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Progressive, irrotational gravity waves of constant form exist as a two-parameter family. 
The first parameter, the ratio of mean depth to wavelength, varies from zero (the 
solitary wave) to infinity (the deep-water wave). The second parameter, the wave 
height or amplitude, varies from zero (the infinitesimal wave) to a limiting value 
dependent on the first parameter. For limiting waves the wave crest ceases to be rounded 
and becomes angled, with an included angle of 120". 
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Most methods of calculating finite-amplitude waves use either a form of series 
expansion or the solution of an integral equation. For waves nearing the limiting ampli- 
tude many terms (or nodal points) are needed to describe the wave form accurately. 
Consequently the accuracy even of recent solutions on modern computers can be im- 
proved upon, except at the deep-water end of the range. 

The present work extends an integral equation technique used previously in which 
the angled crest of the limiting wave is included as a specific term, derived from the 
well known Stokes corner flow. This term is now supplemented by a second term, pro- 
posed by Grant in a study of the flow near the crest. Solutions comprising 80 terms at the 
shallow-water end ofthe range, reducing to 20 at the deep-water end, have defined many 
field and integral properties of the flow to within 1 to 2 parts in lo6. I t  is shown that 
without the new crest term this level of accuracy would have demanded some hundreds 
of terms while without either crest term many thousands of terms would have been 
needed. 

The practical limits of the computing range are shown to correspond, to working 
accuracy, with the theoretical extremes of the solitary wave and the deep-water wave. 
I n  each case the results agree well with several previous accurate solutions and it is 
considered that the accuracy has been improved. For example, the height: depth ratio 
of the solitary wave is now estimated to be 0.833 197 and the height:wavelength ratio 
of the deep-water wave to be 0.141 063. 

The results are presented in detail to facilitate further theoretical study and early 
practical application. The coefficients defining the wave motion are given for 22 cases, 
five of which, including the two extremes, are fully documented with tables of displace- 
ment, velocity, acceleration, pressure and time. 

Examples of particle orbits and drift profiles are presented graphically and are shown 
for the extreme waves to agree very closely with simplified calculations by Longuet- 
Higgins. 

Finally, the opportunity has been taken to calculate to greater accuracy the long- 
term Lagrangian-mean angular momentum of the maximum deep-water wave, 
according to the recent method proposed by Longuet-Higgins, with the conclusion that 
the level of action is slightly above the crest. 

1. INTRODUCTION 
The theory of infinitesimal periodic waves was set down in the 19th century as also was the first 
extension by Stokes (1847) to waves of finite amplitude. For so-called shallow-water waves, whose 
depth is only a small proportion of the wavelength, finite amplitudes are better treated by the 
cnoidal theory which is elegantly presented by Benjamin & Lighthill (1954) and has recently 
been extended to fifth and ninth orders by Fenton (1979). These theories become inadequate, 
however, when the amplitude is a significant proportion of its maximum possible value. At the 
maximum value itself the crest of the steady-flow description of the wave, obtained by super- 
imposing the celerity, is at the total energy level. The surface streamline necessarily has a 
stagnation point there and, as shown by Stokes (1880), the crest is angled rather than rounded, 
with an included angle of 120". 

I t  is to be expected that as the limiting crest form is approached the number of Stokes-type 
terms needed to describe it adequately will become very large. Before the advent of digital com- 
puters the task of extending the theory beyond a very modest order was prohibitive, practical 
limits being reached by, for example, the fifth-order solution of De (1955). With the aid of a 
computer Schwartz (1974) later performed the series development mechanically and found that 
Stokes's original formulation was fundamentally unable to extend the wave height beyond a 
definite limit, well short of the maximum. He did, however, recast the method by interchanging 
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dependent and independent variables and using a more suitable expansion parameter. In  this 
way he obtained some solutions of high accuracy, one extending to 117th order. 

Several valuable solutions for maximum waves have been obtained by imposing a crest of the 
correct form and building other standard terms around it to account for the remainder of the 
profile. In  particular Yamada (1957a, b) has solved the deep-water and solitary wave in this way 
while Lenau (1966) has solved the solitary wave. The present work was started with the aim of 
improving the accuracy of this type of method and extending it to all depth: wavelength ratios 
and to waves ofless than maximum height. I t  was found that to improve the accuracy significantly 
it was necessary to use two terms rather than one to describe the crest singularity. The second 
term was suggested by the work of Grant (1973) who showed that the single term proposed by 
Stokes could not adequately account for the flow a short distance from the crest. With these two 
terms included in an integral equation formulation a set of solutions has been obtained for all 
depth: wavelength ratios whose accuracy appears to be superior to any previous maximum wave 
solutions. I n  relation to the accuracy achieved the number of terms used is modest, ranging from 
80 at the shallow-water end of the computing range to 20 at the deep-water end. 

Section 2 sets out the formulation of the problem and 5 3 discusses the form of the crest of the 
limiting wave. 

As is usual with numerical methods, the solutions generated are approximate only and have 
a small residual error in the dynamic free-surface boundary condition. They may, however, be 
regarded as exact solutions of a periodic irrotational flow with a small but non-zero surface 
pressure. Section 4 shows how integrals of this pressure may be included as explicit error terms in 
revised forms of the several identities relating integral properties of waves presented by Longuet- 
Higgins (1974, 1975). These error terms are later shown to be very small in all of the present 
solutions. 

Sections 5 and 6 describe the algorithm, 5 7 gives the basic results in the form of the coefficients 
defining each solution, and 5 8 shows that the overall accuracy is generally better than that of 
previous solutions. Sections 9 and 10show that the limits of our range are to computing accuracy 
identical with the solitary wave and deep-water wave respectively. The height, speed and 
integral properties of each are compared with several previous accurate solutions. The agreement 
is generally good and the accuracy is considered to have been improved. The opportunity has 
also been taken to repeat to greater accuracy a recent calculation by Longuet-Higgins (1980) of 
the level of action of the maximum deep-water wave, which is shown to be slightly above the 
crest. 

The objective of the work has been not only to define limiting waves accurately but also to 
present the results in a form permitting their ready application. Accordingly, $11 gives detailed 
tabulations for the solitary wave, deep-water wave and three intermediate waves, and finally 
5 12 illustrates the use of the tables to determine particle paths and drift profiles. I t  is shown that 
recent estimates of these made by Longuet-Higgins (1979), from very simple approximations to 
the solitary and deep-water waves, are remarkably accurate. 

2. F O R M U L A T I O N  P R O B L E MO F  T H E  

We are to consider progressive, symmetrical, irrotational, inviscid waves propagated without 
change of form in liquid of uniform and finite depth. Following normal practice, we superimpose 
upon the flow a velocity equal and opposite to the wave celerity, when the motion becomes steady. 

I 7-2 
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Figure 1 shows this steady flow in the physical plane of z = x +iy. Next, to remove the initially 
unknown free-surface boundary, we interchange dependent and independent variables and 
define the flow in the plane of the complex potential x = 4 +i$ as shown in figure 2. The 
potential x is normalized such that $ ranges from zero at the surface to -2 at  the bed, the range 
of q5 then being from zero at the crest to -h at the following crest. Solutions are to be sought for 
the full range of h from zero (deep-water wave) to infinity (solitary wave). 

To  normalize the physical variables the flow is referred to the simple standard case of the 
lowest mode of infinitesimal wave motion that would occupy the complex potential domain of 
figure 2. With reference to figure 1, the origin is taken above the crest of this wave at the level of its 
total energy line, x being measured in the direction of the steady motion and y downwards. The 
mean surface level of the infinitesimal motion is then defined to be at y = F2,where F2is the square 
of a Froude number, and the bed is given by y = 2 +F2,SO that the mean velocity of the steady 
motion is unity and its wavelength is A. We introduce the variables u and v to denote the com- 
ponents of velocity in the x and y directions respectively. The ratio 4nlh is now defined as d. 
Our variable d coincides with d as defined by Cokelet (1977) and -In r,  as defined by Schwartz 

('974). 
The solution of the infinitesimal motion of semi-amplitude a is given for example by Lamb 

(1932) and is in the present notation 

z = x+iy = - ~ + i F ~ - i a s i n h d ( l - 4 i x ) / ~ i n h d .  (2.1) 
The variables x and y satisfy Laplace's equation within the flow domain while y satisfies the 
required conditions at the fixed boundaries, namely 

~ = 2 + ~ 2  a y l a $ = o  (2.2)( $ = - 2 ) ,  ( q 5 = 0 , - ~ ) .  

I f p  denotes the ratio of pressure to density, Bernoulli's equation takes the form 

The free-surface condition to be satisfied by the solution is obtained by setting p = 0 in (2.3), 
which may then be written as 

I m  (2) I d z / d ~ 1 ~  F2, $ 0.= = 

Equations (2.1) and (2.4) are compatible if 

F2= ( l ld)  tanh d, 

provided also that powers of a beyond the first are neglected. 
Since (2.1) constitutes a small perturbation of a uniform stream it is convenient to isolate the 

perturbation, by means of the new variable g, from the uniform stream, 2,. Then 

where 

and g = [ + i r  = -iasinhd(l-4ix)Isinhd. (2.7) 

For a wave motion offinite height Hlying within the complex potential domain offigure 2 the 
wavelength will be L rather than h and the mean depth will be h rather than 2. We define the 
ratio h/L as c. The total energy line will also differ from that for the infinitesimal wave. We 
retain F2, defined by (2 .5) ,as a normalizing parameter, so that the acceleration due to gravity is 
1/2F2 in our scaling. If cl is defined such that the total energy line is a distance 2 +aF2above the 
bed the free-surface boundary condition becomes 

[ I r n ( ~ ) + ( a - l ) F ~ ] I d z / d ~ 1 ~F2, $ = 0. (2.8)= 
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Figure 1 shows the outline and datum lines of the finite wave compared with those of the 
infinitesimal wave. 

T o  take advantage of the periodicity of the motion we next introduce the transformation 

With reference to figure 3, the flow field is bounded in the 7-plane by the concentric circles 
p = e-" = R (bed) and p = 1 (surface), while the wave crest occurs at r = 1 and the trough a t  
7 = - 1. Limiting cases are given by R = 0 (deep-water wave) and R = 1 (solitary wave). 

The uniform stream z, is related to T by 

z ,  = -i(2/d) In r + iF2, (2.10) 

and the imaginary part 7 of the perturbation variable 5 is required to be symmetrical about 
0 = 0, to satisfy Laplace's equation 

C2q = 0, R < p < 1, (2.11) 

the bed condition 
and the surface condition 

All conditions except the surface condition (2.13) are satisfied by solutions of the form 

&, = - i ( l /d)  In (r/R), (2.14) 

which gives a uniform flow in the X-plane, and 

which are modes of the periodic motion whose fundamental is given by (2.7). If therefore we 
choose a linear combination of N component solutions given by 

5 = a, Co + a, Cl + . . . + C,,T-l (A) 

we may in principle determine the unknown coefficients a,, a,, . . .,a,-, by satisfying the surface 
condition (2.13), with cc assumed known, at N discrete nodal points on the circumference of the 
outer circle p = 1. In  view of the symmetry these points should be taken only over the upper 
semicircle, 0 g 0 6 x. 

When a solution has been obtained in this way condition (2.13) will in general be violated to 
some extent between the nodal points. We may, however, view our solution as an exact solution 
of a flow with a non-zero surface pressure ps(0) given by 

evaluated a t  p = 1. For comparison with other computed solutions it is also convenient to con- 
vertp, to an equivalent surface elevation error and express it as a proportion of the wave height H. 
We therefore define the error variable e(8) given by 

e(6) = 2F2p,(0)/H. (2.17) 

We shall be concerned in the discussion with the maximum modulus over a wavelength ofp,(O), 
to be denoted byj , ,  and the root mean square of e(O), to be denoted by e*. 



