)
are h1 ¼ 2 m (a) and h1 ¼ 4 m (b). (c) Values of LMIZ after using the A0 scheme with
the indicated values of c1 used in (1b), and with h1 ¼ 2 m in (1a). (d) The effect of
the parameter Ec . Values of LMIZ after using WIMA0 with Ec ¼ be

ffiffiffi
2
p

ec , where
ec � 4:99� 10�5 and be is indicated. The ice thickness used is h1 ¼ 3 m.
the thickness roughly halves the MIZ width when C ¼ 0, but only
reduces it by a factor of approximately 1.6 when C ¼ 13 Pa s m�1.

Fig. 5(c) shows the effect of changing the ice concentration on
the width of the MIZ. Doubling the concentration, for example,
doubles the number of floe edges and thus doubles the attenuation
coefficient. We may, therefore, expect this to cause LMIZ to change
by a factor of a half. However, the drop in LMIZ in going from
c1 ¼ 0:25 to c1 ¼ 0:5 is approximately 25% rather than 50%, and
in going from c1 ¼ 0:25 to c1 ¼ 0:75 is approximately 50%, rather
than 66%. The results therefore do not behave as simply as one can
anticipate for a single monochromatic wave. In reality it represents
the combined action of non-linear effects arising by considering a
wave spectrum and feedback between attenuation and ice
breakage.

In Fig. 5(d), we test the sensitivity to the breaking strain param-
eter Ec. This parameter incorporates the effect of the absolute
breaking strain ec, the probability threshold Pc directly, and implic-
itly the incident significant wave height Hs. Since the Bretschneider
spectrum is proportional to H2

s , the significant strain will be
approximately proportional to Hs. Thus doubling Hs will have
about the same effect as halving the breaking strain Ec.

Choosing Pc ¼ 0:01, e�2 � 0:1, e�1 � 0:37, or e�2=9 � 0:8
(respectively) makes be ¼ Ec=Eð0Þc ¼ 0:47, 0.7, 1, or 2.1, where
Eð0Þc ¼ ec

ffiffiffi
2
p
� 7:05� 10�5 is our default value, which is consistent

with the limit for monochromatic waves (see Section 3.2.2 of Part
1). Testing values of be between 1=3 and 3 should cover most rea-
sonable variations in Pc, and also our uncertainties in the values of
ec and Hs. This range gives variations of about 50%. Again though,
when we move to more realistic tests where the different variables
interact in more complicated ways, there is generally a lot less var-
iation with be than is observed here.

5.3. Realistic experiments in the Fram Strait

Here we repeat some of the sensitivity studies in simulations
using the A0 scheme with realistic wave forcings, ice concentra-
tions and ice thicknesses along a transect of the Fram Strait during
2007. Fig. 6 shows a map of the area and the location of the tran-
sect. It also shows the location of the grid cell where wave forcing
data was extracted from the WAM ERA-Interim reanalysis. Fig. 7(a)
shows a time series of this wave forcing, while Figs. 7(b) and (c)
Fig. 6. Map of the Fram Strait area showing the observed ice edge on 7 November
2007. The thick black line along 79N shows the location where the ice parameters
were extracted for the simulations; this is where the WIM is tested. The gray box
shows the grid cell from which ocean wavefields were extracted from the WAM
ERA-Interim reanalysis.
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show, respectively, ice concentrations and thicknesses obtained
from a TOPAZ reanalysis (Sakov et al., 2012) in which concentra-
tion data derived from the Ocean and Sea Ice Satellite Application
Facility (OSI SAF, met.no) have been assimilated. On average, the
modeled ice edge is 45 km west of the ice edge observed by
AMSR-E (University of Bremen) and determined from the analysis
of Kloster and Sandven (2011), which is plotted as a solid line in
Fig. 7(b). This discrepancy is well within the uncertainties and res-
olution of the model (TOPAZ has a resolution of about 13 km) and
the resolution of the AMSR-E analysis. (Kloster and Sandven, 2011,
divided the transect from 15�W to 5�E into bins with widths of
about 21.2 km, i.e. 1 degree in longitude, and analyzed them for
ice concentration.) The internal concentrations from the model
and the data also compare well.

