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C O N T E N T S  
P A G E  

8. DEEP-WATERWAVES 

Angular momentum 

Progressive, irrotational gravity waves of constant form, with all crests in a wave train 
identical, exist as a two-parameter family. The first parameter, the ratio ofmean depth 
to wavelength, varies from zero (the solitary wave) to infinity (the deep-water wave). 
The second parameter, the wave height or amplitude, varies from zero (the 
infinitesimal wave) to a limiting value dependent on the first parameter. Solutions 
of limiting waves, with angled crests, have been presented in a previous paper; this 
paper considers near-limiting waves having rounded crests with a very small radius 
of curvature, in some cases as little as 0.0001 of the water depth. 

t Present address: Admiralty Research Establishment, Portsdown, Cosham, Portsmouth, Hampshire PO6 4AA, 
U.K. 
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The computing method is a modification of the integral equation technique used 
for limiting waves. Two leading terms are again used to give a close approximation 
to the flow near the crest and hence minimize the number of subsequent terms needed ; 
the form of these leading terms is suggested by earlier work of G. G. Stokes 
(Mathematical and physical papers, vol. 1, pp. 225-228. Cambridge University Press 
(ISSO)), M. A. Grant ( J .Fluid Mech. 59, 257-262 (1973)) and L. W. Schwartz ( J .  
Fluid Mech. 62,553-578 (1974)). To  achieve satisfactory accuracy, however, it is now 
necessary to add a set of dipoles above the crest in the complex potential plane, as 
previously used by M.  S. Longuet-Higgins & M.J. H. Fox (J.Fluid Mech. 80, 
721-741 (1977)). 

The results include the first fully detailed calculations of non-breaking waves having 
local surface slopes exceeding 30". The local profile a t  the crest, despite its very small 
scale, is shown to tend with increasing wave height to the asymptotic self-similar form 
previously computed by Longuet-Higgins & Fox. Their predictions of an ultimate 
maximum slope of 30.37" and a vertical crest acceleration of 0.388g are supported. 

The results agree well with earlier calculations for steep waves a t  the two extremes 
of solitary and deep-water waves. In particular, it is confirmed that in the approach 
to limiting height the phase velocity and certain integral quantities possess not only 
the well-known maximum but also a subsequent minimum, the first in the infinite 
series of extrema predicted theoretically by M. S. Longuet-Higgins & M. J. H .  Fox 
(J.Fluid Mech. 85, 769-786 (1978)). 

Briefly considered also are the level of action of near-limiting deep-water waves, 
the decay of surface drift velocity from the limiting value and the method established 
for computing waves of all lesser heights. 

This paper continues the study of steep, irrotational, progressive, symmetrical gravity waves 
begun in Williams (1981 ), to be referred to as paper I .  Paper I concerned waves of limiting 
height, whose crests are angled rather than rounded, as first shown by Stokes (1880). 
Theoretical expressions for the flow near the crest, due to Stokes (1880) and Grant (1973), 
were used to define two leading terms in an integral equation formulation, from which were 
obtained results of high accuracy yet of relatively compact form, with a maximum of eighty 
component terms. While several previous workers had explicitly included the first, Stokes, term 
in their solutions, none had used the second term suggested by Grant's work; it was shown 
in paper I that the inclusion of both terms was a prerequisite to the accuracy achieved. The 
solutions of paper I covered the full range oflimiting waves, from the solitary wave, with infinite 
wavelength, to the deep-water wave, with infinite depth. 

We are concerned in this paper, as in paper I ,  only with uniform or regular wave trains, 
in which all crests have the same form. We therefore exclude classes of irregular waves such 
as have been computed recently by Chen & Saffman (1980) and Olfe & Rottman (1980). 

The work of paper I has been extended to waves of near-limiting height, having rounded 
crests with very sharp curvature. This proved to be a more difficult task than for limiting waves 
because Stokes's expression for the angled crest no longer applies, nor is there a known, simply 
expressible, alternative. Nevertheless, a suitable modification of the original algorithm has been 
found, and has yielded solutions for near-limiting waves whose accuracy is only a little short 
of those of paper I .  The full range, from solitary to deep-water waves, has again been covered. 

Two important features of near-limiting waves have been verified. Firstly, the local surface 
profile near the crest has been shown to tend with increasing height to the asymptotic self-similar 
form first computed in isolation by Longuet-Higgins & Fox (1977). Their profile predicted an 
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ultimate maximum slope of 30.37" and a vertical crest acceleration of 0.388g, both of which 
values are supported. Secondly, Longuet-Higgins & Fox (1978) have shown that in the 
approach to the limiting wave the phase velocity and several integral properties have not only 
the well-known maximum, first pointed out by Longuet-Higgins (1974, 1975), but also a 
subsequent infinite sequence of ever closer minima and maxima. The accuracy of the present 
results is sufficient to resolve the first of these minima. 

Other previous computations of steep waves over a range of wavelengths include those of 
Sasaki & Murakami ( I9-73), Schwartz ( I974) and Cokelet ( I977); in addition Longuet-Higgins 
& Fenton (1974) and Byatt-Smith & Longuet-Higgins (1976) have computed solitary waves, 
while Longuet-Higgins (1975) has solved deep-water waves. Only the work of Cokelet and 
Longuet-Higgins includes waves with surface slopes exceeding 30°, although they did not 
specifically compute the wave profiles. 

Section 2 first summarizes the formulation of the problem, as presented in more detail in 
paper I ,  and $ 3  discusses previous analyses of near-limiting waves, especially that of 
Longuet-Higgins & Fox (1977, 1978). Section 4 then describes the modification of the original 
computing method for the near-limiting wave and $ 5  presents the results, as sets of defining 
coefficients and tabulated principal properties, and considers the accuracy. 

Section 6 compares the crest profiles of the highest waves computed with the asymptotic form 
calculated in isolation by Longuet-Higgins & Fox. Sections 7 and 8 consider the two extremes 
ofsolitary and deep-water waves and compare the results with previous work. Section 9 presents 
detailed tabulations of selected near-limiting waves to complement the tables of paper I ,  and 
$ 10 considers briefly the decay of the strong surface drift velocity from the limiting values 
calculated in paper I .  Finally, $ 11 describes in outline the method which has been successfully 
used for calculating waves of all lesser heights. 

The initial formulation is identical with that used for limiting waves in paper I, and will 
be recapitulated only briefly. With reference to figures 1, 2, 3, which are repeated from that 
paper, we consider as before progressive symmetrical, irrotational, inviscid waves propagated 
without change of form in liquid of uniform and finite depth. Figure 1 shows the flow, reduced 
to a steady state, in the physical plane of z = x +iy, in which the wavelength is L, mean depth 
h and wave height H; figure 2 shows the plane of the complex potential x = $ +iyk, defined 
such that surface and bed are given by yk = 0, -2 respectively. In  view of the periodic 
conditions, a further transformation is made to the 7-plane, figure 3, given by 

where d = 4n/h, (2.2) 

with h being the period in the X-plane of the velocity potential $. The inner circle in the 7-plane, 
p = R = exp (-d), represents the bed, while the outer unit circle represents the surface. 

Figure 1 shows waves of both infinitesimal and finite amplitude; whereas they are defined 
to have common domains in the X- and 7-planes, their wavelengths, mean depths and total 
energy levels generally differ in the physical plane. The variable F2is defined such that 
acceleration due to gravity g is equal to 1/2F2, F being also the Froude number of the 
infinitesimal wave. The factor a accounts for the movement of the total energy line between 
the infinitesimal and finite-amplitude conditions. 
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Field variables include the horizontal and vertical velocities u, v of the steady motion and 
the ratio of pressure to density p, which is related to the velocities by Bernoulli's equation, 

Each required solution is a harmonic function, Z(X)  or z(7), symmetrical at  the crest and 
trough planes, having the bed as a solid boundary and satisfying the Bernoulli condition (2.3) 
at  the surface, where p =ps 0. In the X-plane this may be written 

while in the 7-plane it is 

Solutions are sought for the full range m 2 h 2 0 or 0 < d < CQ, corresponding in the 7-plane 
to 1 2 R > 0. The extremes, however, cannot be computed specifically and it is shown in paper 
I that a practical computing range for steep waves is 0.2 < d < 10.0. T o  working accuracy, 
the extremes of solitary and deep-water waves may then be deduced from solutions for d = 0.2, 
10.0 respectively. 

We shall continue with the technique of paper I ,  whereby the full solution in the 7-plane 
comprises a linear combination of partial solutions, each being a symmetrical harmonic function 
satisfying identically the bed condition 

but not in general the nonlinear free-surface condition (2.5). The coefficients are determined 
iteratively such that the combination satisfies (2.5) at  a discrete set of nodal points stationed, 
in view of symmetry, on the upper semicircle, p = 1, 0 < 6 < 7c. 

