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Estimation of Hurricane Winds From
SeaWinds at Ultrahigh Resolution

Brent A. Williams, Member, IEEE, and David G. Long, Fellow, IEEE

Abstract—Although the SeaWinds scatterometer was not specif-
ically designed to observe tropical cyclones, new high-resolution
wind products resolve much of the horizontal structure of these
storms. However, these higher resolution products (2.5 km) are
inherently noisier than the standard 25-km near-surface wind
products. These noise levels combined with rain contamination
complicate high-resolution wind estimation—particularly in trop-
ical cyclones. Fortunately, tropical cyclones have structures that
can be exploited by using a wind field model. This paper devel-
ops a new procedure for hurricane wind field estimation from
the SeaWinds instrument at ultrahigh resolution. A simplified
hurricane model is developed to provide prior information to be
used in maximum a posteriori probability estimation of ocean
winds. Using the hurricane model ameliorates the effects of rain
and noise and provides useful hurricane parameters such as the
eye center location. The model also improves ambiguity selection.
The new method reduces the variability of the wind speed and
direction estimates, although high wind speeds still tend to be
underestimated. The method also greatly improves wind direction
estimates in hurricanes—even in rain-contaminated portions of
the storm.

Index Terms—Hurricane, maximum a posteriori estimation,
scatterometry, wind.

I. INTRODUCTION

D IRECT measurements of wind and rain are difficult to
obtain in the extreme conditions of hurricanes. Buoys

are often damaged in these intense storms, and ships avoid
them. Aircraft radar and dropsonde measurements in hurricanes
provide important information, but these data are limited in
spatial coverage.

The spaceborne scatterometer SeaWinds has a swath that
covers a large region over a short time duration and has pro-
vided invaluable data of large-scale global weather. However,
the relatively coarse resolution (25 km) of the standard wind
product limits its use in resolving small-scale features. Whereas
tropical cyclones are apparent in the 25-km product, important
storm parameters such as the eye center location are not well
resolved.

The dense measurement sampling of the SeaWinds scat-
terometer makes it possible for the wind to be retrieved at an
effective resolution of about 5–7 km and reported on a 2.5-km
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grid using resolution enhancement techniques [1], [2]. In these
ultrahigh resolution (UHR) surface wind data, much of the
storm structure of hurricanes is obvious. However, there remain
several issues that limit the use of SeaWinds in observing tropi-
cal cyclones. Due to the resolution enhancement procedure, the
2.5-km products are inherently noisier than their 25-km coun-
terparts [1]. Tropical cyclones are also associated with heavy
rain, which contaminates the wind estimates. Furthermore, the
relationship between hurricane force winds and radar backscat-
ter may not be modeled well by the current geophysical model
function (GMF), although research is being done to improve
the model function for extreme winds [3]. Moreover, the GMF
used for the UHR retrievals (QSCAT-1/F13 sometimes termed
QMOD3 used by the Jet Propulsion Laboratory (JPL) in stan-
dard products) was derived for the 25-km QuikSCAT product
[4]. In principle, the GMF should be independent of the resolu-
tion. However, because the GMF was derived from QuikSCAT
25-km data, using it for UHR winds may produce somewhat
biased results—particularly at very low wind speeds [5], [6].

This paper describes a new method for UHR wind field
estimation of tropical cyclones using data from the SeaWinds
scatterometer. The focus is primarily to present a new method
to improve direction estimates and to reduce the variability
of the vector estimates (speed and direction) while preserving
mesoscale detail. A simple low-order hurricane wind field
model is developed to provide prior information for maximum
a posteriori probability (MAP) estimation of the wind. Using
the hurricane model ameliorates the effects of rain and noise.
The new method provides improved ambiguity selection,
alternate wind estimates (MAP ambiguities), and estimates
of important hurricane parameters. Simulation is employed to
explore the effects of rain on the new method. The accuracy of
the hurricane model parameter estimates is analyzed by using
the best track hurricane eye locations provided by the National
Hurricane Center (NHC) and the interpolated numerical
weather prediction (NWP) winds provided by the National
Centers for Environmental Prediction (NCEP). The quality of
the wind field estimates is analyzed by using H∗Winds made
available by NOAA’s Hurricane Research Division [7].

This paper is organized as follows. Section II reviews the
pertinent principles of scatterometry and the high-resolution
wind products derived form SeaWinds. Section III outlines
the new MAP wind estimation procedure for hurricanes.
Section IV develops the hurricane wind field model appropriate
for scatterometry. Section V describes a simplification of the
new method that allows for near real-time implementation.
Section VI analyzes the quality of the results. Section VII
concludes.
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II. PRINCIPLES OF SCATTEROMETRY

This section reviews the principles involved in scatterome-
try. Pertinent information about the SeaWinds design is also
provided.

SeaWinds measures the radar backscatter, which is denoted
as σ0, from the Earth’s surface. Over the ocean, σ0 is related
to the wind speed and direction through the GMF. Measure-
ments from multiple azimuth angles are necessary to estimate
the wind direction. SeaWinds makes four different types of
measurements, vertical and horizontal polarization beams each
with a fore and aft look, which provide several samples from
different azimuth angles for each resolution cell. Because the
v-pol and h-pol beams have different incidence angles, the outer
portion of the swath is only illuminated by one beam [8].

Conventionally, the wind is estimated in two steps. First, the
maximum-likelihood (ML) estimation of the wind from the σ0

measurements is performed for each resolution or wind vector
cell. Because the ML objective function is multimodal due
to the double cosine dependence of the GMF on wind direc-
tion, ML estimation results in multiple wind vector solutions
(ambiguities). The second step requires the selection of the
appropriate ambiguity. Although there exist more sophisticated
ambiguity selection algorithms, the standard L2B product uses
a simple one. For the standard 25-km product (L2B), the ambi-
guities closest to NWP winds are selected (a procedure known
as nudging) and then a spatial median filter is used to select
the final ambiguities [9]. Alternatively, the DIRTH ambiguity
selection routine is used in standard JPL processing [10].