L I M I T I N G  G R A V I T Y  W A V E S  I N  W A T E R  


When the wave reaches its maximum height the crest reaches the total energy line of the steady 
motion and also becomes angled rather than rounded, with an included angle of 120". The flow 
in the vicinity of the crest, the Stokes (1880) corner flow, has been discussed also for example by 
Milne-Thomson (1968) and Longuet-Higgins (1979). With Z defined to move the space origin 
temporarily to the crest, the flow is given by 

x = - i(j2/3F) [-iz+ (a- 1)F2]#= -i(J2/3F) ( - i ~ ) t .  ( 3 4  

Thus, if we write Z = i (3  4 2  F/d)f (1 -r)f ,  (3-2) 

we obtain the correct form at  the crest without singularities elsewhere in the r-plane. Next, from 
Milne-Thomson's circle theorem, we deduce that a flow complying with (3.2) at the crest and 
also fulfilling the correct boundary condition at the bed, p = R, is 

Grant (1973) showed that the crest flow could not be described simply by a term of the form 
(3. I) and sought to develop an expansion for the flow near the crest in the form (in our notation, 
but with Grant's leading coefficient being preserved within the bracket) 

He found that b could not be determined from local considerations alone while ,u was a root of 
the equation 

- tan i n p  = (4 +3p)/(31/3p), (3.5) 

which, if -+n(p+4.) is written as K, takes the simpler form (Longuet-Higgins & Fox 1977) 

K tan K = -$jsn. (3.6) 

The first root of (3.5) greater than 8 isp = 1.469. Eight further terms in the expansion (3.4) based 
on this root have been calculated in terms of b and are given in Appendix 1. 

To  accommodate the various forms of components of { that can be expected to feature in 
solutions of maximum and less-than-maximum waves we define the general variable cm, 
given by 

The chosen denominator normalizes the function by giving 7 = - 1 at  r = 1, as for the basic 
modes of (2.15). A ranges from 0 to 1 and allows the singularity to be taken away from the 
surface for waves of less than maximum amplitude. As A tends to zero the function {,,,,, 
degenerates to the form of (2.15), which for brevity we will continue to denote by cm. 

,,
 , 


Longuet-Higgins (1975) and others have defined several integral properties of a progressive 
wave motion and derived certain identities relating them. The solutions to be presented in this 
paper are approximations to the required wave motion but, as has been shown, may be regarded 
as exact solutions of a flow with a non-zero surface pressure ps(0). I t  is therefore valuable to 
rework Longuet-Higgins's analysis with due allowance forp, and derive a revised set of identities 
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involving integrals of ps. The magnitude of these integrals will be a useful indication of the 
closeness of our solutions to the true wave solution with identically zero ps. 

We usk a subscript s to denote a value at the surface. Throughout this section the limits of 
integration are understood to be 0, L for x and ys, 2 +F2for y, unless stated otherwise. 

The mean value of 7, over the wavelength is 7, given by 

q s =  (l/L) SrSdx =ys-F2 (4.1) 

and Longuet-Higgins's excess mass M is then defined in our notation by 

If we superimpose on the steady motion considered so far a velocity -c we obtain a wave moving 
in the direction of negative x with velocity components zi, v", where 

zi being taken as positive in the direction of motion of the wave. Longuet-Higgins defines, for an 
integral taken along the bed, 

which is zero on account of the choice - c  for the superimposed velocity. He continues by 
defining the parameters I, T, V representing the mean densities over the wavelength of momen- 
tum, kinetic energy and potential energy respectively. Thus 

I = ( l /~)flzidzjdx,  (4.5) 

Two further parameters are S,,, the radiation stress, and E (denoted F by Longuet-Higgins), 
the mean energy flux, which are defined in the present notation by 

Longuet-Higgins's first identity is 2 T = cI, (4.10) 

a kinematic relation which continues to hold for the present solutions. The remaining identities 
involve momentum and energy balances which will include extra terms arising from the non- 
zero surface pressure p, in our solutions. We define the integral parameters 

and 
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We also introduce a b ,  at to denote respectively the standard deviations (in space) of the velocity 
at  the bed and the velocity beneath the trough. Thus 

evaluated along the bed and, with ht denoting the trough depth, 

2 a4 2 
r;='I(-+-)ht ht ax dy 

evaluated beneath the trough. 
The definition ofS,, may be rearranged and the momentum flux at each vertical section related 

to the momentum flux at  the trough in the steady flow. This demonstrates the effect of@, and 
leads to 

S,, = 2cI- (h2 -hi)/4F2-c2h+ &ht[(2/ht)2+ (C-Gst)' + at] + P3, (4.16) 

where Cst is the value of$, at  the trough. Repetition oflonguet-Higgins's analysis with allowance 
for the surface pressures then gives the following revised identities: 

and E = (3T-2V)c+(I+ch) B-(hPl+P2)c, (4.18) 

where B = (2-h)/ZF2+&(a-c2) = +ri+Pl. (4.19) 

The terms involving PI,P2,P, in (4.16)-(4.19) are the error terms associated with our solutions. 

The solitary wave 

For the theoretical extreme of the solitary wave with infinite wavelength Longuet-Higgins 
(1974) proposed modified definitions which we shall denote in this paper by a subscript oo.The 
present algorithm cannot explicitly compute the solitary wave since the computing domain 
degenerates to the circumference of the unit circle. To  compare our results for long periodic 
waves, at the limit of the present method, with the true solitary wave it is useful to relate the two 
sets of parameters. We therefore give the definitions of the solitary wave parameters and accom- 
pany them with relations which, although not exact, can be satisfied to an arbitrarily fine 
computing tolerance. The solitary wave has a celerity c,, a velocity field C,, v", and an undisturbed 
depth h, at  infinity, where the velocity is zero. The corresponding periodic wave has a non-zero 
average velocity 0 beneath the trough, so that 

I t  is assumed that, to computing accuracy, the velocity beneath the trough is sensibly uniform, 
the pressure distribution is hydrostatic and r;has vanished. The following relations then apply: 
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with the integral taken along the bed as before; 

With these approximations and the earlier results of this section Longuet-Higgins's identities 
for solitary waves may be reconstructed. We conclude that we expect our computed results to 
satisfy 

1, -C, M ,  x 0, (4.26) 

2T, -c,(Im -h,  C,) E 0, (4.27) 

To  test the extent to which a computed long periodic wave represents a true solitary wave we 
therefore calculate the left-hand sides of (4.26)-(4.28). They will differ from zero according to 
the general computing accuracy, the magnitude of PI, P,, P,, and the extent to which the 
assumptions leading to (4.21) to (4.25) are violated. 

We note finally that Longuet-Higgins normalizes the solitary wave parameters by taking h,  
and gravity (1/2F2) as unity. When comparing our values with previous results in 5 9 and table 5 
we shall scale them accordingly. 

5. THEC O M P U T I N G  A L G O R I T H M  

Initial work was done by the author in 1970, using a trial solution in the form (A) of 5 2. The 
N nodal points were distributed evenly on the upper semicircle p = 1in the 7-plane at  the points 
6 = (2k- 1) 7~/2N, k = 1,2, ...,N. A constraint was applied to the amplitude of the wave being 
computed by assigning a fixed value to the leading coefficient a,. The N unknowns to be found 
were then a ,  a,, a,, a,, ...,a,-,. 

For a trial set of coefficients the free-surface error s(6) (equation (2.17)) was evaluated at  each 
nodal point to give an error vector e = {el, s,, . . .,sLV).Each trial coefficient was then perturbed 
by a small quantity and the errors were recalculated and used to form a rate-of-change matrix 
A with elements 

as, as, as, ..., *, k = l , 2  ,..., N.
aa7 aa,, Z,, a a ~ - l  

Estimates ofcorrections to the coefficients were evaluated from -A-le and the cycle was repeated 
until convergence had been achieved to an acceptable tolerance. 

This algorithm converged well and yielded useful solutions for waves up to about half of 
maximum amplitude over a wide range of R, with N taking values up to 21, the maximum 
feasible on the small computer (ICL 1901A) available at the time. For recent work, designed to 
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cover all amplitudes, the program has been made more flexible and has been run on the ICL 
1904s at the Hydraulics Research Station and the CDC 7600 at the University of London 
Computer Centre. In addition to a subroutine computing the general set of component functions 
(3.7) and their derivatives, the program has the facility for varying both the distribution of the 
nodal points and the choice of fixed and 'floating' coefficients. 

6. C O M P U T A T I O NO F  M A X I M U M  W A V E S  

The first attempts to compute maximum waves were made with the addition of a term 
sc,, ,, to scheme (A). The form used was 

with the nodal points taken at 8 = kn/N, k = 0,1,2, .. ., N. With the first nodal point then at the 
crest and the singularity set at the surface ( A = 1) the constraint on amplitude previously applied 
by fixing a, became redundant. Thus the N + 1 nodal points served to find the N +  1 coefficients 
a,S,a,, a,, . . ., a,v_,2.In  an alternative scheme s was fixed at the value corresponding to the Stokes 
corner flow given by (3.3) and a further coefficient a,v-, was added. Although these schemes gave 
promising results, with N still no larger than 21, it was clear that something more would be 
needed if accuracy were to be significantly advanced without a disproportionate increase in 
computing effort. 

Attention was therefore paid to the further terms proposed by Grant, and a component 
qc,, ,, ,was added to the trial solution. The corresponding extra nodal point was, after some 
experimentation, placed at a very small distance 8, from the crest with the remaining nodes 
continuing to be uniformly distributed between crest and trough. This scheme gave a marked 
increase in accuracy and is the basis on which the results to be presented have been computed. 

The coefficient s of the main singularity was allowed to float in the iteration since this gave 
better overall accuracy than if it were fixed according to (3.3). The penalty for allowing s to 
float in this way is a computed solution whose acceleration a t  the crest differs from the theoretical 
value for the Stokes corner flow of &g,or 1/4F2 in our notation (Longuet-Higgins & Fox 1977). 
However, the discrepancy is very localized and is shown in Appendix 2 not to have significant 
consequences. 

Before the above scheme was finally accepted many tests were made in an effort to improve the 
accuracy further, but without significant success. Early experiments on nodal point spacing 
suggested that uniform spacing could not easily be improved upon. The auxiliary crest node was 
initially placed midway between the first two existing nodes and then moved progressively 
nearer the crest. For N = 21 the position 8, = seemed to be near-best but the accuracy was 
found not to be critical over a modest range around this value. The position 19, = &IT was 
therefore used for many early runs although it was subsequently changed to Hicn, as explained 
in 5 7. The scheme appears reasonable in that the two terms sc,, ,, 8 and q5,, ,, ,are being used to 
define the crest flow, and the two nodes near the crest can be expected to have the dominant 
influence on these terms. The nodes are not, however, so close as to lose their independence of 
influence on the error vector, which would tend to make the matrix A singular and impair the 
iteration. 

Terms beyond gel,,, ,in Grant's series were tried but gave no obvious further improvement. 
If the coefficients were treated as unknowns and iterated, the convergence became ineffective 

I 8-2 
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because (see Appendix 1) the relevant exponents were 2.27, 3.07, etc., which were insufficiently 
independent of the basic terms a,C,. If on the other hand the coefficients were tied to the 
unknown q, in accordance with the ratios shown in table A 1, a negligible improvement resulted, 
even with eight further terms included. This result, although disappointing, is again reasonable 
because in seeking a result which is accurate in an overall average sense we must expect, as has 
already occurred with s, some compromising of exact relations applicable to a special point in 
the flow. This reasoning raised in turn the question of whether ,u = 1.469, Grant's theoretical 
index, was necessarily the best for our overall solution. Small variations were accordingly tried 
without dramatic effect and the conclusion was reached that no other value was obviously better. 

The point was thus reached, after many experiments attempting to draw a balance between 
theoretical guidance and empirical trial-and-error, when the following scheme was accepted for 
computing maximum waves: 

C = sc1,1,g+q~l, l , ,+aoCo++a,C1+.. .  +OAT-2Cl,L2 

with N +2 unknowns, a,s, q, a,, a,, ...,aN-, 

and N+2nodalpoints, O = B ,  and B=kn/N,  k = 0 , 1 , 2  ,...,N. 