The solutions of paper I are in the form 

where z, = -i(2/d) In 7 +iF2, (2.8) 

and { is a linear combination of partial solutions in the following forms: 

Each of these partial solutions that contribute to 6 is normalized to take the value -i at  the 
crest, 7 = 1. We note that the last form degenerates to { ,  when A tends to zero. 

The quantity p,(B) in (2.5) is a surface pressure distribution which should ideally be 
identically zero at  the end of the computation but in practice will be zero only at  the nodal 
points. I t  is convenient to regard the computed solutions as exact, with an accepted distribution 
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p,(8), and to compare them with the ideal solution, p, E 0, by means of error quantities derived 
from p,. These error quantities include the maximum modulus over a wavelength, j,, the 
equivalent relative surface elevation error e(8), given by 

and the root mean square of e(B), denoted by E * .  Paper I ((4.11)-(4.13)) defines also three 
quantities PI, P2, P,, comprising integrals over the wavelength of expressions involving ps(8). 
These integrals were introduced in the reworking of Longuet-Higgins's (1974, 1975) integral 
relationships for non-zero p,. 

Paper I discusses conditions a t  the angled crest of a limiting wave, considered first by Stokes 
(1880) and later by Grant (1973). With Z defined to move the space origin temporarily to 
the crest, the flow near x = 0 is of the form 

where C is a real coefficient. 
The first term represents the 120" crest angle of the Stokes corner flow; the second term arises 

from Grant's analysis. The exponent ,u is given by 

where K is a negative real root of the transcendental equation 

The first, and dominating, root is K = -2.832, giving ,u = 1.469. 
For near-limiting waves, Longuet-Higgins & Fox (1977) examine the form of the free surface 

in the zone near the crest whose size is of order I, the small distance of the crest below the total 
energy line. They argue that in the limit the motion depends only on the dimension I, 
acceleration due to gravity g (represented in our notation by 1/2F2) and the asymptotic form 
of the surface, which at distances large compared with E must tend to the profile of the Stokes 
corner flow, represented by the first term of (3.1). This leads them to expect afamily ofself-similar 
flows, which they compute by two independent methods, a numerical treatment using dipoles 
and a full analytical method. Comparisons of this asymptotic inner profile with the inner crest 
profiles of the present solutions will be made in 56. 

Longuet-Higgins & Fox show further that at great distance the asymptotic approach of their 
inner profile to the Stokes corner profile with slope 30" is not monotonic but oscillatory, the 
initial approach to the asymptote being from above and accounting for surface slopes locally 
exceeding 30". The oscillation decays according to r-2, r being the distance from the crest, and 
is governed by the imaginary roots, K = + 1.1224 of the same transcendental equation (3.3). 
The relevant exponents, again given by (3.2), are --if 0.714i. (Longuet-Higgins & Fox use 
K to denote what would be -iK in the present notation, their corresponding equation being 
K tanh K = h z . )  

In a second paper Longuet-Higgins & Fox (1978) consider an intermediate zone of the flow 
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in a near-limiting wave, whose scale is large in relation to the inner profile but small compared 
with the wave as a whole. Within this zone can be expected features of both the asymptotic 
behaviour of the inner profile at  infinity and the form of the limiting wave near the crest. Thus, 
they postulate for this region an expansion of the form 

where D is complex and D* is its conjugate. Regarding this expansion as an expression of the 
small departure of a near-limiting wave from limiting form, they then use it to derive the phase 
velocity and several integral properties of near-limiting waves. Their results are presented as 
expansions of the small parameter s' (denoted s by Longuet-Higgins & Fox) given by 

where us, is, for the steady motion of figure 1,the value of the horizontal velocity u on the surface 
at the crest. The reference quantity c, is the phase velocity of the infinitesimal wave having 
the same depth h and wavelength L, given (Lamb 1932) by 

L 
co = (-

4nF2 tanh *)',L 

Longuet-Higgins & Fox, pursuing their analysis for deep-water waves only, derive expansions 
in s' correct to order s r 3 ; they show that, although their working expansion (3.4) does not 
accurately represent the inner profile, the contributions to the integrals from the inner zone 
are of a higher order than sr3.These expansions will be considered further in the discussion 
of deep-water waves in 5 8. 

The present objective is to compute a complete definition of near-limiting waves, of sufficient 
accuracy to resolve the details of the inner zone. The inner profile must, therefore, be generated 
explicitly and the approach must be distinct from that of Longuet-Higgins & Fox. Clearly the 
first term at  least of (3.4) must be adjusted, representing as it does a singularity at  the wave 
crest; it is to be expected that for a near-limiting wave any singularity will be slightly above 
the crest. Grant (1973) discusses this, and shows that when the singularity leaves the crest its 
exponent can no longer be g but can only be $. He concludes that in the passage to the limiting 
wave several singularities of order i probably coalesce to give the limiting form of order $. This 
is corroborated by Longuet-Higgins & Fox (1978) who extend analytically their solution for 
the inner profile to the region above the free surface and demonstrate the presence of a 
singularity of order i. 

Schwartz ( I  974), having computed steep waves by a high-order computer-aided series 
expansion, also considers the implied singularity above the crest and, like Grant, finds that its 
order is + rather than for waves well below the highest. He demonstrates, however, that for 
waves close to the highest there is an  apparent singularity of intermediate order, probably the 
effect of several neighbouring singularities of order !j in the process of coalescing in the limiting 
case. 

From this previous work we deduce that, whereas the correct representation of a near-limiting 
wave should include several singularities of order i positioned somewhere above the crest, we 
may be able to represent these adequately by a single singularity of higher order. This was 
the numerical approach first tried in the present work, as described in the next section. 
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4. C O M P U T I N GT E C H N I Q U E  

Initial trials for near-limiting waves used the closest possible method to that established for 
limiting waves in paper I .  The limiting-wave solutions use two leading terms of form ,, 
(2.11),  namely sc,, , , j and gel, where s and q are coefficients and p = 1.469. The nodal points 
are placed a t  crest and trough, and uniformly between, with an  additional node a t  a small 
angle 0, (in the T-plane) from the crest. 

For near-limiting waves the singularity was moved away from the crest by reducing A slightly 
below unity in the leading terms, typically to 0.99 in the earliest runs. The exponent v of the 
first term was also reduced below g, as indicated by the discussion of $3, the most suitable value 
being found by trial and error. Although the second exponent p continues to appear in the 
expansion (3.4), it was realized that the empirical adjustment made to v might call for a 
consequential change in p. However, no clear improvement resulted from trial changes to p, 
which was therefore left a t  its original value of 1.469. 

With the reduction of A, and after trial-and-error variation of the leading exponent, 
reasonably accurate results were obtained for near-limiting waves, although this accuracy fell 
well short of that of paper I .  The solutions at this stage showed large gradients ofp, in the 
small sharply curved inner profile zone and did not, therefore, give realistic representations 
of the local flow a t  the crest. This being so, the inclusion of the terms with complex exponent 
in (3.4) was not expected to help, since they accounted only for the outer extremes of the inner 
profile. 

I t  was therefore decided, in an attempt to define the inner profile more precisely, to 
supplement the original two leading terms with a series of dipoles outside the flow area, 
distributed along the real axis in the r-plane. This follows the initial method of Longuet-Higgins 
& Fox (1977) for computing the asymptotic inner profile in isolation. In the notation of (2.1 1) 
the dipoles are represented by cl,B,-l, with B < A. 

U p  to eight dipoles were eventually used, each being associated with a new nodal point in 
the inner profile zone. Despite the greatly differing scales of the inner profile and the overall 
wave, and the consequent non-uniform distribution of nodes, it was generally found that the 
algorithm continued to converge strongly, to yield the accurate solutions required. 

Solutions have thus been computed in the following form: 

where 

The second exponent p retains the value 1.469345741 used for limiting waves, while the 
positions of the dipoles and their associated nodes are given by 

with j taking selected values in the range 1-8. 



N E A R - L I M I T I N G  G R A V I T Y  W A V E S  I N  W A T E R  


A solution obtained in the form (4.2) may afterwards, if desired, be recast into an infinite 
series of basic terms 

using binomial expansions similar to those given for limiting waves in paper I ((6.1), (6.2)). 
The iteration involves N+n+ 2 unknowns, 

and N+ n+2 nodal points, 

The first seven columns of table 1 summarize the specifications of the cases computed; 
the remaining columns give the error quantities derived from p,(O), as defined in $ 2  and 
paper I.  