High-resolution σ0 fields are obtained by separately applying
image reconstruction to each of the four types of σ0 mea-
surements. This provides four separate σ0 fields with regularly
spaced samples. Wind retrieval is then performed for each high-
resolution cell, producing high-resolution wind ambiguities.
High-resolution ambiguity selection is problematic because the
NWP winds used in ambiguity selection poorly represent small-
scale features. Ambiguity selection is further complicated by
rain contamination and increased noise level. The current UHR
wind product retrieves the wind based on an ML estimation
scheme and selects the ambiguities closest to the L2B vectors,
which are then median filtered.

In tropical cyclones, the UHR product can resolve structure
that is not apparent in the 25-km product. The eye center loca-
tion, rain bands, and mesoscale convective events are resolved
in the high-resolution wind speed field. The resolution of the
direction field, however, is limited by the nudging field in
conventional ambiguity selection.

III. MAP ESTIMATION FOR TROPICAL CYCLONES

The wind estimation method presented here takes a novel
approach. A low-order hurricane model is developed and used
as the mean of a fieldwise prior distribution of the wind. This
prior distribution is used to augment the ML objective function-
producing MAP ambiguities and the fieldwise MAP estimate
of the wind. In the sequel, we also develop a method based
on MAP estimation to improve the ambiguity selection of the
pointwise ML ambiguities.

This section explains the theory behind the MAP estimation
method. First, an overview of pointwise MAP estimation and
ML estimation is provided. Then, fieldwise MAP estimation
using the hurricane model is developed. Next, the new method
is contrasted with the conventional model-based and pointwise
approaches.

A. Pointwise MAP Estimation

In contrast to conventional pointwise ML wind estimation,
which finds the wind vector that maximizes the probability of
σ0, given the wind speed and direction P (σ0|S,D), pointwise
MAP estimation maximizes the probability of the vector wind,
given the σ0 measurements P (S,D|σ0). This probability dis-
tribution can be found using Bayes’ rule

P (S,D|σ0) =
P (σ0, S,D)

P (σ0)

=
P (σ0|S,D)P (S,D)

P (σ0)

=
1

P (σ0)
ML × PRIOR (1)

where the probability distribution P (S,D) is the prior distri-
bution of the wind. The MAP objective function P (S,D|σ0)
is essentially a weighted version of the ML objective
function P (σ0|S,D). Given the multiple σ0 measurements,
the wind speed and direction that maximize P (S,D|σ0) can
be found.

The pointwise ML objective function represents a joint dis-
tribution of independent Gaussian random variables and has the
form [11]

P (σ0|S,D) =
∏

i

1√
2πξi

e
− (σ0

i
−Mi(S,D,...))2

2ξ2
i (2)

where σ0
i represents the ith σ0 measurement, Mi(S,D, . . .)

represents the σ0 value resulting from projecting the given wind
vector through the GMF with the same measurement geometry
as the ith measurement, and ξi is a variance term that is a func-
tion of the measurement noise and the modeling uncertainty
of the GMF. Therefore, if the pointwise prior distribution is
known, the pointwise MAP estimate can be found by scaling
the ML objective function by P (S,D) and searching for the
maxima. Note that P (σ0) represents the probability distribution
of σ0 and is not a function of S and D, which are to be
estimated. Thus, it can be factored out of the maximization.
This produces the pointwise wind vector estimate

{Ŝ, D̂} = arg max
S,D

{
P (σ0|S,D)P (S,D)/P (σ0)

}
= arg max

S,D

{
P (σ0|S,D)P (S,D)

}
. (3)

B. Fieldwise MAP Estimation

For fieldwise estimation, the entire wind speed field S̄ and
direction field D̄ are estimated. The fieldwise prior distribution
P (S̄, D̄) is given by the hurricane model. For each resolution
cell, the speed and direction are assumed to be independent
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Gaussian random variables with means given by the model and
some variance. Using this construction, the prior distribution
for one cell has the form

P (S,D) =P (S)P (D)

=
1√

2πξS

e
− (S−S)2

2ξ2
S

1√
2πξD

e
− (D−D)2

2ξ0
D (4)

where S and D are the speed and direction of the hurricane
model wind for the resolution cell of interest, respectively.
This construction provides prior distributions for each resolu-
tion cell.

The notion of correlation between adjacent cells is captured
by the similarity of the means of the prior distributions rather
than the imposition of a correlation between the distributions
(i.e., the distributions are statistically independent although the
means of the distributions are linked by the fieldwise model).
This allows for the small-scale variability and preservation of
high-frequency information although this may preserve high-
frequency noise as well. Assuming correlation between adja-
cent cells imposes additional structure on the estimated wind
field. Because we desire estimates that are based primarily
on the measurements and only moderately impacted by the
model (because the model is simplistic), assuming indepen-
dence between adjacent cells is appropriate for this application.
Nevertheless, a more sophisticated model allowing a correlation
between adjacent cells may produce a more accurate result.