Also plotted (dashed line) in Fig. 7(b) is an estimate for the inner
edge of the MIZ, determined from the same AMSR-E concentrations
using the criterion that c < 0:9 corresponds to the MIZ. While this
is a different criterion from the floe size criterion, where we define
the MIZ by whether the ice is broken or not—see step 3 of the N1
algorithm in Section 4.2 we use in this paper—it provides a rough
estimate of the accuracy of the predictions obtained from our
WIM (Strong, 2012).

The mean ice thickness is roughly 0.8 m, creeping up towards
2 m in the summer, which is thicker due to greater movement
south of multi-year ice from the Arctic Ocean at that time. Accord-
ing to Widell et al., 2003, these ice thicknesses are probably too
low, so we have also run simulations in which the ice thicknesses
are multiplied by a factor bh ¼ 1:75 or 2.5 in order to get closer to
observations. We observe that the Fram Strait is a particularly chal-
lenging MIZ to model, as it is made up of sea ice that is continu-
ously being channeled out of the Arctic Basin, locally-growing
sea ice in winter, and liberated land fast ice that can include sikus-
sak. It is also baroclinically unstable so its edge is often character-
ized by the presence of many eddies and meanders.

Fig. 8 shows the results of numerical experiments using the
model outlined in this work. Results for the expected ice breakage
are calculated daily using either the TOPAZ thicknesses or the
Fig. 7. Model data for our one-dimensional simulations in the Fram Strait in 2007,
between the south-east coast of Norske Øer (latitude 79�N, longitude 17.7�W),
which corresponds to x ¼ 438 km on our one-dimensional grid, and latitude 79�N,
longitude 3�E, which corresponds to x ¼ 0. The wave field is specified at x ¼ 0 and is
obtained from the WAM ERA-Interim reanalysis. The significant wave heights and
peak periods are plotted in (a). The waves are then advected west through ice with
concentrations and thicknesses taken from a TOPAZ reanalysis. They are interpo-
lated onto a regular grid with longitudinal resolution of 0.125� (Dx ¼ 2:65 km), and
are plotted in (b) and (c). For comparison, the ice edge and edge of the MIZ
estimated from AMSR-E concentrations are also plotted in (b) as solid and dashed
black lines, respectively.
increased thicknesses, the TOPAZ concentrations and the ERA-In-
terim waves. Floe sizes are re-initialized for each model pass to
be uniformly Dinit ¼ 500 m long. An extension to include a memory
in each cell of Dmax and a gradual refreezing was rejected on the ba-
sis that we are unable to embed the more important effects of ice
movement due to winds and current into this one-dimensional
experiment.

Figs. 8(a) and (c) show the results when attenuation model B is
used with C ¼ 13 Pa s m�1. The variations are systematic in that
increasing the thickness or breaking strain makes the MIZ nar-
rower. For the winter months, MIZ widths estimated from our ice
breakage model are about half the widths determined from the
AMSR-E-measured concentrations. In the summer, when the wave
heights are much lower and the ice is thicker, there is a lot less ice
breakage, whereas the concentration criterion defines the MIZ as
being much larger than the winter. This could be due to the more
dilute ice being able to spread out even further in response to
stresses from off-ice winds and currents. The neglected effect of
ice advection would thus become more important in this period
as well.

Fig. 8(a) shows the variation of the MIZ width with thickness.
There is more variation in the summer when the ice is already very
thick. However, in the winter, the variations are much reduced,
both in comparison with the summer variability and the idealized
results of the previous section.

Fig. 8(c) shows that the MIZ width responds to variations in the
breaking strain in a similar way that it did to thickness variations.
Again, there is significantly more variation in the summer, but the
winter results are much less sensitive than they would be expected
to be from idealized experiments.

Fig. 8(b) shows that the biggest source of variability comes from
the choice of viscosity parameter C. When C ¼ 0, maxima in the
winter MIZ widths (reflecting days with strong incident wave
fields) often reach about 0.8–1.0 times the AMSR-E widths, but
are generally about one half to one third of them. The noise in
the curves reflects the day-to-day variations in the incident wave
fields. In the summer, all three values of C predict very low widths
due to the weak incident waves. With C increased to 6.5 Pa s m�1,
the values of LMIZ drop and become much closer to the widths
Fig. 8. Results of one-dimensional simulations in the Fram Strait in 2007. (a) LMIZ