TABLE1. SPECIFICATION 	 (DEFINED INOF CASES COMPUTED (4.1)-(4.4)) AND ERROR 

QUANTITIES 

d N A v 8, n j,, k = 1,2, ...,n 106j, lo6e* 106P, 1O6P2 106P, 

0.2 	 79 t0.99999 0.6615 n/4000 6 1,2,3,4,6,8 34 1 0.0 0.0 0.0 
0.99995 0.652 n/1200 6 1,2,3,4,6,8 46 5 -0.5 -0.6 -0.1 
0.9999 0.647 n/800 6 1,2,3,4,6,8 22 2 0.0 0.0 0.0 
0.999 	 0.580 ~ 1 2 8 0  4 1,2,3,4 17 2 -0.1 -0.1 0.0 
0.998 	 0.571 - 4 1,2,3,4 41 4 -0.1 -0.2 0.0 
0.997 	 0.578 - 4 1,2,3,4 17 2 0.1 0.1 0.0 
0.996 	 0.572 - 4 1,2,3,4 16 1 0.0 0.0 0.0 
0.995 	 0.566 - 4 1,2,3,4 18 0 0.0 0.0 0.0 
0.994 	 0.560 - 4 1,2,3,4 19 0 0.0 0.0 0.0 
0.99 	 0.520 - 2 1,2 8 0 -0.1 -0.1 0.0 

0.5 	41 0.99999 0.6635 n/4000 6 1,2,3,4,6,8 4 1 1 0.4 0.4 0.0 
0.9999 0.652 n/800 6 1,2,3,4,6,8 3 1 3 -0.1 -0.1 0.0 
0.999 	 0.612 n/280 4 1,2,3,4 15 1 0.3 0.3 0.1 
0.99 	 0.525 - 1 1 6 1 0.0 0.0 0.0 

1.0 	 26 t0.99999 0.664 n/4000 6 1,2,3,4,6,8 33 2 -0.1 0.0 -0.1 
t$0.9999 0.655 n/800 6 1,2,3,4,6,8 37 5 -0.5 -0.3 -0.1 

0.999 	 0.618 n/280 4 1,2,3,4 21 4 -0.2 -0.1 0.0 
0.99 	 0.523 n/280 2 1,2 7 1 0.3 0.2 0.1 

2.0 	 20 0.99999 0.6645 n/4000 8 I, 2, ...,8 31 2 -0.2 -0.1 0.0 
0.99999 0.6645 n/4000 7 I, 2, ...,7 35 2 0.4 0.2 0.0 
0.9999 0.657 n/800 8 1,2,...,8 35 6 -0.8 -0.3 -0.1 
0.999 	 0.631 7~1280 6 1,2,3,4,6,8 14 2 -0.5 -0.2 0.0 
0.99 	 0.523 n/280 4 1,2,3,4 5 1 0.0 0.0 0.0 

10.0 	19 t0.99999 0.6645 n/4000 8 1,2,...,8 29 3 -0.5 0.0 0.0 
0.99999 0.6645 n/4000 7 1,2,...,7 34 2 0.1 0.0 0.0 

ts0.9999 	 0.657 n/800 8 1,2,...,8 42 7 -1.3 -0.1 0.0 
0.9998 0.653 n/800 8 1,2, . ..,8 45 5 0.8 0.1 0.0 
0.999 	 0.631 n/280 6 1,2,3,4,6,8 19 3 -0.8 -0.1 0.0 
0.996 	 0.603 nj280 6 1,2,3,4,6,8 10 2 0.2 0.0 0.0 
0.994 	 0.541 n/66 6 1,2,3,4,6,8 11 2 -0.2 0.0 0.0 
0.992 	 0.529 ~ 1 2 8 0  6 1,2,3,4,6,8 15 3 -0.3 0.0 0.0 
0.99 	 0.523 ~ 1 2 8 0  4 1,2,3,4 6 1 0.1 0.0 0.0 

t Included in table 2. $ Detailed in table 8. § Detailed in table 9. 
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The new set of nodal points is disposed in the physical plane within a lateral distance of about 
101 from the crest. Although, as will be shown in $6, the maximum slope of the surface profile 
generally occurs beyond this zone, convergence failed if an attempt was made to extend the 
nodes further. I t  was found also that the distribution of the crest nodes could not depart sig- 
nificantly from uniform spacing without destroying convergence. The schemes shown in table 1 
therefore define the apparent limits of the method. I t  will be shown, however, that most details 
of the wave motion are very well defined; only the precision of the maximum surface slope 
remains slightly unsatisfactory by the high standards of accuracy generally achieved. 

The new nodal points are generally closer to the crest than the original auxiliary crest node 
8,, introduced for limiting wave solutions. For the highest values ofA it was found advantageous 
to reduce 8, itself to as little as &x, but for lower values the original value of&n was retained, 
although in some cases this fell within the range of the new nodes. The choice of nodes was 
much less critical for values of A less than about 0.999, provided only that interference was 
guarded against; for example, table 1 (d = 10.0, A = 0.994) shows one case in which 0, was 
changed for this reason. In seven cases, 8, was eliminated entirely, q then being set to zero in 
(4.2).  

For d = 1.0, 2.0, 10.0 the iteration was conducted as for limiting waves, being terminated 
when successive steps changed no coefficient by more than a small tolerance, generally 
For d = 0.2, 0.5 this technique gave an oscillating behaviour, indicating presumably that two 
alternative sets of coefficients were capable of describing the wanted solution. In  these cases, 
therefore, the iteration was terminated when the maximum nodal error was of modulus less 
than lo-', which condition was reached before the oscillating behaviour appeared. These 
solutions are, of course, entirely satisfactory for defining the wave motion, their only 
disadvantage being that a series of computed sets of coefficients will not constitute a family that 
could be used for interpolation. 

5. R E S U L T SA N D  D I S C U S S I O N  O F  A C C U R A C Y  

The numerical results are necessarily presented only briefly in this paper; more extensive 
tables are to be found in the author's Ph.D. thesis (Williams 1983). 

Table 2 shows the computed coefficients for five of the thirty-two cases listed in table 1 ; the 
cases chosen all have local surface slopes exceeding 30°, as will be shown subsequently. 

Whereas the parameter A is central to the numerical formulation, it is more relevant in 
discussing the solutions to consider the quantity w defined by Longuet-Higgins (1975). Let us,, 
us, denote the velocities on the surface at  the crest and trough respectively in the steady flow 
(figure 1) and let 

c = h / L  (5.1) 

be the celerity, or phase velocity, needed to bring the space-mean velocity at the bed to zero 
over a wavelength. Then 

w = 1- = 1-2(e '~, , /c)~,  (5.2)(us, ~ ~ ~ / c c ~ ) ~  

where c, is defined by (3.6) and E' by (3.5). 
The value of o ,  which varies from zero for infinitesimal waves to unity for limiting waves, 

is included in the results illustrated in table 2. 
Table 3 gives selected properties of the waves for twenty of the solutions of table 1, headed 
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TABLE2. COMPUTED FOR SELECTED SOLUTIONSCOEFFICIENTS 

d 0.2 	 1.o 1.o 10.0 10.0 

A 0.99999 0.99999 0.9999 0.99999 0.9999 
w 0.998 26 0.999 16 0.996 12 0.99924 0.99648 

t x l o s  	 x lo8  x los  x l o9  x 109 

a 109326767 108 562 209 108560378 103085638 103 144018 
s 353312 894 214 690667 204260 132 259 298 237 249 292 559 
'I 93373 191 60714437 50 756488 69977 303 60780 107 
71 21 404 6 844 29 499 7 726 33003 
72 35 752 12 075 41 009 13046 48 272 
73 -24612 -9 495 -12095 -17 142 -36437 
74 73 834 26 887 57 094 101 443 220042 
7 5  -65 692 -25070 -33587 -294615 -550 344 
76 79 508 29 300 55 660 558527 998 104 
77 -559 578 -972 843 
78 237037 422 197 
a 0  -24 942 266 -13314297 -13313942 -114283210 -114274560 
a 1  -377917390 -195882996 -172268631 -220113421 -198367075 

57 563 602 15091021 11 776 686 13 849032 11 438 892 
5428032 1340418 904 329 1 136659 845 366 

870865 296722 167 728 236 165 155801 
' s , 4 0  117352 -202 93 480 42070 69931 40 136 

-16788 -181 35 756 11726 25043 12 184 
-31974 -162 15 454 3 064 10060 4002 
-26183 -144 7 254 436 4 343 1339 
-19110 -129 3 608 -314 1958 428 

% 0 , 4 5  -13911 -115 1870 -456 902 118 
-10439 -103 998 -410 417 19 
-8133 -92 543 -319 189 -7 
-6552 -82 299 -232 82 -9 
-5420 -73 165 -161 33 -6 

a 1 5 ,  5 0  -4570 -65 9 1 -107 12 -3 
-3905 -58 50 -69 3 - 1  
-3368 -52 27 -43 
-2923 -46 14 -25 
-2548 -41 7 -14 
-2229 -36 3 -7 
-1954 -32 	 1 -3 
-1717 -28 	 1 - 1  
-1511 -25 
-1332 -22 
-1176 -19 
-1039 -17 