Independence between the distributions of adjacent resolu-
tion cells causes the fieldwise prior to be equal to the product
of the pointwise priors, P (S̄, D̄) =

∏
m,n P (S,D). Assuming

that each resolution cell is independent from each other also
enables the fieldwise ML objective function to be written as the
product of the pointwise objective functions. Thus, the fieldwise
MAP objective function has the form

P (S̄, D̄|σ̄0) =
1

P (σ̄0)
P (σ̄0|S̄, D̄)P (S̄, D̄)

=
1

P (σ̄0)

∏
m,n

{
P (S)P (D)

∏
i

P
(
σ0

i |S,D
)}

=
1

P (σ̄0)

∏
m,n

⎧⎪⎨
⎪⎩

1
2πξSξD

e
−(S−S(ᾱ))2

2ξ2
S e

−(D−D(ᾱ))2

2ξ2
D

×
∏

i

1√
2πξi

e
− (σ0

i
−Mi)2

2ξ2
i

⎫⎪⎬
⎪⎭ (5)

where σ̄0, S̄, and D̄ represent the σ0, wind speed, and wind
direction fields of the study region, respectively. σ0

i , S, and
D represent the ith σ0 measurement, the wind speed, and the
wind direction, respectively, for a particular resolution cell at
index (m,n) of the fields. Also, S(ᾱ) and D(ᾱ) represent the
hurricane model speed and direction, respectively, for a cell at
index (m,n), where ᾱ represents a vector of hurricane model
parameters.

Note that (5) states that the fieldwise MAP objective function
is a scaled product of the pointwise objective functions of each

cell in the fieldwise grid. Likewise, it can be shown that, with
this construction, the fieldwise MAP value is a scaled product
of the pointwise MAP values for a particular model instance

MAPfw = max
S̄,D̄

P (S̄, D̄|σ̄0)

= max
S̄,D̄

1
P (σ̄0)

∏
m,n

{
P (S)P (D)

∏
i

P
(
σ0

i |S,D
)}

=
1

P (σ̄0)

∏
m,n

max
S,D

{
P (S)P (D)

∏
i

P
(
σ0

i |S,D
)}

=
1

P (σ̄0)

∏
m,n

MAPpw. (6)

The best model instance is the one that maximizes the field-
wise MAP value. Thus, the fieldwise MAP value becomes the
hurricane model objective function

l = max
ᾱ

{MAPfw(ᾱ)} . (7)

For practical implementation, the log of the fieldwise ob-
jective function is maximized. Taking the log of (5), leaving
out constant terms, and then maximizing over wind fields and
hurricane model parameters produces

L = max
ᾱ

{∑
m,n

max
S,D

{
− (S − S(ᾱ))2

ξ2
S

− (D −D(ᾱ))2

ξ2
D

−
∑

i

(
σ0

i −M(S,D)
)2

ξ2
i

}}
. (8)

The arguments S, D, and ᾱ that maximize the log likelihood
value L are the estimates of the wind speed and direction
for each resolution cell and the hurricane model parameters.
This method simultaneously estimates the hurricane model
parameters and the wind field. Note that, if we factor out a
negative sign from the right side of (8), the objective function
must be searched for minima rather than maxima and we obtain
an expression similar to the standard ML objective function.
The expression in (8) is similar to procedures frequently used in
NWP data assimilation [12], [13]. However, the measurement
term (the last term on the right) remains Gaussian in the σ0

domain, which is consistent with standard ML wind retrieval
schemes. We note that certain wind directions may be favored
for certain measurement geometries by the MLE objective
function [14]. This may also be inherited by the MAP estimator
described here.

C. Implications

The new approach diverges from conventional model-based
methods. Here, model-based implies using a fieldwise model
to describe the 2-D structure of the surface vector wind. Con-
ventional model-based methods estimate only the parameters of
the wind field model. These methods force the wind estimate to
be in the space spanned by the model. Thus, the resulting wind
fields only contain information captured by the model. For a
practical low-order model, forcing the wind field estimate to
be in the space spanned by the model restricts the wind field
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estimates to low resolution. The new MAP construction allows
for the preservation of the information that is obtainable by
a nonmodel-based approach (pointwise ML estimation) while
emphasizing the structure described by the model.

The difference between the pointwise ML, model-based
fieldwise ML, and fieldwise MAP estimations is illustrated by
the following. All three of these methods can be formulated as
a constrained optimization problem. For pointwise ML estima-
tion, the problem statement is as follows:

For each cell at index(m,n)
maximize∑

i

−
(
σ0

i −M(S,D))2

ξ2
i[

or equivalently P (σ0|S,D)
]

subject to
S ≥ 0 and 0 < D ≤ 360.

This produces up to four possible wind ambiguities for each
resolution cell due to the local maxima in the objective function.
Ignoring ambiguities (only considering the absolute maxima
that corresponds to the first ambiguity), the pointwise objective
functions can be summed up to form a fieldwise objective
function. The pointwise ML estimation problem statement for
the entire field (fieldwise ML estimation) can thus be written as

maximize ∑
m,n,i

−(σ0
i −M(S,D))2

ξ2
i[

or equivalentlyP (σ̄0|S̄, D̄)
]

subject to
S ≥ 0 and 0 < D ≤ 360 for all (m,n)

because both problem statements result in the same wind field.
This can be interpreted as a fieldwise objective function that is
maximized when the pointwise objective function of each reso-
lution element is maximized. Such a result allows comparisons
of pointwise with fieldwise techniques. For model-based ML
estimation with the assumption that each resolution element is
independent, the problem statement can be expressed as

maximize ∑
m,n,i

−(σ0
i −M(S,D))2

ξ2
i

[or equivalently P (σ̄0|S̄, D̄)]
subject to

S̄ = S(ᾱ), D̄ = D(ᾱ)
where SεS̄ and DεD̄.

This is equivalent to estimating the model parameters ᾱ and
then generating the estimate of the wind field using the model.
The fieldwise and model-based ML estimation methods op-
timize the same metric but the model-based ML estimation
method restricts the solution space more than the pointwise
ML estimation method. The fieldwise MAP estimation method
searches the same solution space as the fieldwise ML estimation

method but optimizes an augmented metric. For fieldwise MAP
estimation, the problem statement is as follows:

maximize ∑
m,n,i

{
− (S − S(ᾱ))2

ξ2
S

− (D −D(ᾱ))2

ξ2
D

−
(
σ0

i −M (S,D)
)2

ξ2
i

}
[
or equivalently P (S̄, D̄|σ̄0)

]
subject to

S ≥ 0 and 0 < D ≤ 360 for all m,n.