The appropriate choice of N and the final choice of 8, will be discussed in 5 7. 
The two leading terms in this scheme may, from their definition in (3.7), be expanded as 

identical series in powers of T and R2/r. Hence, in view of (2.15), we may write as an equivalent 
scheme 

which corresponds to scheme (A) of $ 2  except for the infinite limit. When a solution has been 
computed according to (C) the total coefficient A, of 5, may be constructed from the relations 

The coefficients A, will be considered in the discussion of the accuracy of the solutions. 
We note that when (2.13) is applied a t  the crest node the result is 

N - 2  m 
aF2= s + q +  x a, = x A,, 

m = o  m = o  

a simple relation between a and either set of coefficients. 

7. R E S U L T S- C O M P U T E D  C O E F F I C I E N T S  

The algorithm described has successfully computed solutions for values of d ranging from 0.1 
to 10.0, giving maximum waves whose depth: wavelength ratio varies from 0.016 to 1.60. I t  will 
be shown that, to present computing accuracy, the upper limit of this range gives the solution for 
the deep-water wave while for d < 0.2 the solution corresponds to that of the solitary wave. 

For each value of d the choice of N was found to have an important influence not only on 
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accuracy but also on the ability of the algorithm to converge. The behaviour was also different on 
either side of the point d E 0.5. For d < 0.5, the shallow-water end of the range, more terms were 
needed for a given accuracy and it was found, surprisingly, that convergence was lost for any 
even value of N exceeding about 40. If N remained odd, however, its value could be freely 
increased with strong convergence and progressively greater accuracy. The limit for a reasonable 
run on the CDC 7600 was given by N = 79 which was used for the lowest values of d. The 
solutions gave a positive set of coefficients a,, a,, ...,a,-, decreasing monotonically to zero. 

When d > 0.5 accuracy no longer increased indefinitely with N but reached a peak a t  an 
optimum value ranging from 41 at d = 0.5 to 19 at  d = 10.0. Within this range both odd and 
even values of N gave satisfactory solutions although even values again caused difficulty at  the 
largest values of d. The reasons for these features of the method, which are discussed further in  
Williams (1981)) have not yet been investigated in detail since, once identified, they did not 
impede the production of the solutions required. 

Since at  the deep-water end of the range, where Nis small, the solutions could not be adjusted 
finely enough by varying N, attention was paid instead to 8,) the position of the second crest node. 
This led to the revised choice of5i5n as the best value, whichwas accordingly adopted throughout, 
in preference to the original value of &n, for the results to be presented. 

Table 1 gives the computed coefficients for 22 values within the range 0.2 < d < 10.0. They are 
tabulated to eight decimal places for d < 1.6 and to nine places for the remaining values. This 
ensures that residual errors are small compared with the intrinsic errors of the method which are 
responsible for the non-zero surface pressurep, and its integrals PI, P,, P,. Although not included 
in table 1, a may readily be computed from (6.3). 

T o  achieve the required accuracy generally between five and thirty iterations were needed, 
depending on the starting values available and the rate of convergence. The time per iteration on 
the CDC 7600 varied approximately as N2.84 and was about 5 seconds for N = 35. 

Since each computed result is an exact solution of a periodic flow with a small non-zero surface 
pressure @*, the magnitude of p, and its integrals provides the readiest explicit indication of 
accuracy. Table 2 shows, for each solution given in tablei, the values ofb, and s*  as defined in $2. 
For each solution s*  is less than 2 x 

The pressure integrals PI, P,, P, defined in (4.11)-(4.13) are less than 5 x 10-8 with the single 
exception of the solution for d = 2.5, where PI = lo-'. I t  is thus immediately clear from the error 
terms in the revised integral identities (4.16)-(4.19) that the solutions can be expected to satisfy 
Longuet-Higgins's original identities to about six-decimal accuracy. 

For most of the wave theories that have been comprehensively presented and tabulated for 
general use, s*  is at  least 2 x as has been demonstrated by Dean (1970) in a comparative 
study of numerous theories available at that time. Dean's comparisons included his own stream- 
function theory (Dean 1965) taken to fifth order, the Stokes third and fifth order, cnoidal first 
and second order, Airy, and McCowan theories. Similar values of s* were deduced by von 
Schwind & Reid (1972) from an analysis of their own results and those of Chappelear (1961). 
Although these theories do not in general cover waves nearing maximum amplitude, von 
Schwind & Reid have taken some solutions for high waves to 60th order while Dean (1968) has 
taken his stream-function theory to 34th order. 
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TABLE1 (continued) 
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All of the above methods, although differing widely in detail, fall essentially into category (A) 
of 5 2. The solutions consist of a finite series of terms, without specific allowance for the form of 
the crest of the maximum wave. Toillustrate the relative accuracy to be expected from maximum- 
amplitude solutions of forms (A), (B) and (C) the present solutions have been expressed as 
infinite series according to (6.1) and (6.2). Table 3 summarizes the contribution made to each 
total coefficient A,  by its components s,, q, and a,; the tabulatedvalues show, for jranging from 
3 to 7, the lowest value of m for which the relevant coefficient is less than 0.5 x 10-i. Each set of 
three tabulated values thus gives an indication, for methods of type (A), (B) and (C) respectively, 
of the number of terms needed to achieve a solution of broadlyj-decimal accuracy. 

TABLE2. ERRORQUANTITIES DERIVED FROM pB 
FOR THE SOLUTIONS GIVEN IN TABLE 1 

TABLE OF s,, q,, a, IN (6.1)) IN SELECTED SOLUTIONS3. MAGNITUDES (DEFINED 
(The table shows the value of m for which the relevant coefficient becomes less than 0.5 x 10-f.) 

I t  is at  once clear from table 3 that the present solutions of about six-decimal accuracy could 
have been achieved under method (A), if at  all, only with the use of several thousand terms. With 
method (B) several hundred terms would still have been needed except perhaps at  the deep-water 
extreme. The high accuracy achieved in the present work from a relatively modest number of 
terms is undoubtedly attributable to the second crest term in method (C) which does not appear 
to have been used before in a systematic series of solutions. 

Method (B) has been used in the past for several solutions of relatively low order for maximum 
waves. These include the solitary wave solutions ofYamada (1957 b) ,  who obtained s *  w 7 x 
from thirteen terms, and Lenau (1966), who obtained e* w 2 x from nine terms. Yamada 
(1957~) has also computed the deep-water wave to get e* w 4 x from thirteen terms. These 
values are reasonably consistent with table 3 although the solitary wave solutions are more 
accurate than might have been expected. 
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The only solutions for maximum waves whose accuracy can be expected to be comparable with 
the present work are those of Schwartz (1974) and Cokelet (1977) who both used a computer- 
aided expansion process taken to high order. Their formulations for general amplitudes are 
essentially of type (A) and to reach maximum amplitude they used an element of extrapolation 
or implied extrapolation. Schwartz extrapolated for the height of the maximum wave and built 
this assumed height into a formulation of type (B). Cokelet converted his computed finite series 
to a corresponding infinite series by using its Pad6 approximant. For deducing the expected 
accuracy from table 3 this may also be regarded as a solution of type (B). 

PRESENT RESULTS WITH THOSE OF SCHWARTZ (1977)(1974) AND COKELET 

Schwartz Cokelet this 
( 1974) (1977) paper 

0.141 18 0.141 055 0.141 063 
0.1380 0.1378 0.137801 
0.1285 0.1285 0.128495 
0.1145 0.11443 0.114439 
0.097 5 0.097 39 0.097 374 
0.079 1 0.079 10 0.079072 
0.061 4 0.060 90 0.060984 
0.045 0.043 74 0.043 975 

0.027 9 0.028258 
0.015 0.013667 

Schwartz worked generally to order 48 and, for the deep-water wave only, to order 117 while 
Cokelet worked throughout to order 110. Referring to table 3, we should apriori expect both sets 
ofresults for the maximum deep-water wave to be ofcomparable accuracy with the present work 
except that the latter might have an advantage in being free from extrapolation. At shallower 
depths we should expect the present results to show progressively greater accuracy than either 
Schwartz or Cokelet. To get a specific comparison the present program was rerun for the cases 
covered by them; values of the height: wavelength ratio H / L  obtained from the three methods 
are shown in table 4. The last case, d = -In 0.9 = 0.105, was not computed specifically but was 
deduced from the solution for d = 0.2. For the maximum deep-water wave the present result for 
H / L  agrees with Cokelet's to about five decimal places. Schwartz's result, being in effect the 
extrapolated value he needed to construct his solution, appears to be less accurate. At shallower 
depths a progressively greater discrepancy develops, as already suggested. 

The comparisons of this section suggest strongly that the present results show an important 
improvement in accuracy over previous work. This view will be consolidated in the next two 
sections, which will compare the results with previous studies made at the two ends of the range, 
the solitary wave and deep-water wave respectively. 

9. THES O L I T A R Y  W A V E  

The extreme case of the solitary wave is provided in our formulation by h = co,R = 1 and 
cannot be computed specifically because the computing domain degenerates to the circum- 
ference of the unit circle, However, when d = 0.2 the computed solution shows a velocity profile 
at the trough which is uniform between surface and bed to almost seven-decimal accuracy; this 
may therefore be regarded as a valid solution for any greater wavelength, including the maximum 

19 Vol. 302. A 
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solitary wave. Although solutions are obtainable down to d = 0.1, beyond which the iteration 
fails because a and a, begin to lose their independence, the accuracy attainable for a given N falls 
away because most of the nodal points are situated on the uniform part of the profile and do not 
contribute to defining the crest shape. We have therefore used d = 0.2 as the lower limit of the 
results presented in table 1 and have deduced the solitary wave solution from it, using the 
relations derived in the latter part of Ij 4. 

Table 1 gives the computed solution ford = 0.2, N = 79,0,= &n, for which$,, the maximum 
modulus ofp,, is 2.7 x By increasing N, $, could be reduced further but the computing 
requirements would become excessive before a significant reduction were achieved. Nevertheless, 
there is a strong incentive to determine the best possible solution for the maximum solitary wave 
since the shallow-water end ofthe range poses the greatest problemsfor most methods. An attempt 
has therefore been made to extrapolate some of the results to their limiting values for zero 8,. 

X 
0.83322 

0.83319 
0 10 20 30 

10% 
FIGURE4. The variation of iBwith height:trough depth ratio H/h, for shallow-watersolutions; the extrapolation 

to $s = 0 gives an improved estimate for H', the height: depth ratio of the maximum solitary wave. 

A parameter ofprime interest is the ratio oflimiting height to undisturbed depth, H/h,  = H'. 
For our long periodic wave, with d = 0.2, h,  is approximated by the trough depth ht so that 

I t  was found from a series of computations for d = 0.2 a t  increasing values of N up to 79 that 
H/ht varied almost linearly with],. Figure 4 shows the results from two such serieswith Or = z$sn 
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and ?iiBn respectively. As N increases the results approach straight lines of different slope but 
with an almost identical intercept at], = 0. 

As an additional check that d = 0.20 gives a valid representation of the solitary wave two 
further sets of results for d = 0.19 and 0.18, with 8, = &n, are included in figure 4. All three sets 
for 8, = d i n  are seen to converge to a common line with an intercept at  8,  = 0 slightly below 
H/ht = 0.833 197. The results for 8, = &n show an intercept which is a little lower, but greater 
than H/ht = 0.833 196. From the results summarized in figure 4 we thus deduce that for the 
maximum solitary wave H' = 0.833 197 with an uncertainty ofabout one unit in the sixth decimal 
place. 