-919 -14 
-814 -12 
-722 -11 
-641 -9 
-569 -8 
-506 -6 
-450 -5 
-401 -4 

' 3 5 , 7 0  	 -357 -3 
-319 -3 
-284 -2 
-254 -1 
-227 - 1  

a 7 5  	 - 1  

t Results quoted have been multiplied by the given factor, i.e. in the first column a = 109326767 x etc. 
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TABLE3. PROPERTIES
OF SELECTED WAVES 

(For each d ,  A takes the values 0.99999, 0.9999, 0.999, 0.99.) 

relative height parameter w 
total head relative to crest 1 
mean depth h 
wavelength L 
wave height H 
total head relative to bed 2+aF2 
mean depthlwavelength h / L  
heightlmean depth H/h 
celerity (zero mean velocity) c 
celerity (zero mass transport) c' 

d = 0.20, 1/2F2 = 

0.998 26 

0.001406 

1.78063 


54.996 
1.3979 

3.07892 

0.032377 

0.785 1 

1.14248 

1.12320 


0.506649, H,,, 

0.99202 

0.006 447 

1.78057 


54.994 
1.3929 

3.07894 

0.032377 

0.782 3 

1.14251 

1.12323 

0.001517 

0.001 187 

0.03433 

0.01961 

0.01651 

0.047 24 

0.040 14 

0.01029 


0.540988, H,,, 

0.995 14 

0.003437 

1.87625 


22.8322 
1.3627 
3.01234 
0.082 176 

0.72627 

1.10076 

1.06596 

0.008061 

0.005854 

0.06530 

0.03594 

0.031 32 

0.082 74 

0.06843 

0.01755 


0.656518, H,,, 

0.996 12 

0.002034 

1.941 1 1  


11.7298 

1.206 9 

2.82679 

0.165484 

0.62176 

1.071 32 

1.030 34 

0.024664 

0.015335 

0.07954 

0.042 61 

0.03822 

0.08531 

0.07 147 

0.01522 


= 1.39940, U: = 0.000000 

0.96449 0.842 92 

0.028684 0.126854 

1.77957 1.783 75 


54.955 	 55.075 
1.3729 1.2724 
3.07983 3.07890 
0.032382 0.032 388 

0.771 5 0.7134 
1.14332 1.14084 
1.12387 1.12123 
0.001 520 0.001 51 1 

0.001 173 0.001 078 
0.03462 0.03498 
0.01979 0.01995 
0.01665 0.01693 
0.047 64 0.04836 
0.04052 0.04088 
0.01036 0.01085 

= 1.36616, U: = 0.000000 

0.97802 0.90281 
0.015542 0.068556 
1.87585 1.87703 

22.825 1 22.8258 

1.3514 1.302 3 

3.01266 3.01425 

0.082 184 0.082 233 

0.72040 0.693 83 

1.101 10 1.10107 
1.066 19 1.06551 
0.008069 0.008 073 
0.005813 0.005602 
0.06550 0.06673 
0.03606 0.03674 
0.03141 0.032 10 

0.08299 0.08463 

0.06868 0.06998 

0.01758 0.018 1 1  


= 1.20900, u,2 = 0.00012 

0.98244 0.922 39 

0.009218 0.040639 

1.94087 1.941 73 


11.7277 11.7262 
1.200 1 1.1721 

2.82688 2.828 18 

0.165 495 0.165589 

0.61831 0.603 66 

1.07151 1.07165 

1.03046 1.03001 

0.024678 0.024 702 

0.015259 0.014912 

0.07967 0.08085 

0.042 68 0.04332 
0.03827 0.03891 
0.08545 0.08669 
0.071 62 0.072 65 

0.01522 0.01551 


depth parameter 
height parameter 
mean momentum 
mean kinetic energy 
mean potential energy 
radiation stress 
mean energy flux 
bed velocity variance 

relative height parameter 
total head relative to crest 
mean depth 
wavelength 
wave height 
total head relative to bed 
mean depthlwavelength 
heightlmean depth 

2h(Fc/L)' 0.001 517 

~ H ( F G / L ) ~0.001 191 

I 

T 

V 

SXX 

E 
4 


w 
1 

h 

L 

H 

2+aF2 

h/L 

H/h 


0.03433 
0.01961 
0.01651 
0.047 24 

0.040 14 

0.01030 


d = 0.50, 1/2F2 = 

0.99894 
0.000748 
1.876 26 


22.8322 

1.3654 

3.01235 

0.082 176 

0.727 71 

1.10076 

1.06595 


celerity (zero mean velocity) c 
celerity (zero mass transport)^' 
depth parameter 
height parameter 
mean momentum 
mean kinetic energy 
mean potential energy 
radiation stress 
mean energy flux 
bed velocity variance 

relative height parameter 
total head relative to crest 
mean depth 
wavelength 
wave height 
total head relative to bed 
mean depthlwavelength 
heightlmean depth 

2 h ( F ~ l L ) ~  0.008061 
2H(Fc/L)% 

I 

T 

V 

sxx 


E 
4 


w 

1 

h 

L 

H 

2 +aF2 

h /L  

H/h 


0.005866 
0.065 31 

0.03594 

0.03132 

0.082 75 

0.06844 

0.01756 


d = 1.0, 1/2F2 = 

0.999 16 

0.000442 

1.941 1 1  


11.7298 

1.2085 

2.82680 

0.165485 

0.62260 

1.07 1 32 

1.030 34 


celerity (zero mean velocity)~ 
celerity (zero mass transport)^' 
depth parameter 
height parameter 
mean momentum 
mean kinetic energy 
mean potential energy 
radiation stress 
mean energy flux 
bed velocity variance 

2 h ( F ~ l L ) ~  0.024664 

2H(Fc/L)% 0.015356 

I 0.07955 

T 0.042 61 

V 0.03822 

SXZ 0.085 32 

E 0.07 148 

4 0.01522 
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TABLE3 (continued) 

d = 2.0, 1/2F2 = 1.037315, H,,, = 0.79997 

relative height parameter w 0.99923 0.99644 0.983 76 0.92892 
total head relative to crest 1 0.000239 0.001 102 0.005027 0.021 951 
mean depth h 1.94083 1.940 83 1.94062 1.941 05 
wavelength L 5.919 1 5.919 1 5.9183 5.9174 
wave height H 0.799 72 0.79883 0.79508 0.78028 
total head relative to bed 2 +aF2 2.48553 2.48553 2.48548 2.486 10 
mean depthlwavelength h / L  0.327 892 0.327 890 0.327 902 0.328024 
heightlmean depth H/h  0.41205 0.41 159 0.40970 0.401 99 
celerity (zero mean ve loc i t y )~  1.061 51 1.061 51 1.061 66 1.061 82 
celerity (zero mass transport)cl 1.03049 1.03049 1.03060 1.030 37 
depth parameter 2 h ( F ~ l L ) ~  0.060 174 0.060 173 0.060 201 0.060251 
height parameter ~ H ( F C / L ) ~0.024 795 0.024 767 0.024665 0.024220 
mean momentum I 0.06020 0.06020 0.06027 0.061 04 
mean kinetic energy T 0.031 95 0.031 95 0.031 99 0.03241 
mean potential energy V 0.02885 0.02885 0.02888 0.02928 
radiation stress SXX 0.047 59 0.047 58 0.047 67 0.04821 
mean energy flux E 0.04396 0.043 95 0.04404 0.04456 
bed velocity variance 4 0.00327 0.003 26 0.00327 0.003 32 
trough velocity variance u: 0.001 84 0.001 84 0.001 84 0.001 86 

d = 10.0, 1/2F2 = 5.000000, H,,, = 0.167 135, ui = 0.00000 

relative height parameter w 0.99924 0.99648 0.98396 0.92976 
total head relative to crest 1 0.0000484 0.000223 1 0.001 017 8 0.004446 5 
mean depth h 1.897 82 1.897 83 1.89758 1.897 43 
wavelength L 1.18483 1.18484 1.18467 1.18449 
wave height H 0.16708 0.16691 0.16614 0.16315 
total head relative to bed 2+aF2 2.01031 2.01031 2.010 10 2.00999 
mean depthlwavelength h / L  1.601 765 1.601 764 1.601 776 1.601 903 
heightlmean depth H / h  0.08804 0.087 95 0.087 56 0.08599 
celerity (zero mean ve loc i t y )~  1.06061 1.060 60 1.060 75 1.06091 
celerity (zero mass transport)^' 1.053 84 1.053 84 1.053 97 1.05406 
depth parameter 2 h ( F ~ l L ) ~0.30414 0.304 14 0.304 27 0.30444 
height parameter ~ H ( F C / L ) ~  0.02675 0.02664 0.026 18 0.02678 
mean momentum I 0.012 837 0.012835 0.012851 0.013011 
mean kinetic energy T 0.006808 0.006807 0.006816 0.006902 
mean potential energy V 0.006 146 0.006 145 0.006 151 0.006234 
radiation stress SXX 0.008792 0.008790 0.008808 0.008904 
mean energy flux E 0.008624 0.008623 0.008639 0.008738 
trough velocity variance ut 0.00227 0.002 27 0.00227 0.002 30 

in each case by the value of o.Properties mentioned, in addition to those already defined, 
include : 

the height H,,, of the corresponding limiting wave (taken from paper I )  ; 
an alternative celerity c' = 2/h, bringing net mass transport at  any vertical section to zero 
over a wave period; 
the integral properties discussed by Longuet-Higgins (1975) and defined fully in paper 
I. They include the mean densities over a wavelength of momentum I (paper I ,  (4.5)), 

kinetic energy T (I ,  (4.6)) and potential energy V (I ,  (4.7)) ; the radiation stress Sxx(I ,  