determined by semi-analytical scheme A0 with bh ¼ 1 (–), bh ¼ 1:75 (–) and
bh ¼ 2:5 (–), where bh is a factor used to increase the ice thicknesses from Fig. 7(c),
which are unrealistically low. The breaking strain ec is 4:99� 10�5, determined
from Part 1 (Section 4.3), using tb ¼ 0:1. (b) LMIZ determined by WIMA0 using
attenuation model B with bh ¼ 1:75 and C ¼ bC � 13 Pa s m�1, where bC ¼ 0 (–),
bC ¼ 0:5 (–) and bC ¼ 1 (–). (c) LMIZ determined by WIMA0 using attenuation model
B with C ¼ 10 Pa s m�1, bh ¼ 1:75, and Ec ¼ 7:05be � 10�5, where be ¼ 0:5 (–),
be ¼ 0:75 (–), be ¼ 1 (--) and be ¼ 2 (--). The factor be is included to test the
sensitivity to the breaking strain and other parameters such as the probability
threshhold Pc and Hs . For comparison, the MIZ width estimated from AMSR-E
concentrations is plotted as a dashed green line in all plots. (This is the distance
between the two black lines in Fig. 7(b).)
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produced by using C ¼ 13 Pa s m�1. This behaviour was also ob-
served in the previous section, where results were variable with
C when low values were used, but were more stable for C in the
range 6.5–13 Pa s m�1. The default value of 13 Pa s m�1 was chosen
to make the attenuation of long waves match the measurements of
Squire and Moore, 1980, as they can not be fully explained by pres-
ent scattering theory. While low frequency measurements can
have more noise in them, and more experiments to confirm these
attenuation results are necessary, the stability of our results over
the correct order of magnitude is encouraging.

Our results do, however, suggest that a (modeled) floe size cri-
terion and a concentration criterion for the MIZ may give different
predictions for its boundary. It is likely that a combination of the
two should be used to model the large scale deformations of the
ice. This emphasizes the need for more measurements of floe sizes
and large scale deformations in the MIZ to determine how the two
criteria are related and how they should be used to precisely define
the MIZ. It is also highly likely that floe size and concentration are
interlinked variables that will need to be consistently related to
one another, once incorporated in a sea ice model. The above re-
sults also highlight the importance of obtaining a better under-
standing of the attenuation process and, in particular the lower-
than-observed attenuation of long waves than is predicted by scat-
tering theory. It also shows the urgent need for more measure-
ments of attenuation and of more reliable thickness data.

6. Incorporating the WIM into coupled ice-ocean models

The WIM presented in this two-part paper is designed to be
integrated into an ice/ocean model (IOM), such as HYCOM. Specif-
ically, by WIM we mean the numerical scheme N1, as this is more
easily generalized to two horizontal dimensions. The A0 and A1
schemes were implemented to provide checks for the N1 scheme
in different limiting cases and also to provide fast results in this
one-dimensional setting. However, it is much more difficult to gen-
eralize the semi-analytical schemes to two dimensions.

We envisage the WIM to be a separate module that is called
periodically to update the floe size distribution (FSD). The wave
model component of the IOM, e.g., WAM or WAVEWATCH III�, will
provide the wave forcing boundary condition required in the WIM.
The sea ice model component of the IOM, e.g., CICE, will provide
the ice conditions for the WIM. We note that the quantities
provided by the wave and sea ice models to the WIM are likely
to require interpolation onto the high resolution grid it uses. The
FSD computed by the WIM will be an input parameter for a
number of other parameterizations in the IOM. For example, it
can be used to distinguish between the pack ice and the MIZ,
and thus to decide which large-scale rheology should be used to
determine the ice deformation. The thermodynamic model of
Steele (1992), for example, could also be applied to the FSD to
allow for lateral melting (or freezing). We also note that the sub-
components of the WIM (cf. Section 4 of Part 1) are independent
and so, once the skeleton of the WIM is implemented, they can
be easily updated whenever new data are obtained or new theoret-
ical progress is made. The implementation of the WIM inside the
TOPAZ operational analysis and forecasting system, which is based
on the Hybrid Coordinate Ocean Model (HYCOM) and the sea ice
model of Drange and Simonsen (1996), is in progress and will be
the focus of a future manuscript. The sea ice model of Drange
and Simonsen (1996) is similar to CICE.

7. Summary and overall conclusions

In Part 2 of this two-part series, we have developed the theory
of wave-ice interactions, presented in Part 1, into a numerical algo-
rithm that predicts the FSD and wave spectrum in the MIZ, given
an incident wave spectrum at the ice edge, and ice thickness and
surface concentration profiles. Our investigation focused on the
predictions of the FSD.