TABLE5. PROPERTIES OF THE MAXIMUM SOLITARY WAVE AND 

COMPARISON WITH PREVIOUS RESULTS 

(Values are normalized such that gravity and undisturbed depth are each taken as unity.) 

this paper 
Longuet-Higgins r - ~ - - - -7 

& Fenton computed extrapolated 
(1974) Fox (1977) from d = 0.2 = 0 

height/undisturbed 0.827 0.833 2 0.833 200 0.833 197 
depth, H' 

Froude number 1.286 1.2909 1.290891 1.290889 
Mm 1.897 1.968 1.970323 1.970319 
o m  1.653 1.713 1.714571 1.714569 
I m  2.440 2.540 2.643474 2.643 463 
T m  0.605 2 0.533 9 0.536012 0.535006 
v m  0.413 0.4369 0.437 675 0.437 670 

The integral properties of the maximum solitary wave have been calculated from the solution 
for d = 0.2 in table 1, according to the method set out in § 4, and reduced to Longuet-Higgins's 
normalized form. The left-hand sides of (4.26)-(4.28) (with h, = 2F2 = 1) all have a modulus 
not exceeding 2 x lo-$, thus confirming again that the solution is, to the above-specified accuracy, 
a valid representation of the solitary wave. The integral values, given with H' in the third column 
of table 5, have also been extrapolated from a series of runs to their estimated true values i.n the 
manner described for H'. Additional guidance in the extrapolation process was obtained from 
the need for the final values to satisfy (4.26)-(4.28). The extrapolated values are given in the 
fourth column of table 5. 

For comparison with these values we have predictions by Longuet-Higgins & Fenton (1974) 
and Fox (1977) which are shown in the first and second co1umns:of table 5. Our results agree with 
those of Fox to between three and five significant figures but the discrepancy with Longuet- 
Higgins & Fenton's results is greater. Both methods used series-expansion techniques; Fox 
assumed the form of the maximum crest and Longuet-Higgins & Fenton used Pad6 approximants 
to generate the infinite series needed for the maximum wave. 

A further independent estimate of H' is provided by Witting (1975) who has provisionally 
reported H' = 0.8332 from an integral equation solution based on the method ofYamada (1957 b ) .  

Byatt-Smith & Longuet-Higgins (1976) have developed an integral equation method for 
steep solitary waves somewhat short of the highest. For the highest waves computed by them they 
also found a discrepancy with the results obtained from Pad6 approximants by Longuet-Higgins & 
Fenton (1974). The present result for the Froude number of the highest solitary wave, 1.2909, 
if plotted on figure 1 of their paper, is seen to be consistent with their integral equation results. 

I 9-2 
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To  summarize, the present computation of the maximum solitary wave has been shown to 
have high inherent accuracy, demonstrated by the small values ofp,, PI,P2,P,and its consistency 
with equations (4.26)-(4.28). I t  is also consistent with several previous accurate computations of 
maximum and near-maximum waves, with the single exception of the results of Longuet-Higgins 
& Fenton (1974), based on Pad6 approximants. I t  is therefore believed to be an authentic solution 
whose accuracy, verging on six decimal places, has not previously been achieved. 

The infinite-depth case corresponds to d = co,R = 0 in our formulation but again cannot be 
computed directly because the wave height tends to zero as a consequence of distances being 
normalized with respect to a vertical dimension. However, suppose that d is large enough for R2 
to be neglected, to computing accuracy. The terms involving R ~ / T  in (2.15) and (3.7) will then 
vanish, except at depths sufficient to reduce T to order R, to make c,,, and c,, .,,sensibly inde- 
pendent ofR. Since also R = exp (-d),  it follows from (2.5) that F2may be taken as lld, which 
allows the free-surface condition (2.13) to be written in tlie form 

COMPARISON WITH PREVIOUS RESULTS 

(Values are normalized such that gravity = 1 and wavelength = 257.) 

Longuet- Longuet-
Higgins Cokelet Higgins & 
(1975) (1977) Fox (1978) this paper 

height/wavelength 0.141 1 
phase velocity 1.092 3 
I 0.070 1 
T 0.0383 
V 0.034 6 

This implies that, at the surface, the function a + yd is now independent ofd. Within the range ofd 
for which F2and R satisfy the above conditions the coefficients of the solution are thus con- 
strained by 

a -a,d -+ constant, 

a, -t constant, (10.2) 

a,d-tconstant, m = 1,2,...,N-2. 1 

We have computed solutions as far as d = 10, for which R2 = 2 x and F2 differs from l l d  by 
only 4 x 10-lo. We may therefore regard the coefficients of this solution as applicable also to any 
greater depth, including the infinite-depth wave. 

The integral parameters computed for d = 10 may be compared with predictions for the 
infinite-depth maximum wave by Longuet-Higgins (1975), Cokelet (1977) and Longuet-Higgins 
& Fox (1978). As with the solitary wave these were all derived from series-expansion methods 
covering a range of wave amplitudes. Results for the maximum wave were obtained in the first 
two papers by the use of Pad6 approximants and in the third by an assumed form for the crest. 
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The present results have been renormalized according to Longuet-Higgins's scheme, with 
wavelength rescaled to 2n: and gravity to unity. All four sets are given in table 6; there is very 
good agreement throughout with evidence of progressively increasing accuracy. The only 
minor inconsistency concerns the height: wavelength ratio, for which Cokelet's six-decimal 
estimate differs from ours by eight units in the last place. Table 2 shows that our solution gives 
js  = 12 x which implies a corresponding surface displacement error of 2.5 x 10-6 and an 
error in the height: wavelength ratio of order 2 x Although it is not possible to extrapolate 
to zero!, by varying N, as was done with the solitary wave solutions, it would be surprising ifour 
estimate of 0.141 063 were in error by significantly more than two units in the last place. Similarly 
the errors in the integral identities (4.17) and (4.18) (about 2 x in normalized form) are 
small enough to suggest that the six-decimal results quoted in table 6 are also accurate to within 
one or two units in the last place.? 

Angular momentum 

In  a recent paper Longuet-Higgins (1980)discusses the angular momentum of gravity 
waves and defines the 'level of action' of a wavetrain as the level about which the long-term 
Langrangian-mean angular momentum vanishes. For the deep-water wave Longuet-Higgins 
has calculated the level of action over the full range of amplitudes. At maximum amplitude he 
shows that the level is very close to the crest and raises the question of whether a more accurate 
calculation would show it to be exactly at  the crest. The present results provide an opportunity of 
repeating the calculation in the hope of improving the accuracy. The infinite series of Fourier 
coefficients A,, m = 1,2, ...,oo, of our solution can be obtained from(6.2) and the computed 
coefficients given in table 1. The integral parameters are available from table 6. We can therefore 
repeat the numerical procedure described in 5 9 of Longuet-Higgins's paper and derive revised 
values for the last line of his tables 1 and 2. 

There is no difficulty in incorporating as many terms as required in the summations to get 
results to, apparently, high accuracy. Thus, in Longuet-Higgins's notation (in which y is taken 
as positive upwards relative to mean level, wavelength is scaled to 27c and gravity to unity): 

yma, = 0.596541 (the level of the crest), 

AE = 0.008 135 (Eulerian-mean angular momentum), 

3, = 0.042 612 (long-term Lagrangian-mean angular momentum), 

ya = 0.60 777 (the level of action). 

I t  must be remembered, however, that the coefficients A, have incorporated a coefficient s that 
is too high by 0.19 %, as pointed out in tj 6 and Appendix 2. I t  is difficult to be sure of the extent 
to which this will influence the results; some experimental computations on trial perturbations 
of the coefficients suggest that the corrections to be applied to the last five of the above quantities 
are oforder +0.0005, -0.0003, +0.0004, -0.0001, -0.0012 respectively. Consequently, ya can 
probably be specified to three decimals as 0.607. This result indicates that the level of action is 
apparently slightly above the level of the crest, yma,, and not below it as suggested by Longuet- 
Higgins's first calculation. 

t The expected accuracy is corroborated by the recent work of Olfe & Rottman (1980);their monotonically 
inc~easing sequences of estimates for the quantities of table 6 have final values below ours by 4 x 10-6 or less. 
Their results were obtained in the course of calculating classes of limiting non-uniform wavetrains, in which not 
all crests have the same form. 
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The coefficients given in table 1 are sufficient to determine any required property of the flow. 
This section summarizes the formulae needed to do this and continues with detailed tabulations 
of sufficient cases to make the results of the work readily available for application and further 
study. The flow is throughout regarded as being in its steady state with a stationary wave profile. 
A relevant phase velocity may then be superimposed as required. 

The computed coefficients for scheme (C)together with the definitions ofcm, A, ,, equation (3.7) ,  
and z,, equation (2.10), define z = z0+ f; as a function of x = i(2/d) ln r .  Velocity is then given 
by the complex conjugate of 

1/ (1 + &id7 d{/d~),  . (1 1.1) 

and acceleration by the complex conjugate of 

Partial derivatives of 6, 91 may be obtained from C according to the relations 

dC a7 .at a t  \7-=-- 1- = p - + i p 2 ,
d7 ae ae ap ap 

d2{ a2g
72-d72= p2- + ipsa2')- )

ap2 ap2' 
d2f; df; a2g a2?j a2q a2E72-+7- = --- i- =p--ip-.
d72 d7 ae2 ao2 apse apao J 

The pressure may be deduced from Bernoulli's equation as 

An important field variable is t(x), defined as the time taken by a particle in a given position to 
travel from a starting point beneath the wave crest. Particles aligned on any vertical section in the 
steady flow will in general have different travel times from the wave crest and it is this fact that 
introduces mass-transport effects when a celerity is superimposed. The time t is given by 

t (p, 8) = (2/d) 1' 1 1+ &id7 df;/d7 / do, 
0 

the integral being evaluated along a streamline, p = constant. For a small-amplitude wave, with 
components of the form cm, t may be found by summation, by exploiting the orthogonal pro- 
perties of cos mo, sin mo, but for the present maximum waves a numerical quadrature is needed, 
which makes t the most difficult field variable to compute. For the important portion of the 
surface streamline near the crest a ten-term series expansion in powers of 0 is needed to ensure 
sufficient accuracy; the details of this expansion are set out in Appendix 2. This Appendix also 
evaluates the error in t arising from the incorrect crest acceleration. 

Of the overall wave properties the wavelength is given simply by 

while the mean depth is best found from (4.19) in the form 
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The quantities rrb and PImust be found by quadrature but, being small, they can be found 
to the required accuracy with a relatively coarse interval compared with that needed for a direct 
quadrature for ly,dx. For similar reasons S,, is computed from (4.16) rather than from its 
original definition, (4.8). 

The celerity c = AIL, already defined, ensures that the space-mean bed velocity over a wave- 
length will be zero. A second important celerity is 

at  which speed of propagation the net mass transport passing any vertical section during a wave 
period will be zero. 

Table 7 gives, for each of the 22 cases covered by table 1, a list of the overall properties of the 
wave motion. Detailed tables of field variables to four decimal places are given for five of these 
cases in tables 8-12. Table 8 gives the solution for d = 0.2; this is also applicable to any greater 
wavelength, including the solitary wave, if the appropriate length of uniform flow is added at  the 
trough and the obvious consequential changes are made. Tables 9-1 1 apply to d = 0.5, 1.0, 2.0 
respectively. Table 12, for d = 10.0, is also applicable to any greater depth, including the limiting 
deep-water wave, provided the small corrections indicated are made for $ = -2, to remove the 
influence of the bed. For $ < -2 the deep-water wave is given, to the accuracy of table 12, by a 
uniform flow. 

Tables 8-12 give, besides a general presentation of the waveform, a more detailed coverage of 
the streamlines near to the surface. This allows the strong gradient of drift velocity found in a 
maximum wave to be properly defined, as will be shown in the next section. 

To  facilitate the rescaling of the tables to alternative normalizing systems each set of results 
shows the relevant value of gravity ( =  1/2F2) and of key dimensions of the waveform. 

I t  is necessary to clarify the entries for acceleration at the crest in tables 8-12. As shown by 
Longuet-Higgins & Fox (1977)) the acceleration in the Stokes corner flow is *g directed always 
away from the crest so that at the crest itself the acceleration is not unique but takes a limiting 
value dependent on the path by which the crest is approached. We have tabulated the limiting 
values applicable to the vertical beneath the crest (4 = 0)) the horizontal component then being 
zero. The vertical component, if multiplied by q-and 4, gives respectively the horizontal and 
vertical limiting accelerations if the crest is approached along the surface ($ = 0). These com- 
puted crest accelerations all differ from the correct values for the Stokes corner flow on account 
of the method used, as discussed in fj6 and Appendix 2. The correct limiting vertical acceleration 
on 4 = 0 is 4g = 1/4F2, with the remaining limits in proportion. 