(4.8)) and mean energy flux E (I ,  (4.9)) ; 

the variances gk, r r i  of the velocity distribution along the bed and beneath the trough, 

defined by (4.14), (4.15) of paper I .  


The solutions, as shown by table 2, give compact representations of near-limiting waves, 
which have not been achieved before, but are less elegant than the limiting-wave solutions of 
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paper I. The main sequences of coefficients decay less rapidly to zero and in some cases change 
sign. The coefficients of the dipole terms vary erratically in magnitude and sign, although it 
should be noted that Longuet-Higgins & Fox (1977)obtained similar behaviour in their 
original calculation of the inner profile. For solutions involving six to eight dipoles there is a 
tendency for successive coefficients to become equal and opposite; in fact attempts to use more 
dipoles usually failed because such pairs of coefficients increased in magnitude without apparent 
limit at successive iterations. 

The error quantities shown in table 1 are generally larger than for the corresponding 
limiting-wave solutions (paper I ,  table 2),  but nevertheless show that a high accuracy has been 
achieved. The maximum surface pressure j, in no case exceeds 5 x e* does not exceed 
7 x lop6and the greatest of the pressure integrals PI, P2, P3 has modulus 1.3 x lop6. 

The asymptotic inner profile calculated by Longuet-Higgins & Fox (1977)and discussed 
in $ 3  has a maximum slope of 30.37' and a vertical crest acceleration of 0.388g. The principal 
features of the inner profiles of the present solutions are given for comparison in table 4, which 
includes some further error quantities based on the surface pressure distribution p,(0). As the 
scale of the inner profile diminishes it will theoretically approach the asymptotic form but on 
the other hand will become progressively less well resolved in the computed solution. As a 
measure of this resolution, the local maximum modulus of p, over a particular range is 
multiplied by 2F2 to convert it to a displacement error and divided by the profile scale I, to 
define a quantity 9. Three values, c!,, 9,, 9,, have been calculated for each inner profile, 
applicable to the ranges 0 d x / l  d 3 , 3  < x/l d 7.5, 7.5 < x/l 6 25 respectively, and are shown 
in table 4. 

TABLE OF INNER PROFILES, WITH ERROR QUANTITIES4. PROPERTIES 

compu tedmax. max. slope crest 
slope/deg position, x / l  acceleration/g 

30.35 14.9 0.3890 
29.98 12.8 0.387 6 
28.56 9.3 0.381 1 
23.47 5.9 0.3430 
30.40 15.2 0.3891 
30.17 14.0 0.3884 
29.35 10.6 0.3852 
26.27 7.1 0.3666 
30.41 15.3 0.3892 
30.26 14.6 0.3886 
29.73 11.9 0.3867 
27.65 8.2 0.3756 
30.40 16.2 0.3890 
30.42 15.3 0.3888 
30.29 15.3 0.3887 
29.92 12.6 0.387 4 
28.37 8.9 0.3797 
30.40 16.2 0.3890 
30.42 15.5 0.3888 
30.30 15.3 0.3888 
29.95 13.0 0.387 6 
28.49 9.2 0.3804 

t Eight dipoles. $ Seven dipoles. 
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The low values of c!, in table 4 show that the inner profile is generally best resolved over 
the second range. The table also shows that resolution depends primarily on the size of the 
profile in the 7-plane, indicated by 1-A, rather than on its physical size I .  

For A = 0.99999, the highest value computed, the crest acceleration lies within the range 
0.3888g to 0.3892g for all values of d. Despite the considerable range of physical scale of these 
profiles, table 4 shows that they are of similar precision and may, therefore, be compared on 
an equal basis with the asymptotic profile of Longuet-Higgins & Fox; this comparison is made 
in table 5 .  

(A,?/ l ,  Aq/ l  are shown in roman type for positivep,, italics for negativep, and bold type at  the position ofmaximum 
surface slope, Note d = 2.0 (with eight and seven dipoles) is not shown, being almost identical with d = 10.0.) 

L.-H. & F. this paper, A = 0.99999 L.-H. & F. 

t t 

0 0 0 0 0 0 
-1  - 1  -1 -1 1 1 
-3  -4 -3  -2 0 0 
-4 -4 -3  -2 -3  -3  
-3  -4 -3  -2 -5 -4 
-2 -2 -2 -2 -7 -5 
-1 -2 -1 - 2  -7 -5  

0 0 0 -1 -7 -5 
0 -1 0 -2 -8 -5 
1 0 0 -2 -8 -4 
1 0 1 -2 -9 -5 
1 - 1  1 -3  -9 -4 
2 - 1  I -3  -10 -4 
2 - 1  1 -3  -10 -4 
2 - 1  1 -4 -12 -4 
3 - 1  2 -4 -12 -3  
2 - 2  1 -5 -13 -4 
2 -2 1 -5 -14 -3 
3 -2 1 -6 -14 -3  
3 -3 1 -6 -15 -3  
3 -3  1 -7 -16 -2 
3 -4 1 -8 -18 -2 
2 -5 0 -10 -19 -2 
2 -6 0 - 1 1  -20 - 1  
3 -6 1 -12 -21 - 1  
2 -7 0 -14 -23 - 1  
2 -9 0 -15 -23 1 
0 -11 -1 -19 -24 2 

-2 -14 -2 -22 -25 4 
-4 -18 -2 -26 -27 5 
-9 -24 -4 -33 -29 6 

-14 -31 -6 -40 -31 8 
-21 -40 -9 -50 -36 7 
-30 -51 -13 -62 -43 4 
-40 -64 -18 -76 -51 0 

t Eight dipoles. $ Seven dipoles. 
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The origin is taken temporarily on the total energy line above the crest with surface 
coordinates 2, zj corresponding respectively to y, x as defined by Longuet-Higgins & Fox. The 
outer columns of table 5 give their computed profile, with 211, zjll tabulated as functions of 
q5F.\/ (2/P).  The remaining columns show the deviations Ax"l1, Ay"l1 of the present solutions from 
this profile. To  indicate the fluctuations of the small surface-pressure error p,, the entries are 
shown in roman type wherep, is positive and in italics where it is negative; the changes of sign 
usually occur at the nodal points. In addition, the entry nearest to the point of maximum slope 
of each profile is printed in bold type. 

For 211 < 7.5 all profiles for d 2 0.5 are very close to the asymptotic profile, the small 
discrepancies being consistent with the generally small values of 8, (table 4).  The much larger 
values of $, for the innermost zone evidently do not have a significant effect. For d = 0.2, 
however, the profile at 211 = 7.5 is distinctly above the asymptotic solution and since table 4 
has shown that all solutions are of comparable quality this must be accepted as a genuine trend. 

In most solutions for a given A not only are 6 values of comparable magnitude but also p, 
exhibits a similar sequence of sign changes over the profile, raising the possibility of a common 
systematic error. In an attempt to break this pattern supplementary solutions have been 
computed for d = 2.0, 10.0, with seven dipoles instead of the original eight. This changes the 
sign ofp, over most of the profile, although not at the extreme crest nor in the outer zone, 
211 > 7.5. The value of$, is, however, almost halved (table 4),  with an accompanying reduction 
of 0.0002g in the computed crest acceleration. The true acceleration is therefore expected to 
be about 0.3885g for these cases and is probably the same for the asymptotic solution, agreeing 
very closely with Longuet-Higgins & Fox's estimate of 0.388g. 