The numerical WIM was outlined for one-dimensional tran-
sects, as a step towards the full two-dimensional model. But the
restriction was also imposed to facilitate a thorough sensitivity
study, with respect to the key numerical and physical parameters
in the WIM. This is especially important because of the high degree
of uncertainty in many of these quantities. Sensitivity studies were
conducted, in the first instance, using idealized ice thickness and
concentration profiles. The most substantive observations follow.

1. Sufficient convergence of the FSD is given by a spatial resolution
of approximately 5 km.

2. The waves can be forced to travel through an arbitrary propor-
tion of the ice they break by adjusting the Courant number in
the time stepping component of the numerical algorithm. This
serves as a proxy for wave energy lost during ice breakage.
When the waves only travel through a small proportion of bro-
ken ice, small changes in the exact proportion can lead to large
changes in the width of the MIZ. But, this sensitivity quickly
reduces, and the MIZ width is unaffected by the exact propor-
tion when the waves travel through more than 30% of the bro-
ken ice.

3. Neglecting dispersion of the wave spectrum does not affect the
FSD predicted by the WIM. Semi-analytical models, which do
not incorporate dispersion, were therefore proposed for the
two limiting cases of wave energy loss during ice breakage.
The semi-analytical models are numerically efficient and
helped to validate the full numerical model. However, it was
noted that it will be difficult to generalize these models to
two-dimensions.

4. The FSD is highly sensitive to the values of the damping param-
eter C, the ice thickness, and the breaking strain parameter.
This emphasizes the need for more measurements of ice thick-
ness, wave attenuation and breaking strains, as well as in situ
observations of ice breaking.

The WIM was also tested using realistic input parameters that rep-
resented the Fram Strait in 2007. The sensitivity of the FSD pre-
dicted by the WIM to the ice thickness and breaking strain
parameter was lower than in the idealized simulations. However,
sensitivity to C remained high. It is therefore crucial to resolve
the problem of how long waves are attenuated theoretically, and
also to conduct more experiments to confirm the observations of
Squire and Moore (1980) and to extend them to different ice types.

To conclude, the MIZ widths obtained from the realistic simula-
tions, i.e., the distance of broken ice in the model, were compared
to MIZ widths determined from contemporaneous AMSR-E (Uni-
versity of Bremen) concentration data. In winter months, when
waves are at their strongest, the MIZ widths predicted by the
WIM were roughly half those predicted by the concentration crite-
rion. In the summer, the model results and the concentration re-
sults give quite different boundaries to the MIZ. Probably this is
partly due to smaller waves and thicker ice in this time period,
partly to neglected effects like ice advection and thermodynamic
effects, and partly due to the two different definitions of the MIZ.
This highlights the need for more measurements of the FSD, and
also more research on how to define the MIZ (in our case, for the
purpose of determining which large-scale ice rheology to use)
more precisely. The model proposed in this two-part series has
been motivated by the many observations that suggest a primary
role for ocean waves in shaping the morphology of ice fields.
Waves habitually limit the size of the constituent ice floes through-
out the MIZ, by fracturing those floes that are too large to exist as
the waves permeate further into the ice pack. Attenuation, arising
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due to scattering and supplementary inelastic processes such as
turbulence, bending hysteresis and interfloe collisions and rafting,
also occurs causing a gradual reduction of the wave energy enve-
lope with distance from the ice edge that, cæteris paribus, results
in a gradual increase in floe size with penetration. The FSD is there-
fore continuously modified by pervasive incident ocean wave
trains that, according to their period, may either travel long fetches
from distant storms or else be more locally generated. They are
then preferentially filtered by the sea ice in a manner that favors
the survival of longer wavelengths.

Given these several influential factors relating to the composi-
tion of MIZs, it is perhaps surprising to the reader that wave–ice
interactions have not been included in ice/ocean models hitherto.
While it has been discussed in the past, the complexity of doing
this has proved insuperable until now. We have provided a poten-
tial way to do it, and have given some first predictions of how floe
sizes and MIZ width are manipulated by waves in a one-dimen-
sional spectral setting. Most importantly, we have established
the machinery to deal with the next stage of development, which
is to incorporate two-dimensional interactions arising from a
directional sea comprising energy at a comb of different frequen-
cies distributed angularly.
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