12. P A R T I C L EP A T H S  A N D  D R I F T  P R O F I L E S  

To  illustrate the use of the results to determine details of the wave motion we now calculate 
some specimen particle paths and drift profiles. At the same time we shall compare the results with 
some recent estimates by Longuet-Higgins (1979) based on very simple approximations for the 
solitary wave and the deep-water wave. 

Particle paths in the steady motion follow from successive sets ofx, y, t coordinates selected from 
the tables. Any general celerity c' may be superimposed, in which case y and t remain unchanged 
but x must be replaced by Ct -x. For the results to be presented we have chosen C = c = AIL. 



TABLE7. 

d 

gravity 
mean depth 
wavelength 
wave height 
total head relative to  bed 
mean depthlwavelength 
heightlmean depth 
celerity (zero mean velocity) 
celerity (zero mass transport) 
depth parameter 
height parameter 
mean momen tum 
mean kinetic energy 
mean potential energy 
radiation stress 
mean energy flux 
bed velocity variance 
trough velocity variance 

d 0.40 

1 /2F2 0.526386 
h 1.85008 
L 28.250 9 
H 1.381 10 
2 +ctF2 3.03996 
h / L  0.065487 
H I h  0.74651 
c 1.11203 
c' 1.081 04 
2h(Fc/L)2 0.005446 
~ H ( F C / L ) ~  0.004065 
I 0.057 348 
T 0.031 886 
V 0.027 506 
sm 0.074739 
E 0.062 181 
4 0.016060 
g! 0.000000 

d 0.90 

1 /2F2 0.628230 
h 1.93490 
L 12.99295 
H 1.24980 
2+aF2 2.867212 
h l L  0.148 920 
H / h  0.64593 
c 1.074632 
c' 1.033 64 
2h(Fc/L)2 0.021 069 
~ H ( F c / L ) ~  0.013609 
I 0.079310 
T 0.042615 
V 0.038 104 
SJz 0.088216 
E 0.073379 
crt 0.016573 
fl: 0.000 0.57 

J. M. W I L L I A M S  


VES DEFINED IN TABLE 1 

0.25 

0.510374 
1.80021 

$4.334 
1.39598 
3.071 43 
0.040 606 
0.77545 
1.13379 
1.11098 
0.002 307 
0.001 789 
0.041 057 
0.023 275 
0.019725 
0.055 735 
0.047 052 
0.012115 
0.000000 

0.60 

0.558 608 
1.897 25 

19.18448 
1.34574 
2.980 386 
0.098895 
0.70931 
1.091 713 
1.054 16 
0.010999 
0.007801 
0.071 256 
0.038 896 
0.034 190 
0.087 648 
0.072 294 
0.018255 
0.000002 

1.4 

0.790 646 
1.94865 
8.433 13 
1.032 52 
2.670869 
0.231 071 
0.529 86 
1.06437 
1.02635 
0.039261 
0.020803 
0.074089 
0.039429 
0.035569 
0.068841 
0.060013 
0.009 151 
0.000637 

0.30 

0.514911 
1.81830 

37.2060 
1.391 83 
3.062 38 
0.048 871 
0.76546 
1.12584 
1.09993 
0.003 233 
0.002475 
0.047 109 
0.026518 
0.022614 
0.063091 
0.052 963 
0.013672 
0.000000 

0.70 

0.579 118 
1.91362 

16.55251 
1.31924 
2.944 908 
0.115609 
0.68940 
1.084 546 
1.045 14 
0.014 186 
0.009 780 
0.075405 
0.040890 
0.036 200 
0.089861 
0.074 134 
0.018238 
0.000007 

1.6 

0.867991 
1.94709 
7.389 19 
0.947 79 
2.601 706 
0.263 505 
0.486 77 
1.06290 
1.027 17 
0.046416 
0.022 594 
0.069565 
0.036 970 
0.033 375 
0.060 690 
0.054043 
0.006 643 
0.001 024 
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TABLE7 (continued) 

2.5 3.5 5.0 

1.266959 1.753194 2.500227 
1.93243 1.92010 1.90990 
4.737 92 3.38508 2.36964 
0.657 89 0.47649 0.334233 
2.377 12 2.240 99 2.13487 
0.407 87 0.567 23 0.80599 
0.340 44 0.248 16 0.17500 
1.06092 1.06065 1.060614 
1.034 96 1.041 61 1.047 17 
0.076477 0.107 52 0.15303 
0.026036 0.026683 0.026 781 
0.050 157 0.036563 0.025 672 
0.026606 0.019390 0.013614 
0.024023 0.017 505 0.012290 
0.036 790 0.025 381 0.017 602 
0.035031 0.024 746 0.017 256 
0.001 259 0.000 174 0.000009 
0.002649 0.003 393 0.003 369 

Figure Ei shows the particle paths calculated in this way for the five cases presented in detail in 
tables 8-12. The plots have been scaled to apply to wave motions of a common mean depth h. 
Half only of each particle orbit has been plotted, the remaining half being a mirror image. The 
total advance of a particle after a complete orbit is twice the horizontal distance between the two 
ends of the relevant semi-orbit. 

For d = 0.2 a set of alternative orbits is plotted to show the particle movement in the solitary 
wave. These are obtained from the computed steady motion by superimposing the uniform 
trough velocity, rather than c, thereby bringing the extremes of the wave motion to rest. The 
particle motion is now entirely forward during the passage of the wave crest with no compensating 
return movement. The extremes of these trajectories are linked in figure 5 to give a curve relating 
the forward displacement of a particle to its depth in the undisturbed fluid. 

Longuet-Higgins (1979)has recently estimated the path of a surface particle in a solitary wave 
using his own previously derived simple approximation to the wave profile (Longuet-Higgins 
1974).His computed path is plotted for comparison in figure 5 and shows very good agreement. 
The present results give a trajectory whose length in relation to the undisturbed water depth is 
4.246 compared with Longuet-Higgins's estimate of 4.229. 

In  the same paper Longuet-Higgins (1979)derived the path of a surface particle in the maxi- 
mum deep-water wave using the computations of Yamada ( 1 9 5 7 ~ )and Schwartz (1974).This 
profile, although not plotted in figure 5, is indistinguishable from the present result. 

An effective drift velocity for a fluid particle is given by the ratio of the distance moved forward 
to the time taken in completing one cycle of the wave motion. Thus for a particular celerity C and 
a particular streamline, or value of p in the T-plane, the drift velocity U ( p )is given by 

The drift profiles corresponding to C = c are plotted as functions of mean depth for the same five 
cases in figure 5. They are scaled as before to a common total mean depth h and also to a common 
gravity (1/2F2).The deep-water case may also be compared with the profile obtained from a 
simple approach l ~ y1,onguct-Higgins (1979)who transformed six successive maximum wave 
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TABLE AND VELOCITY FOR d8a. DISPLACEMENT = 0.2 
(ALSO APPLICABLE TO THE SOLITARY WAVE) 

horizontal displacement 

11.6674 14.3063 
11.6673 14.3063 
11.6671 14.3063 
11.6670 14.3062 
11.6669 14.3062 
11.6668 14.3062 
11.6667 14.3062 
11.6666 14.3062 
11.6666 14.3062 
11.6665 14.3062 
11.6665 14.3062 

vertical displacement, y 
1.3058 1.3070 1.3073 
1.4739 1.4750 1.4752 
1.6419 1.6430 1.6432 
1.8100 1.8110 1.8112 
1.9781 1.9790 1.9791 
2.1462 2.1469 2.1471 
2.3143 2.3149 2.3150 
2.4825 2.4829 2.4830 
2.6506 2.6509 2.6510 
2.8187 2.8189 2.8189 
2.9869 2.9869 2.9869 

horizontal velocity, u 
1.1902 1.1907 1.1908 
1.1900 1.1907 1.1908 
1.1899 1.1906 1.1908 
1.1898 1.1906 1.1908 
1.1897 1.1906 1.1908 
1.1897 1.1906 1.1908 
1.1896 1.1906 1.1908 
1.1896 1.1906 1.1908 
1.1895 1.1906 1.1908 
1.1895 1.1906 1.1908 
1.1895 1.1906 1.1908 

vertical velocit)~, v 

0,001 1 0.0002 

0.0011 0.0002 

0.0010 0.0002 

0.0009 0.0002 

0.0008 0.0001 

0.0007 0.0001 

0.0005 0.0001 

0.0004 0.0001 

0.0003 0.0001 

0.0001 0.0000 

0.0000 0.0000 
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TABLE8 b. TIME,PRESSURE AND ACCELERATION FOR d = 

12.7916 
11.5017 
11.3041 
11.1988 
11.1329 
11.0886 
11.0681 
11.0371 
11.0235 
11.0157 
11.0132 

time, t 
15.0082 
13.7186 
13.5212 
13.4161 
13.3503 
13.3062 
13.2758 
13.2549 
13.2413 
13.2336 
13.2311 

horizontal acceleration 

0.0005 
0.0006 
0.0006 
0.0007 
0.0008 
0.0008 
0.0009 
0.0009 
0.0009 
0.0010 
0.0010 

0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

vertical acceleration 

-0.0008 
-0.0008 
-0.0007 
-0.0007 
-0.0006 
-0.0005 
-0.0004 
-0.0003 
-0.0002 
-0.0001 

0.0000 

-0.0002 
-0.0002 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0,0001 

0.0000 
0.0000 
0.0000 
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horizontal displace 

0.2269 0.2983 
0.2142 0.2872 
0.2028 0.2768 
0.1927 0.2671 
0.1839 0.2583 
0.1762 0.2501 
0.1695 0.2427 
0.1635 0.2359 
0.1583 0.2297 
0.1537 0.2241 
0.1495 0.2189 

vertic:al displace 

0.0360 0.0749 
0.0607 0.0965 
0.0858 0.1185 
0.1112 0.1406 
0.1365 0.1629 
0.1615 0.1853 
0.1862 0.2075 
0.2106 0.2297 
0.2344 0.2517 
0.2578 0.2734 
0.2808 0.2949 

vertical veloc 

0.1734 0.1950 
0.1571 0.1824 
0.1422 0.1703 
0.1289 0.1591 
0.1173 0.1487 
0.1072 0.1392 
0.0985 0.1305 
0.0910 0.1226 
0.0844 0.1154 
0.0787 0.1089 
0.0737 0.1030 

ment, x 

0.4219 
0.4126 
0.4036 
0.3951 
0.3869 
0.3791 
0.3716 
0.3646 
0.3579 
0.3516 
0.3456 
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time, t 
1.6491 
1.0769 
0.9340 
0.8372 
0.7634 
0.7040 
0.6548 
0.6131 
0.5774 
0.5464 
0.5192 

pressure, p 
0.0000 0.0000 0.0000 
0.0123 0.01 11 0.0097 
0.0238 0.0217 0.0192 
0.0346 0.0319 0.0284 
0.0447 0.0416 0.0375 
0.0541 0.0509 0.0463 
0.0630 0.0599 0.0550 
0.0715 0.0685 0.0634 
0.0797 0.0768 0.0716 
0.0875 0.0848 0.0797 
0.0952 0.0926 0.0875 

horizontal acceleration 

0.2199 0.2198 0.2191 
0.2041 0.2091 0.2125 
0.1871 0.1978 0.2056 
0.1702 0.1862 0.1985 
0.1540 0.1746 0.1913 
0.1393 0.1633 0.1841 
0.1262 0.1526 0.1769 
0.1147 0.1425 0.1698 
0.1046 0.1331 0.1628 
0.0959 0.1245 0.1561 
0.0882 0.1166 0.1496 

vertical acceleral 

0.1063 0.0986 
0.1274 0.1128 
0.1455 0.1256 
0.1599 0.1369 
0.1709 0.1465 
0.1788 0.1544 
0.1843 0.1608 
0.1880 0.1659 
0.1902 0.1698 
0.1914 0.1726 
0.1917 0.1746 