In the outer zone, x"/l > 7.5, $, is large, being less restrained by the additional nodes, which 
cannot extend throughout this region without destroying convergence. All solutions except for 
d = 0.2 now deviate below the asymptotic profile, giving computed maximum slopes exceeding 
Longuet-Higgins & Fox's value of 30.37". Some estimate of the likely error in slope can be made 
from the seven-dipole solutions, which increase 8, by 50 % and the slope by 0.02". This would 
suggest a true maximum slope for these cases of about 30.36", and in particular we may say 
that this applies to a deep-water wave (represented to sufficient accuracy by d = 10.0) with 
w = 0.99924. Longuet-Higgins & Fox (1977) show graphically that the maximum slope ofboth 
solitary and deep-water waves varies linearly with w as w nears unity. The slope of their line, 
together with the above values, indicates a maximum slope for w = 1 of about 30.3S0, although 
the accuracy is not sufficient for the second decimal place to be stated firmly. Longuet-Higgins 
& Fox's calculation of the asymptotic profile in isolation remains the best estimate of maximum 
slope. I noted, however, in examining their table 3 (reproduced in the present table 5),  that 
the maximum slope appeared to be almost 30.3S0, rather than 30.37" as stated in their paper. 

7. S O L I T A R YW A V E S  

I t  was shown in paper I that solutions for d = 0.2 define to working accuracy the 
corresponding steep solitary wave because the flow at  the trough is sensibly uniform and may 
simply be extended indefinitely. The value of w derived from this extrapolation is denoted by 
w,. Table 6 summarizes the prope;^ties of near-limiting solitary waves deduced in this way; 
results for w ,  = 1, the limiting wave, are taken from table 5 of paper I .  

The symbols I, T, V now have a subscript co to denote the alternative definitions for solitary 



N E A R - L I M I T I N G  G R A V I T Y  W A V E S  I N  W A T E R  


(Values are normalized such that acceleration due to gravity and undisturbed depth are each taken as unity. 
Values in parentheses are interpolated from Byatt-Smith & Longuet-Higgins (1976) .Interpolated values giving 
maximum Froude number and maximum surface slope = 30.00° are shown in italics.) 

max. surface 
W m H' Froude no. Mm c m  I m  T m  V, slope/deg 

1.00000 0.833 197 1.290889 1.970319 1.714569 2.543463 0.535005 0.437 670 30.00 
0.99833 0.8323 1.29086 1.9702 1.7145 2.5432 0.5349 0.437 6 30.3 
0.995 14 0.8307 1.29085 1.9699 1.7142 2.5429 0.5348 0.4375 30.15 
0.9927 30.00 
0.99232 0.8294 1.29089 1.9696 1.7139 2.5425 0.5348 0.4375 29.98 
0.96582 0.8181 1.29242 1.9776 1.7194 2.5559 0.5405 0.4419 28.56 
0.94595 0.8096 1.29355 1.9892 1.7290 2.5732 0.5460 0.4464 27.60 

(1.2934) (1.730) (0.546) (0.447) 
0.92896 0.801 8 1.294 10 1.9997 1.7382 2.5878 0.5498 0.4497 26.82 

(1.2940) (1.739) (0.549) (0.450) 
0.917 1.29421 
0.91440 0.7947 1.29421 2.0082 1.7461 2.5990 0.5520 0.4518 26.18 

(1.294 1) (1.746) (0.552) (0.452) 
0.901 19 0.7878 1.29403 2.0152 1.7529 2.6077 0.5530 0.4531 25.61 

(1.2940) (1.752) (0.553) (0.453) 
0.88887 0.781 2 1.29361 2.0209 1.7589 2.6142 0.5533 0.4536 25.09 

(1.293 6) (1.756) (0.552) (0.453) 
0.84895 0.7576 1.29082 2.0332 1.7742 2.6244 0.5487 0.4515 23.47 

(1.2909) (1.772) (0.548) (0.451) 

waves given, after Longuet-Higgins (1974), by (4.23)-(4.25) of paper I. Three new quantities 
are the excess mass M, and circulation C,, defined by (I ,  (4.21), (4.22)), and H', the ratio of 
wave height to undisturbed depth. As in paper I,  the values of table 6 are normalized according 
to Longuet-Higgins's definition, with acceleration due to gravity and the undisturbed depth at 
infinity each taken as unity. 

I t  has been previously established (Longuet-Higgins & Fenton 1974) that M,, C,, I,, T,, 
V,, as well as the Froude number of solitary waves, reach maxima for waves below limiting 
height; the maxima of Froude number, T,, V, occur within the range of table 6. In addition, 
however, the present results are accurate enough to resolve a subsequent minimum, occurring 
for all variables near w, = 0.995. A more detailed discussion of this behaviour will be given 
in 58 for deep-water waves. 

The most accurate previous calculations of steep solitary waves are those of Byatt-Smith & 
Longuet-Higgins (1976) who, by an integral equation technique, covered the range 
0.80 < w, < 0.96. Within this range their tabulated results have been interpolated for the 
values of w, appearing in table 6, and are shown there in parentheses. To  the precision of their 
quoted results, four decimal places for Froude number and three for C,, T,, V,, the agreement 
is generally excellent. 

The highest previous near-limiting solitary waves are due to Sasaki & Murakami (1973), 
who have published eight solutions in the range 0.984 < w, < 0.991, with maximum surface 
slopes up to 29.9'. For steep waves, the maximum slope has been shown to vary almost linearly 
with w, by Longuet-Higgins & Fox (1977), who on this basis demonstrated the consistency 
of slopes computed by Sasaki & Murakami and Byatt-Smith & Longuet-Higgins (1976). The 
former results, however, do not quite achieve the present accuracy, as is most evident from their 
computed crest acceleration, which falls from 0.384g to 0.379g as w, increases through the above 
range. 
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In paper I, (4.26)-(4.28), expressions are given for the error terms arising from p,  in the 
integral identities derived by Longuet-Higgins (1974) for the solitary wave. Whereas for the 
limiting solution these errors did not exceed 2 x they now reach values up to 4 x 
although generally they do not exceed lop5. It is believed, therefore, that the integral properties 
of near-limiting solitary waves have been established to four to five decimal places, as presented 
in table 6. This table also includes interpolated estimates for the maximum Froude number 
and the value of w, at which the surface slope first reaches 30'. 

I t  was shown in paper I that deep-water waves may be deduced, to working accuracy, from 
the solutions for d = 10. Table 7 presents the principal properties of near-limiting deep-water 
waves computed in this way, with results for the limiting wave, w = 1, again taken from 
paper I. These values are based on the normalization of wavelength to 27t and acceleration 
due to gravity to unity. 

(Values are normalized such that acceleration due to gravity = 1 and wavelength = 2n. Interpolated values 
giving maximum c and maximum surface slope = 30.00' are shown in italics.) 

max. surface 
slopeldeg Ya 

30.00 0.607 77 
30.4 0.60776 
30.3 0.60777 
30.24 0.60779 
30.00 
29.95 0.60806 
29.29 0.60844 

The tabulated values may be compared with the predictions of Longuet-Higgins (t Fox 
( I978), who by the method outlined in 5 3 derived (using the above normalization) the following 
expressions, correct to et3 : 

c2 = 1.1931-1.18e'3 cos (2.143 lne'+2.22), (8.2) 

I = 0.070 11 -0.364d3 cos (2.143 Ins'+ 1.61), (8.3) 

T = 0.03829-0.215e'3 cos (2.143 In€'+ 1.66), (8.4) 

V = 0.03457 -0. 169ef3 cos (2.143 In e'+ 1.49). (8.5) 

These expressions show that, except for H / L , each variable passes through an infinite succession 
of maxima and minima in its approach to the limiting value at  e' = 0. For e' < 0.05 values 
of c, I, T, V calculated from (8.2)-(8.5) are compared with values from table 7 in the left-hand 
part offigure 4. The general trends agree in all cases, with a minimum being shown at e' z 0.03 
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FIGURE4. The variation ofc, I, T,  V (left-hand side) and Ac, AI, AT, A V (right-hand side) with t.' and w for deep-water 
waves; . . . . ., from (8.2)-(8.5), after Longuet-Higgins & Fox (1978); +, this paper (table 7 ) ;  e, 
Longuet-Higgins (1975), results quoted to six or more decimal places; 00 ,Longuet-Higgins, range for less than 
six decimal places; m, Cokelet (1977), six or more decimal places; , Cokelet, less than six decimal places; 
---, estimated true values, taking all results into account. 
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for c and s' x 0.04 for I, T, V. The discrepancy in c would probably be much reduced if 
Longuet-Higgins & Fox's analysis were repeated with the benefit of the more accurate limiting 
value found in paper I. 