The fieldwise MAP estimation approach can be viewed as
pointwise MAP estimation with priors given by a fieldwise
model. Remember that ξi characterizes the uncertainty of the
ith observation of the true σ0. If the variance terms ξS and ξD

are very large compared to the ξi’s, the fieldwise MAP objec-
tive function effectively becomes the fieldwise ML objective
function. Furthermore, if ξS and ξD are small compared to
the ξi’s, any solution that is not in the space spanned by the
hurricane model produces a large and negative MAP value (in
log space) and the fieldwise MAP problem statement essentially
becomes equivalent to the model-based ML estimation problem
statement. Thus, the variance terms control how much the
hurricane model is imposed. The relative values between ξS ,
ξD, and ξi are measures of the importance of the model speed
error, the model direction error, and the actual measured σ0

error, respectively. ξi is a function of the measurement and
the true wind, whereas ξS and ξD are linked to the hurricane
model. Furthermore, ξS and ξD can be scaled relative to the
ξi’s in order to minimize the influence of the hurricane model
while maintaining an acceptable noise level (variability of the
estimates). Nominal values of ξS and ξD are empirically found
in the sequel.

Imposing a prior on the wind has positive consequences as
well as limitations. The new method ameliorates the cross-track
pinning of the winds caused by rain and simplifies, or even
eliminates, the issue of ambiguity removal. However, the priors
modify the ML objective function so that the resulting estimates
are no longer “pure” measurements (they are combinations of
measurements and a model). Nevertheless, the MAP estimation
method imposes the hurricane model less severely than true
model-based estimation.

IV. EMPIRICAL HURRICANE MODEL

This section develops the empirical hurricane model that
provides the prior distributions for the MAP estimation wind
retrieval procedure. The model is not dynamic but is rather
a simple “snapshot” model of the horizontal structure of the
near-surface winds of hurricanes. First, the statistics of real
storms are analyzed and empirical distributions are developed
from high-resolution SeaWinds wind data. Although these
winds are rain contaminated and may contain ambiguity selec-
tion errors, we assume that these effects average out. Never-
theless, we recognize that there may still remain a bias in the
estimates due to rain effects [15], [16]. We neglect this issue
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here so that the model is consistent with the standard GMF used
in wind retrieval. Using scatterometer data to derive the model
produces a model that is consistent with and appropriate for the
scatterometer data.

Although the model developed is simplistic, the MAP es-
timation and ambiguity selection procedures can be scaled to
impose the model as weakly (or strongly) as desired. Thus, the
benefits of imposing the large-scale structure described by the
model are obtained, whereas the small-scale structure that is not
described by the model is preserved.

We hypothesize that much of the asymmetrical structure of
the storms can be described by a superposition of a mean
wind flow (mean flow) through the region containing the storm
[3]. This hypothesis is tested and verified by orienting the
storms according to this mean flow and then generating new
empirical distributions for the wind speed and direction. This
asymmetry is then further investigated by binning the storms
by the size and magnitude of the mean flow and generating
empirical distributions for each type of storm. Finally, a model
is developed based on the relationship between the size of the
storm and the mean flow.

A. Empirical Distribution of Hurricane Winds

Empirical probability density functions (pdfs) for the priors
are obtained by using QuikSCAT-derived conventional high-
resolution data of a large number (100) of observations of
named storms in the North Atlantic Basin from 1999 to 2005.
Normalized histograms (empirical pdfs) are generated by bin-
ning the wind speeds and directions as a function of distance
from the eye (1 km per bin). The direction relative to the
eye center (relative direction) is defined as the angle between
the eye vector (the vector drawn from the eye center to the
resolution cell of interest) and the wind vector in a clockwise
manner from the eye vector.

Note that, in generating the empirical priors, we include
all UHR retrieved wind estimates with only minimal use of
quality control. Quality control methods are important to
ensure the reliability of the hurricane model as well as the
resulting estimates. As a quality control metric, high-resolution
simultaneous wind and rain retrievals may be used to throw
out rain-contaminated winds. Several low-resolution quality
control methods have proven effective for use in 25-km
products [17], [18]. However, the effectiveness of using low-
resolution quality control for use with the UHR products as well
as within hurricanes has yet to be explored. Furthermore, low-
resolution quality control methods tend to flag large portions
of hurricanes as poor due to rain and uncertainty in the GMF.
Discarding these data limits the amount of data needed to derive
the prior distributions as well as fit the hurricane model in the
wind retrieval step. Other limitations include the fact that the
QMOD3 GMF tends to underestimate very high wind speeds.
This produces a hurricane wind field model whose high wind
speeds may also be underestimated. This issue may be corrected
by using bias correction post wind retrieval or by improving
the GMF. However, due to lack of truth data and because we
are primarily concerned with improving direction estimates,
neither bias correction nor GMF adjustment is employed.

Fig. 1. Means of the empirical speed and relative direction distributions as
a function of distance from the hurricane eye. (a) Mean of the wind speed
distribution. (b) Mean of the relative direction distribution.

Fig. 2. Standard deviations of the empirical speed and relative direction
distributions as a function of distance from the hurricane eye. (a) Standard
deviation of the wind speed distribution. (b) Standard deviation of the relative
direction distribution.