TABLE DEPTH AS A FUNCTION OF $b FOR d 0.28e. MEAN = 
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rizontal displacement, 
5.1763 6.2305 
5.1683 6.2264 
5.1608 6.2225 
5.1541 6.2191 
5.1480 6.2150 
5.1428 6.2133 
5.1385 6.2110 
5.1351 6.2092 
5.1326 6.2080 
5.1311 6.2072 
5.1306 6.2069 

vertical displacement, y 

1.2022 1.2403 1.2599 
1.3717 1.4073 1.4256 
1.5420 1.5747 1.591G 
1.7131 1.7425 1.7577 
1.8848 1.9106 1.9240 
2.0571 2.0791 2.0904 
2.2299 2.2478 2.2570 
2.4031 2.4167 2.4237 
2.5767 2.5858 2.5905 
2.7504 2.7550 2.7574 
2.9242 2.9242 2.9242 

horizon tal velocity, 
1.1802 1.1985 
1.1747 1.1955 
1.1697 1.1927 
1.1652 1.1902 
1.1613 1.1880 
1.1580 1.1861 
1.1553 1.1845 
1.1531 1.1833 
1.1516 1.1824 
1.1507 1.1819 
1.1504 1.1817 

vertical velocity, v 

0.0579 0.0307 
0.0535 0.0285 
0.0487 0.0261 
0.0435 0.0234 
0.0379 0.0205 
0.0321 0.0174 
0.0259 0.0141 
0.0196 0.0107 
0.0132 0.0072 
0.0066 0.0036 
0.0000 0.0000 
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me, t 

7.9656 
6.7245 
6.5293 
6.4230 
6.3550 
6.3084 
6.2756 
6.2527 
6.2376 
6.2290 
6.2261 

pressure, p 

0.0000 0.0000 

0.0984 0.0940 

0.1966 0.1880 

0.2946 0.2818 

0.3923 0.3755 

0.4895 0.4689 

0.5864 0.5621 

0.6827 0.6550 

0.7784 0.7475 

0.8735 0.8397 

0.9680 0.9315 


horizontal acceleration 
0.0285 0.0144 
0.0317 0.0165 
0.0344 0.0183 
0.0367 0.0199 
0.0387 0.0213 
0.0403 0.0225 
0.0416 0.0235 
0.0426 0.0242 
0.0432 0.0248 
0.0436 0.0251 
0.0438 0.0252 

vertical acceleratic 

-0.0400 -0.0226 
-0.0363 -0.0208 
-0.0324 -0.0188 
-0.0284 -0.0167 
-0.0244 -0.0145 
-0.0203 -0.0122 
-0.0163 -0.0099 
-0.0122 -0.0074 
-0.0081 -0.0050 
-0.0041 -0.0025 

0.0000 0.0000 

0.0073 
0.0085 
0.0096 
0.0105 
0.0114 
0.0121 
0.0127 
0.0131 
0.0135 
0.0137 
0.0137 

FOR d = 

-0.35 

9.6908 
8.4547 
8.2642 
8.1621 
8.0978 
8.0545 
8.0244 
8.0037 
7.9902 
7.9824 
7.9799 

0.0000 
0.0903 
0.1807 
0.2709 
0.3612 
0.4514 
0.5415 
0.6315 
0.7214 
0.8112 
0.9009 

0.0037 
0.0043 
0.0049 
0.0054 
0.0059 
0.0063 
0.0066 
0.0069 
0.0070 
0.0072 
0.0072 

-0.0065 
-0.0061 
-0.0056 
-0.0050 
-0.0044 
-0.0037 
-0.0030 
-0.0023 
-0.0015 
-0.0008 

0.0000 
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TABLE DISPLACEMENT = 0.59 ~ .  AND VELOCITY NEAR THE SURFACE FOR d 

horizont nent, x 

0.1200 0.2220 
0.1042 0.2096 
0.0926 0.1984 
0.0842 0.1886 
0.0780 0.1799 
0.0733 0.1724 
0.0695 0.1658 
0.0664 0.1600 
0.0638 0.1549 
0.0616 0.1503 
0.0597 0.1403 

vertic:a1 displacement, y 

-0.0196 0.0015 0.0372 
0.0133 0.0301 0.0613 
0.0463 0.0592 0.0859 
0.0783 0.0882 0.1107 
0.1087 0.1164 0.1355 
0.1376 0.1438 0.1600 
0.1652 0.1703 0.1842 
0.1917 0.1960 0.2079 
0.2172 0.2209 0.2313 
0.2419 0.2450 0.2542 
0.2658 0.2685 0.2767 

horizc~ntal  velocity, u 
0.2372 0.2718 0.3228 
0.2575 0.2862 0.3320 
0.2813 0.3031 0.3427 
0.3048 0.3211 0.3543 
0.3265 0.3388 0.3664 
0.3463 0.3557 0.3787 
0.3642 0.3717 0.3909 
0.3805 0.3866 0.4028 
0.3955 0.4005 0.4144 
0.4093 0.4135 0.4255 
0.4222 0.4258 0.4362 

vertical veloci 


0.1338 0.1518 

0.1053 0.1291 

0.0842 0.1101 

0.0695 0.0950 

0.0592 0.0831 

0.0516 0.0737 

0.0458 0.0662 

0.0412 0.0601 

0.0376 0.0551 

0.0345 0.0508 

0.0320 0.0472 
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time, t 

1.1599 
0.6139 
0.4864 
0.4079 
0.3538 
0.3142 
0.2840 
0.2602 
0.2409 
0.2249 
0.2114 

pressure, p 
0.0000 0.0000 
0.0147 0.0129 
0.0277 0.0249 
0.0393 0.0361 
0.0498 0.0466 
0.0595 0.0565 
0.0686 0.0658 
0.0772 0.0747 
0.0854 0.0832 
0.0934 0.0914 
0.1012 0.0994 

horizontal accele~ ration 
0.2348 0.2348 0.2348 
0.1922 0.2067 0.2180 
0.1509 0.1770 0.1999 
0.1194 0.1502 0.18-1 7 
0.0968 0.1279 0.1645 
0.0806 0.1101 0.1488 
0.0686 0.0959 0.1348 
0.0595 0.0845 0.1225 
0.0524 0.0753 0.1117 
0.0468 0.0677 0.1024 
0.0421 0.0614 0.0942 

:a1 acceleration 

0.1207 0.1134 
0.1573 0.1360 
0.1842 0.1553 
0.2015 0.1707 
0.2116 0.1824 
0.2171 0.1909 
0.2197 0.1968 
0.2205 0.2007 
0.2201 0.2031 
0.2191 0.2043 
0.2175 0.2047 

TABLE9e.  MEANDEPTH AS A FUNCTION OF $ FOR d = 0.5 
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horizontal displacement, 

2.8015 3.3331 
2.7737 3.3135 
2.7482 3.2955 
2.7253 3.2792 
2.7052 3.2647 
2.6880 3.2523 
2.6739 3.2420 
2.6629 3.2339 
2.6550 3.2281 
2.6503 3.2246 
2.6487 3.2235 

iertical displacement, y 
0.9369 1.0134 1.0667 
1.1104 1.1813 1.2310 
1.2868 1.3514 1.3969 
1.4658 1.5235 1.5642 
1.6471 1.6972 1.7328 
1.8301 1.8723 1.9025 
2.0147 2.0487 2.0732 
2.2005 2.2261 2.2446 
2.3870 2.4042 2.4166 
2.5742 2.5828 2.5890 
2.7616 2.7616 2.7616 

horizontal velocity, 

1.1312 1.1814 
1.1166 1.1685 
1.1044 1.1572 
1.0944 1.1476 
1.0862 1.1394 
1.0798 1.1327 
1.0749 1.1274 
1.0713 1.1233 
1.0688 1.1205 
1.0674 1.1188 
1.0669 1.1182 

vertical relocity, u 

0.1901 0.1436 
0.1705 0.1303 
0.1506 0.1165 
0.1308 0.1023 
0.1112 0.0878 
0.0919 0.0732 
0.0729 0.0586 
0.0543 0.0439 
0.0360 0.0293 
0.0180 0.0146 
0.0000 0.0000 
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TABLE PRESSURE AND ACCELERATION10b. TIME, 

horizontal 

0.1278 
0.1263 
0.1235 
0.1199 
0.1161 
0.1124 
0.1089 
0.1061 
0.1039 
0.1026 
0.1021 

accelerat 

0.0916 
0.0938 
0.0950 
0.0952 
0.0949 
0.0942 
0.0934 
0.0927 
0.0920 
0.0916 
0.0915 

vertical accelerati~ 

-0.1040 
-0.0852 
-0.0690 
-0.0550 
-0.0431 
-0.0331 
-0.0246 
-0.0174 
-0.0111 
-0.0054 

0.0000 

-0.0972 
-0.0833 
-0.0706 
-0.0589 
-0.0484 
-0.0387 
-0.0299 
-0.0218 
-0.0142 
-0.0070 

0.0000 

FOR d = 

-0.35 

5.8349 
4.7378 
4.5600 
4.4609 
4.3961 
4.3507 
4.3183 
4.2954 
4.2800 
4.2712 
4.2683 

0.0000 
0.1177 
0.2351 
0.3520 
0.4683 
0.5840 
0.6990 
0.8132 
0.9264 
1.0386 
1.1496 

0.0422 
0.0455 
0.0482 
0.0504 
0.0520 
0.0533 
0.0543 
0.0550 
0.0554 
0.0557 
0.0558 

-0.0720 
-0.0646 
-0.0571 
-0.0496 
-0.0423 
-0.0350 
-0.0278 
-0.0208 
-0.0138 
-0.0069 

0.0000 
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horizont:a1 displace 

0.0707 0.0928 
0.0544 0.0772 
0.0458 0.0669 
0.0407 0.0602 
0.0373 0.0554 
0.0348 0.0519 
0.0329 0.0491 
0.03 13 0.0469 

0.0301 0.0450 

0.0290 0.0434 

0.0281 0.0421 


vertical displacement, y 

-0.0246 -0.0121 0.0093 
0.0141 0.0218 0.0378 
0.0507 0.0854 0.0668 
0.0839 0.0869 0.0952 
0.1142 0.1164 0.1227 
0.1425 0.1442 0.1491 
0.1692 0.1706 0.1745 
0.1946 0.1957 0.1990 
0.2189 0.2199 0.2226 
0.2424 0.2431 0.2455 
0.2650 0.2657 0.2678 

horizontal velocity, u 

0.2006 0.2298 0.2727 
0.2389 0.2573 0.2906 
0.2781 0.2885 0.3118 
0.3110 0.3174 0.3336 
0.3386 0.3428 0.3545 
0.3623 0.3653 0.3741 
0.3830 0.3853 0.3921 
0.4016 0.4034 0.4088 
0.4184 0.4198 0.4242 
0.4337 0.4349 0.4386 
0.4478 0.4488 0.4520 

vertical veloci 


0.1143 0.1302 

0.0725 0.0950 

0.0513 0.0722 

0.0401 0.0580 

0.0331 0.0486 

0.0284 0.0420 

0.0250 0.0371 

0.0224 0.0333 

0.0203 0.0303 

0.0186 0.0278 

0.0172 0.0257 
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time, t 
0.8084 
0.3366 
0.2435 
0.1945 
0.1642 
0.1435 
0.1284 
0.1168 
0.1077 
0.1002 
0.0940 

pressure, p 
0.0000 
0.0195 
0.0349 
0.0478 
0.0593 
0.0699 
0.0799 
0.0894 
0.0986 
0.1075 
0.1162 

0.0000 
0.0175 
0.0326 
0.0458 
0.0576 
0.0685 
0.0787 
0.0884 
0.0978 
0.1068 
0.1156 

horizontal accele~ 

0.2849 
0.1841 
0.1186 
0.0844 
0.0648 
0.0523 
0.0437 
0.0374 
0.0327 
0.0290 
0.0260 