For s' > 0.05, (8.1)-(8.5) are less precise because absent higher-order terms become 
significant. Nevertheless they provide useful datum functions for investigating the mutual 
consistency of the present and previous calculations. Therefore, with Ac, AI,  AT, AV defined 
as the difference between a computed result and the value given by (8.2)-(8.5), these differences 
are plotted against c' in the right-hand part of figure 4; the scale of w is also shown, at the 
foot of the diagram. With the present results are included those of Longuet-Higgins ( I975) and 
Cokelet (1977) ; where these earlier calculations have been quoted to less than six decimal places 
the implied range is shown on the plot. 

Figure 4 shows the mutual consistency of almost all results; only the highest non-limiting 
solution by Cokelet, for w x 0.99, seems not to justify the number of decimal places quoted. 
For w < 0.98 the previous results are probably accurate to five decimal places for c and to within 
two units in the sixth decimal place for I, T, V. The present results appear to justify quoting 
generally to six decimal places, with an expected error of up to two units in the last place, except 
that values of c for 0.99 < w < 1.00 justify only five decimal places. This presentation has been 
adopted in table 7, which also includes interpolated estimates for maximum c and the first 
attainment of a 30' surface slope. 

Sasaki & Murakami (1973) have also published solutions for very steep deep-water waves, 
for 0.956 < w < 0.974. The general accuracy approaches that of the present solutions but, as 
for their solitary waves, the computed crest acceleration decreases with increasing w .  

Angular momentum 

Calculations ofangular momentum and hence the level ofaction y, ofnear-limiting deep-water 
waves have been made as described in paper I, which in turn follows the method of 
Longuet-Higgins (1980). The results are given in the last column of table 7, y, being measured 
positively upwards from the mean surface level and normalized relative to a wavelength of 271. 

Although the present solutions are slightly less accurate than for the limiting wave, 
nevertheless there is a consistency in the sequence of values for y, suggesting that an accuracy 
of at  least four decimal places and possibly five has been achieved throughout. The reservations 
on accuracy expressed in paper I may therefore have been overstated. 

The detailed properties of the flow may be computed from the defining coefficients, such 
as those of table 2, according to the equations of 8 11 of paper I. Two cases have been chosen 
for presentation: with A = 0.9999 for d = 1.0, 10.0 respectively. For these waves the crest 
acceleration (table 4) is close to its asymptotic value, the maximum slope exceeds 30°, and the 
inner profile is large enough in scale to be evident in the tabulation range used in paper I. 

Table 8 relates to tables 10a-e of paper I and shows for d = 1.0, w = 0.996 12 (99.83% of 
limiting height) those parts of the flow field differing significantly from the limiting wave. 
Displacement is affected only on the surface streamline, while the velocity and acceleration fields 
show more widespread variations. Time t, taken by a particle from a starting point beneath 
the wave crest, is also substantially different from the limiting case owing to the absence of the 
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stagnation point. For each streamline, the increment of time saved in travelling through the 
crest zone affects the value o f t  throughout the wavelength, as noted on the table. 

Table 9 presents a similar condensed tabulation for d = 10,w = 0.996 48 (99.86 % of limiting 
height), from which the deep-water wave may be derived, and relates to tables 12a-e of 
paper I .  In this case, except for the acceleration field, the tabulations are needed only for the 
surface streamline, @ = 0. 

The surface profiles near the crests of the two waves, for $/A > -0.0002, are in close 
agreement, as may be verified by dividing each set of velocities by the relevant scale factor 
d (1 /2F2); they are approaching the asymptotic form, with computed crest accelerations of 
0.3886g and 0.3888g respectively. Beyond $/A = -0.0003 the surfaces diverge from the 
asymptotic profile and begin to merge into the profiles previously computed for the limiting 
waves. 

A special comment is needed on the calculation of t(x) for near-limiting waves. The accurate 
determination o f t  presents difficulties near the wave crest where velocities are small and time 
increments consequently large. For limiting waves a series expansion was developed for the 
surface streamline near the crest, and is described in Appendix 2 of paper I. For near-limiting 
waves, however, no convenient alternative expansion is available and t has therefore been 
computed by very fine quadrature for 0 < $/2n < 0.0025 on the surface streamline. 

In paper I specimen calculations are presented of particle paths and drift profiles in limiting 
waves. These show the sharp increase near the surface in the particle advance during a wave 
cycle, and hence in the drift velocity. 

I t  is of interest to calculate the surface drift velocity for near-limiting waves and determine 
the rate at which it falls off from its maximum value. Following paper I, (12.1), we calculate 
the surface drift velocity Us from 

Values of Us/c are given in table 10 and show that, in broad terms, a wave of 99% of 
maximum height has about 88% of the maximum surface drift velocity, while at 97 % of 
maximum height the drift is about 80 % of maximum. 

The completion of this work on progressive finite-amplitude waves calls for the computation 
of waves of all lesser heights down to zero, again over the full range of d. 

For A d 0.985 both the dipoles and the second leading term of (4.2) may be dispensed with, 
only a single leading term with a suitable exponent v being left. The variation of v with d and 
A was determined by computing a few trial cases over the full range and finding an empirical 
fit. A suitable expression was found to be: 
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( 1 / 2 F 2= 0.656518, h = 1.941 10, L = 11.72983,T y, = 0.82049, 1 = 0.002034. 
Maximum surface slope = 30.26' (computed),30.24' (corrected) at $ / A  = -0.00027.) 

$ / A  0,0000 -0,0001 -0.0002 -0.0005 -0.0010 -0.0015 -0.0025 -0.0050 -0.0100 -0.0175 -0.0250 -0.5000 

* horizontal displacement, x 

0.00 0.0000 0.0152 0.0243 0.0448 0.0710 0.0930 0.1308 0.2082 0.3325 0.4870 0.6224 5.8649 

vertical displacement, y 

0.00 -0.06322 -0.0569 -0.0517 -0.0398 -0.0246 -0.0121 0.0094 0.0525 0.1 195 0,1990 0.2654 1.1437 

horizontal velocity, u 

0.00 0.0517: 0.0907 0.1152 0.1581 0.2000 0.2294 0.2725 0.3444 0.4354 0.5265 0.5944 1.2599 
-0.01 0.2127 0.2131 0.2142 0.2210 0.2384 0.2569 0.2904 0.3542 0.4406 0.5293 0.5961 1.2596 
-0.02 0.2673 0.2674 0.2677 0.2701 0.2778 0.2882 0.3116 0.3655 0.4463 0.5323 0.5980 1.2592 
-0.03 0.3051 0.3051 0.3053 0.3066 0.3108 0.3171 0.3334 0.3779 0.4525 0.5356 0.5999 1.2589 

vertical velocity, v 

0.00 0.0000 0.0513 0.0670 0.0917 0.1148 0.1307 0.1535 0.1894 0.2301 0.2641 0.2842 0.0000 
-0.01 0.0000 0.0088 0.0175 0.0415 0.0727 0.0954 0.1265 0.1715 0.2186 0.2561 0.2778 0,0000 
-0.02 0,0000 0.0055 0.0110 0.0270 0.0515 0.0725 0.1050 0.1552 0.2075 0.2482 0.2715 0,0000 

time, t 

0.00 0.0000 0.2297 0.3185 0.4682 0.6146 0.7171 0.8678 1.1187 1.4375 1.7585 2.0002 6.9433 
-0.01 0.0000 0.0277 0.0552 0.1336 0.2460 0.3379 0.4819 0.7301 1.0492 1.3713 1.6138 6.5657 
-0.02 0.0000 0.0176 0.0351 0.0870 0.1692 0.2441 0.3727 0.6113 0.9279 1.2503 1.4935 6.4538 
-0.03 0.0000 0.0135 0.0270 0.0672 0.1326 0.1948 0.3080 0.5331 0.8451 1.1670 1.4106 6.3791 
-0.04 0.0000 0.0112 0.0224 0.0559 0.1109 0.1644 0.2647 0.4756 0.7811 1.1018 1.3456 6.3220 
-0.05 0.0000 0.0097 0.0194 0.0485 0.0965 0.1436 0.2337 0.4309 0.7288 1.0476 1.2913 6.2754 
-0.06 0,0000 0.0087 0.0173 0.0432 0.0861 0.1285 0.2104 0.3951 0.6847 1.0011 1.2446 6.2359 
-0.07 0.0000 0.0079 0.0157 0.0392 0.0783 0.1169 0.1923 0.3657 0.6468 0.9602 1.2032 6.2016 
-0.08 0.0000 0.0072 0.0144 0.0361 0.0720 0.1077 0.1777 0.3412 0.6136 0.9238 1.1661 6.1713 
-0.09 0.0000 0.0067 0.0134 0.0335 0.0670 0.1002 0.1657 0.3205 0.5844 0.8909 1.1324 6.1441 