Fig. 1 shows the mean of the wind speed and direction
relative to the eye center as a function of distance from the
eye center. The mean of the direction distribution is about 250◦

rather than 270◦, which produces vectors that are orthogonal to
the vector drawn from the eye center to the resolution cell of
interest. This is consistent with the known fact that there is a
significant degree of convergence (negative divergence) in the
near-surface wind fields of hurricanes.

Fig. 2 shows the standard deviations of the scatterometer
wind speed and direction as a function of distance from the
eye. The peak near the eye center of the standard deviation of
the direction distribution is caused by several factors includ-
ing rain contamination, ambiguity selection errors, artifacts of
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Fig. 3. Wind speed and relative direction distributions for a particular distance
from the eye center (140 km) with a Gaussian fit superimposed. (a) Wind speed
distribution. (b) Relative wind direction distribution. Both distributions are
similar to the Gaussian, suggesting that a Gaussian approximation can be used.

small-scale features, and insufficient data for the statistics to
converge. The higher standard deviation that is far from the eye
can be attributed to the lack of data and to other convective
events outside the immediate vicinity of the hurricane center.

Fig. 3 shows a plot of the empirical distributions for the
wind speed and direction for a particular distance from the eye
(140 km) with a Gaussian fit superimposed. Although the
direction distribution may have some significant higher order
moments, both the wind speed and direction distributions are
similar to the Gaussian distributions. This justifies the Gaussian
approximation used in the development of the MAP estimation
procedure in Section III.

B. Investigating Asymmetry

The empirical distributions developed previously describe
the bulk structure of the storms as a function of distance
from the eye. The asymmetrical structure of the storms is now
investigated by using an empirical approach.

The same 100 named storms are oriented so that the mean
flow is pointed in the same direction. Then, a histogram is
generated where the wind is binned with respect to the angle
from mean flow as well as the distance from the eye center. The
mean flow is determined by the vector mean of the wind field
(care is taken to include the same number of vectors on each
side of the eye to suppress a bias in the mean).

Fig. 4 shows the mean of the wind speed as a function of
the angle from the mean flow for several distances from the eye
center. The curve shows the asymmetry due to the mean flow.
The peak near the 90◦ bin shows that the right side of the storm,
with respect to the direction of the mean flow, tends to have the
highest wind speed. Fig. 5 shows the standard deviation of the
wind speed as a function of distance from the eye averaged over
several angles from the mean flow (dashed line) as well as the
standard deviation without taking the mean flow into account

Fig. 4. Mean of the wind speed distribution as a function of angle from mean
flow for various distances from the hurricane eye. This pattern affirms that the
right side of the storm (with respect to the mean flow) generally has a higher
wind speed than the left side.

Fig. 5. Standard deviation of the empirical wind speed distribution versus
distance from the eye averaged over several angles from mean flow. The upper
line is the standard deviation without taking the mean flow into account.

(solid line). The standard deviation is generally reduced when
taking the mean flow into account. This implies that the super-
position of a mean wind flow can be used to describe the general
flow in a hurricane better than a pure axially symmetric field.

Further analysis is employed in order to investigate the
relationship between the magnitude of the mean flow, size,
and asymmetrical structure of a storm. Each storm is binned
according to its size and the magnitude of the mean flow. Then,
the storms are oriented so that the direction of the mean flow
is the same and speed and direction histograms are generated
for each resolution cell on the new grid (oriented according
to the eye center and mean flow). The size of the storm is
determined by the root mean square (rms) value of the speed
in a region including all cells within 150 km from the eye.
The means and standard deviations of the wind speed and
direction distributions are also calculated. The plots in Fig. 6
show the slices of the mean wind speeds for large and small
storms with various magnitudes of the mean flow. A storm is
considered small (or large) if the rms speed near the eye is
less than or equal to 22 m/s (or greater than 22 m/s). Mean
flow is categorized as low, medium, or high if the magnitude
of the vector mean is less than or equal to 2.5 m/s, greater than
2.5 m/s and less than or equal to 5 m/s, or greater than 5 m/s,
respectively. The slices that are orthogonal to the mean flow are
reported because they represent the most extreme asymmetry
due to the mean flow. The large and small storms have similar
speed profiles but the large storm speeds are scaled higher.
Also, the left side of the storm (with respect to the mean flow)
is generally less intense than the right side and the asymmetry
is increased with a higher magnitude of the mean flow.
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Fig. 6. Slices of the mean of the empirical wind speed distributions orthogonal
to the mean flow vector for large and small storms with various magnitudes
of the mean flow. (a) Low mean flow. (b) Medium mean flow. (c) High mean
flow. The corresponding speed profiles from the simplified hurricane model are
superimposed.

C. Hurricane Model

Any of the empirical distributions previously described can
be used directly in the MAP wind retrieval process; however,
this section develops a simple model that approximates the
empirical distribution where the mean flow and storm size
are taken into account. This allows interpolation between the
coarsely binned sizes of storms and mean flows of the empir-
ical distributions. A simplistic model with few parameters is
developed to describe the large-scale horizontal structure of the
near-surface winds of a hurricane as a function of the hurricane
size and the mean flow (and eye center location). The model as-
sumes that the hurricane wind field is composed of a symmetric
cyclonic wind field with a superimposed mean wind flow.

To obtain the structure of the wind field, a simple curve is
fit to the speed profile in Fig. 1. This simple curve ramps up
linearly from about half of the maximum speed to the maximum
speed and then falls off exponentially to a mean offset. For
simplicity, we assume a mean offset which is constant over all
types of hurricanes. Using the curve in Fig. 1, we choose a mean
offset of 7 m/s (which is also approximately the mean wind
speed over the ocean). Fitting this curve to the speed profile in
Fig. 1 provides nominal values for the radius of maximum wind
speed of the eye and the decay rate of the exponential portion.
This produces a radius of maximum wind speed of about 50 km
and a spatial decay rate of about 475 km. A model realization
is generated by producing a symmetric cyclonic wind field with
the appropriate speed profile and direction field (250◦ from eye
vector) and by superimposing a mean wind flow.