0.2850 
0.2159 
0.1568 
0.1 180 
0.0930 
0.0761 
0.0642 
0.0553 
0.0485 
0.0431 
0.0387 

vertical accelel 

0.1567 
0.2598 
0.2888 
0.2947 
0.2942 
0.2916 
0.2882 
0.2845 
0.2807 
0.2760 
0.2732 

0.1538 
0.2330 
0.2695 
0.2826 
0.2863 
0.2861 
0.2842 
0.2815 
0.2783 
0.2750 
0.2710 
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vertical displacement, y 

0.6060 0.6687 0.7169 
0.7814 0.8372 0.8807 
0.9625 1.0107 1.0490 
1.1477 1.1881 1.2210 
1.3357 1.3687 1.3962 
1.5254 1.5516 1.5738 
1.7161 1.7361 1.7534 
1.9073 1.9217 1.9344 
2.0988 2.1081 2.1164 
2.2904 2.2950 2.2990 
2.4820 2.4820 2.4820 

horizontal velocity, 

1.0877 1.1555 
1.0675 1.1306 
1.0546 1.1116 
1.0471 1.0976 
1.0434 1.0876 
1.0420 1.0805 
1.0419 1.0757 
1.0424 1.0725 
1.0430 1.0705 
1.0434 1.0694 
1.0436 1.0690 

vertical velocity, u 

0.2856 0.2441 
0.2380 0.2078 
0.1950 0.1740 
0.1572 0.1433 
0.1246 0.1158 
0.0967 0.0914 
0.0727 0.0697 
0.0519 0.0503 
0.0334 0.0326 
0.0163 0.0160 
0.0000 0.0000 
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tinne, t 

2.5600 2.7959 

1.7207 1.9700 

1.5593 1.8191 

1.4604 1.7280 

1.3919 1.6649 

1.3425 1.6191 

1.3066 1.5855 

1.2812 1.5615 

1.2643 1.5453 

1.2545 1.5360 

1.2514 1.5329 


pressure, p 

0.0000 0.0000 

0.2161 0.2114 

0.4270 0.4190 

0.6336 0.6235 

0.8370 0.8253 

1.0383 1.0252 

1.2383 1.2235 

1.4375 1.4207 

1.8363 1.6170 

1.8350 1.8124 

2.0338 2.0069 


horizontal acceleration 

0.3129 0.2606 
0.2722 0.2324 
0.2328 0.2044 
0.1971 0.1783 
0.1664 0.1549 
0.1411 0.1351 

0.1213 0.1 189 

0.1064 0.1065 

0.0962 0.0977 

0.0902 0.0925 

0.0883 0.0908 


vertical acceleration 

-0.1540 -0.1964 
-0.0973 -0.1438 
-0.0568 -0.1032 
-0.0297 -0.0727 
-0.0129 -0.0503 
-0.0033 -0.0343 

0.0015 -0.0229 
0.0032 -0.0147 
0.0030 -0.0087 
0.0017 -0.0041 
0.0000 0.0000 

0.2074 
0.1883 
0.1690. 
0.1505 
0.1336 
0.1188 
0.1066 
0.0970 
0.0901 
0.0860 
0.0846 

FOR d = 

-0.35 

3.2180 
2.4146 
2.2835 
2.2090 
2.1596 
2.1245 
2.0992 
2.0812 
2.0691 
2.0622 
2.0599 

0.0000 
0.2049 
0.4074 
0.6077 
0.8060 
1.0025 
1.1973 
1.3904 
1.5818 
1.7714 
1.9589 

0.1544 
0.1422 
0.1294 
0.1170 
0.1054 
0.0952 
0.0865 
0.0796 
0.0747 
0.0717 
0.0707 

-0.2451 
-0.1985 
-0.1592 
-0.1263 
-0.0989 
-0.0760 
-0.0567 
-0.0402 
-0.0257 
-0.0126 

0.0000 
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:NT AND VELOCITY NEAR T H E  SURFA.CE FOR d = 2.0 

-0.0100 -0.0175 

horizontal displace! 


0.0382 0.0501 

0.0247 0.0361 

0.0200 0.0298 

0.0176 0.0264 

0.0161 0.0241 

0.0150 0.0225 

0.0142 0.0213 

0.0135 0.0203 

0.0130 0.0195 

0.0125 0.0188 

0.0121 0.0182 


vertical displacement, y 


0.0185 0.0253 0.0369 

0.0591 0.0616 0.0679 

0.0933 0.0945 0.0979 

0.1229 0.1236 0.1258 

0.1496 0.1501 0.1510 

0.1742 0.1746 0.1758 

0.1974 0.1977 0.1986 

0.2194 0.2197 0.2204 

0.2405 0.2407 0.2413 

0.2608 0.2609 0.2615 

0.2804 0.2805 0.2810 


horizontal velocity, u 


0.1854 0.2123 0.2519 

0.2579 0.2674 0.2889 

0.3146 0.3185 0.3293 

0.3566 0.3587 0.3650 

0.3902 0.3915 0.3956 

0.4184 0.4193 0.4222 

0.4429 0.4436 0.4457 

0.4645 0.4651 0.4667 

0.4840 0.4844 0.4858 

0.5017 0.5021 0.5032 

0.5180 0.5183 0.5193 


veritical veloc 


0.1061 0.1210 

0.0480 0.0676 

0.0312 0.0458 

0.0237 0.0352 

0.0194 0.0289 

0.0165 0.0247 

0.0145 0.0216 

0.0129 0.0193 

0.0117 0.0175 

0.0107 0.0160 

0.0098 0.0148 
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RFACE F( 

-0.0100 

time, t 

0.4728 
0.1416 
0.0951 
0.0741 
0.0619 
0.0538 
0.0480 
0.0437 
0.0402 
0.0374 
0.0351 

pressure, p 
0.0000 0.0000 
0.0296 0.0275 
0.0499 0.0484 
0.0669 0.0659 
0.0822 0.0815 
0.0965 0.0960 
0.1101 0.1097 
0.1232 0.1228 
0.1358 0.1355 
0.1482 0.1479 
0.1602 0.1600 

horizontal accele~ ration 

0.4502 0.4502 0.4502 
0.1882 0.2487 0.3197 
0.1031 0.1481 0.2198 
0.0698 0.1025 0.1607 
0.0524 0.0777 0.1248 
0.0418 0.0623 0.1013 
0.0347 0.0518 0.0849 
0.0297 0.0443 0.0729 
0.0258 0.0386 0.0638 
0.0229 0.0342 0.0566 
0.0205 0.0306 0.0507 

vertic:a1 acceler 

0.2515 0.2484 
0.4650 0.4350 
0.4787 0.4665 
0.4739 0.4678 
0.4663 0.4626 
0.4582 0.4558 
0.4501 0.4484 
0.4422 0.4409 
0.4346 0.4336 
0.4272 0.4264 
0.4200 0.4194 
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horizontal displacement, x 

0.2914 0.3443 0.3955 
0.2573 0.3160 0.3731 
0.2442 0.3036 0.3623 
0.2396 0.2989 0.3580 
0.2379 0.2972 0.3564 
0.2373 0.2966 0.3558 
0.2371 0.2963 0.3556 
0.2370 0.2963 0.3555 
0.2370 0.2962 0.3555 
0.2370 0.2962 0.3555 
0.2370 0.2962 0.3555(4) 

isplacement, 

0.2288 
0.4053 
0.5918 
0.7801 
0.9686 
1.1571 
1.3457 
1.5343 
1.7229 
1.9114 
2.1000 

horizontal velocity, 


1.0794 1.1497 

1.0407 1.0760 

1.0495 1.0628 

1.0561 1.0609 

1.0589 1.0607 

1.0600 1.0606 

1.0604 1.0606 

1.0605 1.0606 

1.0606 1.0606 

1.0606 1.0606 

1.0606 1.0606 


vertical velocity, u 


0.3024 0.2628 

0.1152 0.1108 

0.0411 0.0418 

0.0148 0.0154 

0.0054 0.0057 

0.0020 0.0021 

0.0007 0.0008 

0.0003 0.0003 

0.0001 0.0001 

0.0000 0.0000 

0.0000 0.0000 




L I M I T I N G  G R A V I T Y  WAVES I N  WATER 


tim 

0.5219 

0.2657 

0.2375 

0.2284 

0.2252 

0.2241 

0.2237 

0.2235 

0.2235 

0.2234 

0.2234 


prer 


0.0000 

0.9982 

1.9470 

2.8897 

3.8322 

4.7749 

5.7177 

6.6605 

7.6033 

8.5462 

9.4890 


llorizontal acceleration 

1.5987 1.3625 1.1086 0.8418 0.5660 0.2844 0.0000 
0.6499 0.6131 0.5326 0.4220 0.2915 0.1487 0.0000 
0.2322 0.2344 0.2146 0.1768 0.1254 0.0649 0.0000 
0.0837 0.0867 0.0813 0.0683 0.0491 0.0257 0.0000 
0.0305 0.0319 0.0302 0.0256 0.0185 0.0097 0.0000 
0.01 12 0.0117 0.011 1 0.0095 0.0069 0.0036 0.0000 
0.0041 0.0043 0.0041 0.0035 0.0025 0.0013 0.0000 
0.0015 0.0016 0.0015 0.0013 0.0009 0.0005 0.0000 
0.0006 0.0006 0.0006 0.0005 0.0003 0.0002 0.0000 
0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 
0.0002(1) 0.0002(1) 0.0002(1) 0.0001 0.0001(0) 0.0000 0.0000 

vertical acceleration 

-0.7058 -0.9604 - 1.1616 - 1.3141 - 1.4212 - 1.4846 -1.5057 
0.0167 -0.1709 -0.3265 -0.4477 -0.5340 -0.5857 -0.6029 
0.0499 -0.0243 -0.0930 -0.1508 -0.1943 -0.2212 -0.2303 
0.0238 -0.0033 -0.0297 -0.0528 -0.0708 -0.0821 -0.0860 
0.0095 -0.0004 -0.0103 -0.0190 -0.0259 -0.0303 -0.0318 
0.0036 -0.0001 -0.0037 -0.0069 -0.0095 -0.0112 -0.0117 
0.0013 0.0000 -0.0013 -0.0025 -0.0035 -0.0041 -0.0043 
0.0005 0.0000 -0.0005 -0.0009 -0.0013 -0.0015 -0.0016 
0.0002 O.OOO0 -0.0002 -0.0003 -0.0005 -0.0005 -0.0006 
0.0001 0.0000 -0.0001 -0.0001 -0.0002 -0.0002 -0.0002 
0.0000 0.0000 0.0000 0.0000 -0.0000(1) -0.0000(1) -0.0000(1) 
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horizontal displac ement, x 

0.0077 0.0101 0.0143 
0.0030 0.0045 0.0075 
0.0024 0.0037 0.0061 
0.0022 0.0033 0.0054 
0.0020 0.0030 0.0050 
0.0019 0.0028 0.0047 
0.0018 0.0027 0.0045 
0.0017 0.0026 0.0043 
0.0017 0.0025 0.0041 
0.0016 0.0024 0.0040 
0.0016 0.0024 0.0039 

vertical displacement, y 

0.0942 0.0955 0.0979 
0.1257 0.1257 0.1260 
0.1471 0.1471 0.1472 
0.1654 0.1654 0.1654 
0.1819 0.1819 0.1819 
0.1972 0.1972 0.1973 
0.2118 0.2118 0.2118 
0.2257 0.2257 0.2257 
0.2391 0.2391 0.2391 
0.2520 0.2520 0.2520 
0.2647 0.2647 0.2647 

horizontal velocity, u 

0.1831 0.2097 0.2488 
0.4141 0.4150 0.4178 
0.5133 0.5135 0.5145 
0.5796 0.5797 0.5802 
0.6300 0.6301 0.6304 
0.6707 0.6708 0.6710 
0.7048 0.7048 0.7050 
0.7340 0.7340 0.7341 
0.7594 0.7594 0.7595 
0.7819 0.7819 0.7820 
0.8019 0.8019 0.8020 

vertical veloc 

0.1049 0.1197 
0.0164 0.0245 
0.0098 0.0147 
0.0072 0.0107 
0.0056 0.0085 
0.0047 0.0070 
0.0039 0.0059 
0.0034 0.0051 
0.0030 0.0045 
0.0027 0.0040 
0.0024 0.0036 
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time, t 