horizontal acceleration 

0.00 0.0000 0.2660 0.2825 0.2875 0.2860 0.2863 0.2867 0.2862 0.2846 0.2823 0.2795 0.0000 
-0.01 0.0000 0.0270 0.0530 0.1190 0.1845 0.2167 0.2450 0.2656 0.2741 0.2759 0.2748 0.0000 
-0.02 0.0000 0.0136 0.0270 0.0655 0.1189 0.1573 0.2024 0.2435 0.2630 0.2694 0.2700 0.0000 
-0.03 0,0000 0,0090 0.0180 0.0444 0.0847 0.1184 0.1665 0.2213 0.2517 0.2627 0.2651 0.0000 
-0.04 0.0000 0.0067 0.0135 0.0334 0.0650 0.0933 0.1386 0.2003 0.2402 0.2559 0.2602 0.0000 
-0.05 0.0000 0.0054 0.0107 0.0267 0.0524 0.0764 0.1173 0.1811 0.2287 0.2491 0.2552 0,0000 
-0.06 0.0000 0.0045 0.0089 0.0222 0.0438 0.0644 0.1010 0.1640 0.2174 0.2422 0.2503 0.0000 
-0.07 0.0000 0.0038 0.0076 0.0190 0.0376 0.0555 0.0882 0.1490 0.2065 0.2354 0.2453 0.0000 
-0.08 0,0000 0.0033 0.0066 0.0165 0.0328 0.0486 0.0781 0.1359 0.1960 0.2285 0.2403 0.0000 
-0.09 0,0000 0.0029 0.0059 0.0146 0.0291 0.0432 0.0699 0.1245 0.1860 0.2218 0.2353 0.0000 

vertical acceleration 

0.00 0.25511 0.1860 0.1715 0.1597 0.1564 0.1539 0.1485 0.1368 0.1177 0.0935 0.0720-0.0532 
-0.01 0.3185 0.3174 0.3142 0.2958 0.2600 0.2333 0.2011 0.1645 0.1316 0.1013 0.0775-0.0530 
-0.02 0.3128 0.3125 0.3116 0.3058 0.2891 0.2698 0.2364 ,0.1880 0.1444 0.1088 0.0828-0.0528 
-0.03 0.3071 0.3070 0.3066 0.3038 0.2950 0.2829 0.2566 0.2069 0.1562 0.1159 0.0879-0.0525 
-0.04 0.3018 0.3017 0.3015 0.2999 0.2945 0.2866 0.2670 0.2211 0.1666 0.1226 0.0928-0.0523 
-0.05 0.2967 0.2967 0.2965 0.2955 0.2919 0.2884 0.2717 0.2315 0.1758 0.1289 0.0975-0.0521 
-0.06 0.2920 0.2919 0.2918 0.2911 0.2885 0.2845 0.2732 0.2386 0.1838 0.1347 0.1019-0.0519 
-0.07 0.2874 0.2874 0.2873 0.2867 0.2848 0.2818 0.2729 0.2433 0.1906 0.1401 0.1062-0.0516 
-0.08 0.2830 0.2830 0.2829 0.2825 0.2810 0.2786 0.2715 0.2462 0.1962 0.1451 0.1102-0.0514 
-0.09 0.2788 0.2788 0.2787 0.2784 0.2772 0.2753 0.2694 0.2477 0.2008 0.1496 0.1139-0.0512 
-0.10 0.2747 0.2747 0.2747 0.2744 0.2734 0.2718 0.2670 0.2482 0.2045 0.1536 0.1174-0.0510 

T zjs = average value of y on the surface. 

In general, tables l0a-e of paper I define also the flow field of this wave with a discrepancy not exceeding 0.0002. The 
exceptions, for tables 10c,d, are tabulated above, with the origin values, marked $, applying also to tables IOU,b.  Table 10b 
also needs the following adjustments: 

Time t : for I)= 0, $ / A  = -0.05(-0.05)-0.50, reduce by 0.0922. 

http:-0.05(-0.05)-0.50
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(1 /2F2= 5.000000, h = 1.89783, L = 1.18484, tjs = 0.20217, 1 = 0.000223. 
Maximum surface slope = 30.30' (computed), 30.29' (corrected) at $ / A  = -0.00028.) 

* horizontal displacement, x 

0.00 0.0000 0.0017 0.0027 0.0049 0.0078 0.0102 0.0143 0.0227 0.0362 0.0528 0.0674 0.5924 

vertical displacement, y 

horizontal velocity, u 

0.00 0.0472: 0.0828 0.1052 0.1443 0.1826 0.2093 0.2486 0.3140 0.3965 0.4790 0.5405 1.2928 

vertical velocity, v 

time, t 

0.00 0.0000 0.0275 0.0382 0.0561 0.0736 0.0859 0.1039 0.1339 0.1718 0.2099 0.2383 0.7577 

horizontal acceleration 

vertical acceleration 

0.00 1.9438: 1.4197 1.3097 1.2313 1.2110 1.2007 1.1763 1.1197 1.0272 0.9100 0.8041-1.5056 
-0.01 2.2413 2.2412 2.2409 2.2389 2.2318 2.2202 2.1849 2.0491 1.7401 1.3965 1.1651-1.4405 
-0.02 2.0623 2.0622 2.0622 2.0616 2.0598 2.0566 2.0468 2.0029 1.8588 1.6031 1.3738-1.3781 
-0.03 1.9127 1.9127 1.9127 1.9124 1.9116 1.9101 1.9055 1.8844 1.8077 1.6411 1.4587-1.3180 

t j, = average value of y on the surface. 
In general, tables 12a-e of paper I define also the flow field of this wave with a discrepancy not exceeding 0.0002. The exceptions, 

for tables 12c,d, are tabulated above, with the origin values, marked :, applying also to tables 12a, 6 .  Table 126 also needs the 
following adjustments: 

Time, t :  for $ = 0 ,  $ / A  = -0.05(-0.05) -0.50, reduce by 0.0111. 
Horizontal acceleration: for $ = 0,  $ / A  = -0.10, reduce by 0.0003. 
Vertical acceleration: for $ = 0,  $ / A  = -0.05, -0.10, increase by 0.0003. 

(Tabulated values are of the ratio of surface drift velocity to celerity, Us/c. )  

d 0.2 0.5 1.O 2.0 10.0 

where A' = 0.45+0.2122 exp [-4.551(1 - A ) : ] ,  (1 1.2) 

and d' = 0.005-R1.917/29.964. (1 1.3) 

Table 11 shows some specimen values of v (rounded to four decimal places) evaluated in 
this way, with the ratio HIH,,, of the resulting wave. We note that all values of v are close 
to, but many are less than, +. 



(Upper tabulated values are of v (equation (4.2)),lower values HIH,,,.) 

For waves below about 60 % ofmaximum height the leading term also was discarded, leaving 
only the sequence 5, as originally described in $ 5  of paper I .  

iYumerous tables of waves computed in this way are presented in the author's Ph.D. thesis 
(Williams I 983). 

12. D I S C U S S I O N  

The results presented in this paper include the first f~llly detailed solutions of non-breaking 
waves having slopes exceeding 30". The general accuracy, although a little short of that 
achieved for limiting waves in paper I, is greater than has been obtained in previous work on 
steep waves, with the exception of the solution by Longuet-Higgins & Fox (1977) of the 
asymptotic inner profile. The present work successfully demonstrates the approach of the crest 
profiles to the asymptotic form, despite their very small scale, and supports Longuet-Higgins 
& Fox's estimate of the asymptotic maximum slope of 30.37" (possibly 30.38") and crest 
acceleration of 0.388g. 

As with the limiting wave solutions of paper I, the results have been shown to be consistent 
with previous work on steep solitary and deep-water waves. In  particular, the accuracy is 
sufficient to resolve not only the well-known first maximum of celerity and other quantities but 
also the next minimum in the expected infinite sequence. I t  is noteworthy that this minimum 
has been identified without specific inclusion of the terms with complex exponent in (3.4). These 
terms express the oscillatory asymptotic behaviour of the inner profile, which leads, as 
demonstrated by Longuet-Higgins & Fox (1978), to the oscillatory behaviour of the wave 
properties. The present work therefore provides a stringent independent verification of their 
results. 

The results, together with those of paper I, should provide useful data in support of theoretical 
analysis of the still unsolved question of the position and nature of the singularities in limiting 
and near-limiting waves. In the field of practical numerical methods the work has also 
demonstrated the feasibility of resolving accurately features ofgreatly differing scale; this should 
be relevant to a wide range of problems, not only of fluid flow, involving near-singular 
behaviour. 
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E R R A T U MT O  P A P E R  I 

O n  p. 159 the passage beginning in the fifth line from the bottom of the main text should read: 

'. . . the corrections to be applied to the last three of the above quantities are of order -0.0003, 
-0.0001, -0.0012 respectively.' 