TABLE I
VECTOR RMS DIFFERENCES BETWEEN THE MEAN OF THE EMPIRICAL

DISTRIBUTIONS AND THE MODEL FIT FOR LARGE AND SMALL

STORMS WITH VARIOUS MAGNITUDES OF MEAN FLOW

The plots in Fig. 6 show the slices of the speed fields of the
hurricane model fits as well as the mean wind speeds for large
and small storms with various magnitudes of the mean flow.
The model fits for low and medium wind flow match the data
well, but the fit for the high mean flow shows slightly more
asymmetry than what the data suggest. This is due to lack of
high mean flow cases, which are more rare. For these cases, the
rain contamination and ambiguity selection errors may not have
been averaged out.

Table I shows the vector rms differences between the means
of the empirical speed and direction distributions and the model
fit for large and small storms with various magnitudes of the
mean flow for the same North Atlantic storms. As expected,
the high mean flow case has larger rms differences than the
other two cases; however, all the cases have a relatively low rms
difference (less than 7.1 m/s), suggesting that the model fits the
mean of the empirical distributions well. Thus, the model may
be used to describe the storm structure with respect to its size
and mean flow.

With these results in mind, the means for the prior distri-
butions for MAP estimation are derived from the simplified
hurricane model fit to the data (in the sense of optimizing the
MAP objective function). This provides the estimates of the
eye center location (latitude and longitude), the magnitude and
direction of the mean flow vector, and the maximum speed
scale factor, which are the parameters of the hurricane model.
The variances of the priors are obtained from the general
empirical distributions in Fig. 2. We conservatively assume that
the standard deviation of the speed and direction are constant at
7 m/s and 45◦, respectively.

V. IMPLEMENTATION

Incorporating the prior described in Section IV into the MAP
estimation procedure requires the search of a nonlinear ob-
jective function of several variables (the hurricane parameters
as well as the wind speed and direction at each resolution
cell). This is computationally taxing and can be a deterrent for
using such a method in near real-time processing. This section
considers a simplification by constraining the solution space
to that spanned by the pointwise ambiguities (MAP ambiguity
selection). This reduces the search space considerably, as well
as produces an estimate of the wind that is not biased by the
model. This section also considers the estimation of the eye
center from the speed field before performing MAP ambiguity
selection, which reduces the search space even further.

MAP ambiguity selection is performed to reduce computa-
tion and to provide an improved ML estimate of the wind.
MAP ambiguity selection is a form of weak nudging. Instead of
forcing the ML ambiguity choice to be closest to the nudging
field, MAP ambiguity selection allows for the likelihood value
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to dominate the speed and direction error—thus, the ambiguity
with the higher probability will be chosen more often than
with conventional nudging. This new fieldwise MAP ambiguity
selection procedure begins with conventional high-resolution
pointwise estimation. The ambiguities are then chosen to maxi-
mize the log of the fieldwise MAP objective function. Thus, (8)
becomes

L∗ = max
ᾱ

{∑
m,n

max
k

{
−(Sk − S(ᾱ))2

ξ2
S

− (Dk −D(ᾱ))2

ξ2
D

−
∑

i

(
σ0

i −M(Sk,Dk)
)2

ξ2
i

}}
(9)

where Sk and Dk are the speed and direction of the kth point-
wise ambiguity, respectively. This fieldwise MAP ambiguity
selection procedure produces estimates of the hurricane model
parameters as well as the selection of appropriate ambiguities.
Fieldwise MAP ambiguity removal is not MAP wind retrieval.
Ambiguity selection cannot provide the same immunity to rain
and noise that is possible with MAP wind retrieval. Neverthe-
less, MAP ambiguity selection is useful in two ways. First, it
can provide an estimate of the wind that is not biased by the
model. Second, performing fieldwise MAP ambiguity selection
provides estimates of the hurricane model parameters that can
be used in MAP wind retrieval. Performing MAP estimation
with these hurricane model parameters is more computation-
ally efficient than simultaneously estimating the wind and the
hurricane model parameters. Thus, fieldwise MAP estimation
(or wind retrieval) can also be done in near real time, and the
fieldwise MAP ambiguity selection (of the ML ambiguities) is
also provided.

Although MAP ambiguity selection reduces the search space
significantly, the method remains computationally taxing. To
simplify the problem further, a method for finding the eye
center from the first ambiguity speed field before applying
MAP ambiguity selection is developed. This method is based
on the circular Hough transform (CHT). The CHT is used to
find circles in a binary image (an image consisting of ones
and zeros). If the radius R of the circle is known, the CHT is
calculated simply by drawing a circle of radius R from each
pixel that has a value of one in the binary image and accumu-
lating the number of these circles that hit each pixel. Thus, the
maximum value of the CHT is at the same index as the center
point of the circle. For finding the hurricane eye, the speed field
is converted to a binary image and then searched for a circle
with a 50-km radius. Then, the CHT is weighted by the inverse
of the speed field. This suppresses circle centers in high wind
speed regions and emphasizes those in low wind speed regions
(like the eye center). Finally, the index of the maximum of the
weighted CHT is reported as the hurricane eye center. We note
that when the eye is over land or outside the swath, the CHT
method produces erroneous eye center estimates. We also note
that there may be several local maxima in the weighted CHT.
The other local maxima typically occur in heavy rain bands
(because rain attenuation may cause the rain bands to appear as
lower wind speeds), but because these are not typically circular,
the CHT value of the true eye tends to dominate.

Fig. 7. RMS error versus rain rate for ideal ambiguity selection, MAP
ambiguity selection, and MAP estimation.