0.0969 
0.0110 
0.0072 
0.0056 
0.0047 
0.0042 
0.0038 
0.0035 
0.0033 
0.0031 
0.0029 

pressure, p 
0.0000 0.0000 0.0000 
0.0939 0.0938 0.0932 
0.1552 0.1552 0.1549 
0.2103 0.2103 0.2102 
0.2624 0.2624 0.2623 
0.3128 0.3127 0.3127 
0.3620 0.3620 0.3620 
0.4105 0.4105 0.4104 
0.4584 0.4584 0.4584 
0.5060 0.5060 0.5060 
0.5532 0.5532 0.5532 

horizontal acceleration 

2.1698 2.1701 2.1699 
0.2022 0.3010 0.4897 
0.0992 0.1484 0.2458 
0.0646 0.0968 0.1610 
0.0474 0.0710 0.1181 
0.0370 0.0555 0.0924 
0.0301 0.0451 0.0752 
0.0252 0.0378 0.0629 
0.0215 0.0322 0.0537 
0.0186 0.0280 0.0466 
0.0164 0.0245 0.0409 

vertic ration 

1.2152 1.1765 
2.2298 2.1831 
2.0590 2.0460 
1.9113 1.9052 
1.7813 1.7778 
1.6651 1.6628 
1.5598 1.5582 
1.4638 1.4626 
1.3756 1.3747 
1.2943 1.2935 
1.2180 1.2183 



mean level of streamline/mean depth vertical displacement above bed/mean depth 
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profiles on to the perimeter of a hexagon. His predicted drift profile is plotted in figure 5 and 
again shows very close agreement. The drift velocity at  the surface is 0.2734c, compared with 
0.274~as predicted by Longuet-Higgins from the results of Yamada & Schwartz. 

The drift profiles confirm the very strong drift gradient near the surface which was pointed out 
and explained by Longuet-Higgins. In  any steady inviscid flow that includes a stagnation point, 
particles on the stagnation-point streamline will have considerably longer travelling times and 
will lag behind particles on adjacent streamlines, as is made clear by the tabulated times in 
tables 8-12. When a celerity opposed to the direction of steady motion is superimposed these 
particles will lead instead of lagging and will give the strong forward drift which has been found. 
When stagnation or near-stagnation conditions are not present a much more uniform behaviour 
is to be expected; consequently the strong surface drift gradient is a feature only of waves at  or 
very near to the maximum height. 

13. D ~ s c u s s ~ o ~  

The solutions obtained have been demonstrated to have inherent high accuracy and to be 
consistent with previous accurate results at  the two extremes of the depth: wavelength-ratio 
range. They may thus be fairly put forward as definitive solutions, not previously available, 
whose accuracy exceeds that required in almost all practical applications. They do not, however, 
constitute a mere academic curiosity to the practising coastal engineer or oceanographer who 
will now be able to work to, say, three or four decimals in full knowledge of the error 
thus incurred. Furthermore for some applications, such as the calculation of the level of 
action of the maximum wave, the accuracy achieved is still only marginally sufficient, as has 
been demonstrated. 

Theoretically, the results should provide a useful background to studies of the exact nature of 
the singularities at the wave crest and other cases of flow at  a corner. 

Of equal importance to the generation of the results is their presentation in a readily usable 
form. I t  is hoped that the limited number of sets of coefficients and detailed tabulations included 
herein will encourage and facilitate further theoretical study and early practical application. 

The method can in principle be extended to waves of less than maximum height and further 
work is in progress to achieve this. Grant (1973) and Schwartz (1974) have shown that for such 
waves the singularity not only moves away from the crest in the 7-plane but also changes in 
order from 4 towards 4. Moderately accurate solutions have been readily obtained in this way 
and the aim is now to refine the strategy to preserve the high. accuracy obtained for the 
maximum waves. A valuable analysis of the problem has been provided by Longuet-Higgins 
& Fox (1977, 1978) while solutions for comparison are available from the work of Sasaki & 
Murakami (1973) and Byatt-Smith & Longuet-Higgins (1976). The extension of the work to 
near-maximum waves is particularly desirable in view of recent demonstrations, for example 
by Cokelet (1g77), that the speed, energy and other properties reach maxima for waves a 
little below the maximum amplitude. 

This work forms part of the research programme of the Hydraulics Research Station and is 
published with the permission of the Director of Hydraulics Research. Most of the computations 
were done at  the University of London Computer Centre through the Institute of Computational 
Mathematics, Brunel University, where the author is registered for a Ph.D. degree. The author 
would particularly like to acknowledge the encouragement of Professor M. S. Longuet-Higgins, 
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F.R.S., of Cambridge University and Dr T.J.Weare of Hydraulics Research Station. The staff 
of the University of London Computer Centre provided both an efficient processing service and 
valuable day-to-day advice. 

A P P E N D I X1. F U R T H E RT E R M S  I N  G R A N T ' SE X P A N S I O N  


F O R  T H E  F L O W  N E A R  A N  A N G L E D  C R E S T  


Grant's expansion ( 3 . 4 ) may be extended in the form 

where p = 1.469 345741,  the first root of ( 3 . 5 ) greater than #. 
If we construct the product Im (2)IdZ/dxI2, $ = 0 ,  and equate to zero the coefficients of 

@(P-*), r = 2 , 3 ,  ,..,9 ,  we may express each b,  in terms of b,, according to table A 1 .  

Norman (1974)has also developed an expansion that is in effect of the form (A 1.I ) , expressing 
his resulting coefficients as rational functions of a quantity related top. His published results allow 
a direct check to be made only as far as b,, up to which point both expansions agree. 

A P P E N D I X2. E X P A N S ~ O N  E V A L U A T I N G  t O N  T H EF O R  S U R F A C E  

S T R E A M L I N E  N E A R  T H E  C R E S T  

We require 

where 8 is small. With the aid of ( 2 . 6 ) ,  ( 2 . 1 0 ) ,  (C) and (3 .7 ) z is expanded as a series in 8. The 
integral is set up and integrated term by term to include terms up to order 8t1+l. 

We define L' = L / 2 x  = ( 2 / d )  ( 1  +&a,), 

a = R ~ / ( I-R ~ ) ,  

s' = g s / ( l -  R 2 ) f ,  

q' = p q / ( 1 -  R2)P, where p = 1.469 345741,  

N - 2  
k ~= -&R[1+ &R]-p q R [ i +  ( 1  -p)  R] + m2a,, 

m= 1 
N - 2  

k2 = -L' - -p q a  - ma, coth md. 
m.= 1 
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The required expansion may then be written 

- [2/ (p  -+)Is'q' sin [hn (p  -g)] 8 ~ - 4  

- (alp) q'k, sin Bnp 8P +gs1(k1+gk,) 8s 

+ [1/(2p - I)] q12e2p-1 

+[ (p- g)/(p+#)] s'q' sin [ h ( p-g)] 
+&s128% 

+[2/ (p  + I)]  q1[k1 +& (p+ 1) k,] cos Jnp oh+? 

This expansion has been used to compute t for 0 < 8/2n < 0.0025 on the surface streamline. 
For the Stokes corner flow s' has a theoretical value of (4F/4 3  d)% which follows from (3.2) and 

(3.7). However, as explained in $6, s was allowed to float in the iteration in the interests of 
obtaining a solution of better overall accuracy. The computed crest acceleration therefore 
departs from its theoretical value (see Longuet-Higgins & Fox 1977) of &g,or 1/4F2 in our 
notation, and imposes a consequential error on t near the crest. In  all solutions the acceleration 
shows a negative error, giving a positive error in t. 

T o  consider conditions on the surface streamline, the acceleration is significantly in error only 
over a limited zone between 8 = 0 and 8/2n < 0.0001 in all solutions. In  this zone there is a 
corresponding large positive gradient ofp, which, however, must reverse to restore ps to zero at  
the second nodal point, 8 = 8, = &iil~ in most solutions. We therefore consider the error which 
occurs in t a t  8/21s = 0.0001, the first tabulated point in tables 8 to 12. At this point t is almost 
entirely accounted for by the first term of the above expansion. 

At the shallow-water end of the range, d = 0.2, the computed s differs from the theoretical 
value by 0.033 %. The expected error in t is therefore 0.066 % of the computed value of 0.6653 
(table 8), or 0.0004. 

At the deep-water end, d = 10, the error in s is 0.19 % and, from table 12, the resultant error 
in t is 0.38 % of 0.0393, or 0.0002. 

These estimated errors are considered to be upper bounds because the artificial negative 
gradient ofp, following this zone will serve to introduce some self-correction in t at  greater 
values of 8. 

Benjamin, T . B. & Lighthill, M.  J .  1954 Proc. R. Soc. Lond. A 224, 448-460. 

Byatt-Smith, J .  G .  B. & Longuet-Higgins, M .  S. 1976 Proc. R. Soc. Lond. A 350, 175-189. 

Chappelear, J .  E. 1961 J. geophys. Res. 66, 501-508. 

Cokelet, E. D. 1977 Phil. Trans. R. Soc. Lond. A 286, 183-230. 

De, S. C .  1955 Proc. Camb. phil. Soc. 51, 713-736. 

Dean, R. G.  1965 J .  geophys. Res. 70,  4561-4572. 

Dean, R. G. 1968 Proc. 11th Conf. Coastal Engineering, 108-123. New Y o r k :  American Society o f  Civil Engineers. 

Dean, R. G. 1970 Proc. Am. Soc. civ. Engrs 96, W W 1 ,  105-119. 

Fenton, J .  D. 1979 J .  Fluid Mech. 94, 129-161. 

Fox, M. J .  H.  1977 Ph.D. thesis, Cambridge University. 

Grant, M .  A. 1973 J.Fluid Mech. 59, 257-262. 

Lamb,  H.  1932 Hydrodynamics (6 th  edn) ,  $229. Cambridge University Press. 

Lenau, C. W .  1966 J.  Fluid Mech. 26, 309-320. 

Longuet-Higgins, M .  S. 1974 Proc. R. Soc. Lond. A 337, 1-13. 

Longuet-Higgins, M .  S. 1975 Proc. R. Soc. Lond. A 342, 157-174. 

Longuet-Higgins, M .  S .  1979 J. Fluid M ~ c h .  94, 497-517. 




J. M. W I L L I A M S  


Longuet-Higgins, M. S. 1980 J.Fluid Mech. 97, 1-25. 
Longuet-Higgins, M. S. & Fenton, J. D. 1974 Proc. R. Soc. Lond. A 340, 471-493. 
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 J. Fluid Mech. 80, 721-741. 
Longuet-Higgins, M. S. & Fox, M.J.  H. 1978 J. Fluid Mech. 85, 769-786. 
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics (5th edn), $14.50. London: Macmillan. 
Norman, A. C. 1974 J. Fluid Mech. 66, 261-265. 
Olfe, D. B. & Rottman, J.W. 1980 J. Fluid Mech. 100, 801-810. 
Sasaki, K. & Murakami, T. 1973 J. oceanogr. Soc. Japan 29, 94-105. 
Schwartz, L. W. 1974 J .  Fluid Mech. 62, 553-578. 
Stokes, G. G. 1847 Trans. Camb. phil. Soc. 8, 441-455. 
Stokes, G. G. 1880 Mathematical and physical papers, vol. 1, pp. 225-228. Cambridge University Press. 
von Schwind, J.J. & Reid, R. 0. 1972 J. geophys. Res. 77, 420-433. 
Williams,J. M. 1981 In Boundary element methods (ed. C. A. Brebbia), pp. 53-67. Berlin etc.: Springer-Verlag. 
Witting, J. 1975 S.I.A.M..Il appl. Math. 28, 700-719. 
Yamada, H. 1 9 5 7 ~Rep. Res. Inst. a@l. Mech. Kyushu Univ. 5, 37-52. 
Yamada, H. 19576 Rep. Res. Inst. a@l. Mech. Kyushu Uniu. 5, 53-67. 