VI. ANALYSIS

It is difficult to validate the MAP estimation method for
hurricanes because truth data are limited—particularly in spa-
tial coverage. One indicator of the quality of the result is the
accuracy of the estimates of the hurricane model parameters.
Another is the accuracy of the estimated wind. In this section,
simulation is employed to explore the effect of rain on MAP es-
timation and MAP ambiguity selection. Also, the new eye cen-
ter estimates are compared to the best track locations provided
by the NHC. Interpolated NCEP winds are used to check the
quality of the other estimated hurricane model parameters (the
mean flow and maximum speed scale factor). Although, NCEP
winds are limited in resolving fine scale hurricane structure,
they may be used as an indicator of consistency of the estimated
mean flow and maximum speed scale factor parameters. Fi-
nally, the H∗Wind hurricane model winds provided by NOAA’s
Hurricane Research Division [7] are used to check the quality
and integrity of the estimated winds. The H∗Wind products are
smoothed over several hours, and although they are reported
with a grid spacing of about 5–6 km, the actual resolution is
much more coarse than the UHR winds. Nevertheless, they
portray the large-scale structure of hurricanes well.

A. Simulation

Simulation is employed to analyze the effectiveness of the
new approach. Synthetic σ0 values are generated by projecting
H∗Wind wind fields and synthetic uniform rain rates through
the simultaneous wind and rain model described by Draper
and Long [19] and by adding Monte Carlo noise. The noise
represents communication noise ν and is modeled by a zero
mean Gaussian random variable whose variance is a function
of the σ0 value. Thus, ν ∼ N(0,

√
α + (β/σ0) + (γ/(σ0)2)),

where α = 0.0025, β = 1.9 × 10−4, and γ = 1.2 × 10−7 [4].
σ0 fields are simulated for various rain rates, and the error of
the resulting wind fields is calculated. Ideal ambiguity selec-
tion (the conventional high-resolution ambiguity closest to the
H∗Wind), MAP ambiguity selection, and MAP estimation are
compared. For simulation, the MAP ambiguity selection and
MAP estimation eye centers are fixed to the true eye center.

Fig. 7 shows the rms error versus rain rate averaged over a
few H∗Wind fields used in simulation. On average, the MAP
estimation procedure reduces the rms error lower than even
ideal ambiguity selection (and thus does much better than
the conventional ambiguity selection). Also, MAP ambiguity
selection approaches ideal ambiguity selection in the rms error
sense. These results suggest that, for all rain rates, the MAP
estimation procedure is superior to the other methods and that
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Fig. 8. Histogram of the distance of eye center from best track location for
(a) the model fit method and (b) the CHT method. Results are derived from
159 North Atlantic named storms from 1999 to 2005.

the MAP ambiguity selection method is similar to ideal ambi-
guity selection and, thus, generally better than the conventional
approach.

B. Quality of the Hurricane Model Parameters

This section analyzes the scatterometer-derived hurricane
model parameters: the eye center estimates, the maximum
speed scale factor, and the mean flow. The eye center results are
compared with the best track locations (which are interpolated
to the same time as the QuikSCAT measurements). First, the
MAP ambiguity selection eye center location, which is derived
from the hurricane model fit, is evaluated. Next, the CHT
eye finding method is analyzed. Then, the conventional high-
resolution method is explored with respect to the eye center
parameter. Because the conventional high-resolution method
provides no eye location estimate, the conventional eye location
is estimated from the vector field and compared with the results
of the other methods (CHT and hurricane model fit). The
maximum speed scale factor and the mean flow parameters
are then compared to maximum wind speed and mean flow
quantities derived from NCEP winds.

The best track locations are compared to the new eye location
derived from the hurricane model fit. Fig. 8(a) shows the his-
togram of the distance between the best track eye locations and
the eye locations derived by using only the hurricane model for
a number of observations of North Atlantic storms from 1999
to 2005. The mean and standard deviation are reported as well.
The distribution shows that the majority of cases are at low dis-
tance bins but the mean and standard deviation are quite large.
This can be due to several factors such as rain contamination,
unmodeled parameters, swath edge effects, land contamination,
and including underdeveloped storms in the analysis.

The eye center locations from the CHT method are compared
to the best track locations provided by the NHC. The mean and
standard deviation of the distance from the interpolated best
track location are also calculated for the eye center found by
the CHT method. Fig. 8(b) shows the histogram of the distance
from the best track eye center for the CHT method for the
same hurricanes as in Fig. 8(a). The mean is improved over the
method that uses only the model fit to find the eye.

Fig. 9. Histogram of the distance of eye center from best track location for
(a) the conventional high-resolution method, (b) the fieldwise MAP wind
method, and (c) the CHT method all based on the curl of the vector fields.
The same storms as in Fig. 8 are used.

In order to compare the methods with the conventional
approach, the eye centers are estimated by using the curl of the
vector fields. Fig. 9 shows the distributions for distance from
the best track for the conventional high-resolution eye, the
fieldwise MAP eye, and the CHT eye based on the curl of the
vector fields. The mean and standard deviations of the fieldwise
MAP and CHT eyes are lower than the those corresponding
to the conventional eye, suggesting that both new methods
generally perform better than the conventional method.

The new eye finding method based on the CHT generally
improves the eye estimates over the conventional method;
however, a human can improve the results even further. Because
hurricanes are relatively rare, using human analysts for eye find-
ing is a feasible alternative to purely automated data processing.
According to [20], a human in the loop can improve the average
error from the best track to 21.1 km. However, some storm
observations must be discarded in the analysis because the eye
center is not obvious to a human. Furthermore, human-based
analysis is somewhat subjective. A fully automated method,
such as the CHT method, provides objective and timely results.

We analyze the quality of the other estimated hurricane
model parameters (the maximum speed scale factor and the
mean flow) using NCEP winds as reference. For both the
maximum speed scale factor and the mean flow analysis,
we manually fix the eye center estimates. First, we compare
the estimated maximum speed scale factor to the maximum
wind speed reported by the spatially interpolated NCEP wind
field. Fig. 10(a) shows the scatter plot of the maximum speed
scale factor versus the maximum NCEP wind speed of several
different QuikSCAT observations of hurricanes. The general
correlation between the two quantities suggests that the maxi-
mum speed scale factor estimates are consistent with the NCEP
maximum speed.

We compare the estimates of the mean flow to a mean flow
quantity derived from the NCEP winds. The NCEP mean flow
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Fig. 10. Scatter plot of the hurricane model estimates versus corresponding
NCEP-derived quantities. (a) Maximum speed scale factor. (b) Magnitude of
mean flow. (c) Direction of mean flow.

is found by taking the vector average of the wind field in the
vicinity of the hurricane. Fig. 10(b) shows the scatter plot of the
magnitude of the mean flow estimate derived from QuikSCAT
versus the magnitude of the NCEP mean flow. Whereas the
correlation is somewhat weak, the quality of the wind estimates
is not particularly sensitive to errors in the magnitude of the
mean flow. Fig. 10(c) shows the scatter plot of the direction of
mean flow derived from QuikSCAT versus the NCEP direction
of mean flow. The two parameters correlate well, suggesting
that the MAP ambiguity selection algorithm estimates the
direction of the mean flow relatively well.

C. Accuracy of the Estimated Winds

In order to test the quality of the estimated winds, we use the
standard H∗Wind products. The H∗Wind fields are smoothed
over several hours and do not exhibit much of the small-scale
information that exists in the QuikSCAT UHR fields. Neverthe-
less, we use H∗Winds to compare to the new wind estimates
because the H∗Winds are readily available, commonly used
in hurricane analysis, and useful for studying the larger scale
storm structure [7].

The scatterometer-derived winds are compared to the closest
(in time and space) H∗Winds for a typical storm observation
(Hurricane Isabel 2003). We compare the conventional high-
resolution winds, the MAP ambiguity selection, and the
MAP estimates to the H∗Winds and calculate several metrics.
Table II reports the vector rms difference, the mean and
standard deviation of the speed difference, and the mean and
standard deviation of the direction difference for the three wind
estimation schemes. The MAP ambiguity selection method

TABLE II
DIFFERENCES FROM H∗WINDS FOR THE CONVENTIONAL, MAP

AMBIGUITY SELECTION, AND MAP ESTIMATION METHODS FOR THE

OBSERVATION OF HURRICANE ISABEL 2003

Fig. 11. Density plots of the H∗Wind wind speed versus the scatterometer
wind speeds from the three wind retrieval schemes for the observation of
Hurricane Isabel 2003. (a) Conventional UHR. (b) MAP ambiguity selection.
(c) MAP estimation. The correlation coefficients are also reported.

improves the rms difference and the speed and direction
standard deviations over the conventional method, and the
MAP estimate improves these same quantities over the MAP
ambiguity selection method. This suggests that the MAP
estimation procedure produces results that are more consistent
with the standard H∗Wind products.

Fig. 11 shows the density plots of the H∗Wind wind speed
versus the scatterometer winds for the three wind retrieval
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schemes for the same observation of Hurricane Isabel. The
correlation coefficient (ρ) is also reported. The correlation
coefficients for each of the methods are very high but the
MAP estimation winds are the highest. This implies that an
affine transformation of the MAP estimated wind field is most
consistent with the H∗Wind field. Note that the general trend
of the data is linear with a slope less than one and intercept
greater than zero. Applying bias correction (augmenting the
retrieved wind speeds so that the slope is one and the intercept
is zero) may make the scatterometer data more consistent with
the H∗Winds. Alternatively, improving the GMF for hurricanes
(particularly the high wind speeds which tend to be underes-
timated with the current GMF) may improve the consistency
with H∗Winds. Nevertheless, in the upper right portion of the
images (the high wind speed region), the variance of the data is
significantly reduced with the MAP estimation scheme. This
suggests that the MAP estimation procedure produces a less
noisy (although still biased) estimate of the high wind speeds
as compared with H∗Winds for this storm observation.

Fig. 12 shows an example of a real storm (Floyd 1999). Con-
ventional wind retrieval, fieldwise MAP ambiguity selection,
and fieldwise MAP wind retrieval are all shown. Using the
MAP model reduces the variability of the speed and direction
estimates, which gives the illusion of biasing low the wind
speed compared to the nonmodel-based ML estimates. The
MAP ambiguity selection routine finds the eye center better
than the conventional method and improves the ambiguity se-
lection. The lower left quadrant of the storm where the vectors
are pinned in the cross-track direction in the conventional high-
resolution product due to rain contamination are corrected in
the MAP ambiguity selection and MAP estimation products.
The fieldwise MAP wind retrieval method produces a more
smooth and less squared off storm than even the fieldwise MAP
ambiguity selection. This suggests that the MAP estimation
procedure may mitigate the directional biases of conventional
wind retrieval (which account for some of the squaring off of
the storms even in nonraining portions of the storms). Although
MAP estimation utilizes a model that does not describe the
comma cloud and smaller convective events (speckles in the
wind speed image), the MAP estimation method reports a
similar speed field structure as the conventional (nonmodel-
based) method.

VII. CONCLUSION

The fieldwise MAP wind retrieval method presented can be
used to augment scatterometer hurricane analysis. It reduces the
variability of the wind vector estimates, provides estimates of
useful hurricane parameters (such as the eye center location),
and improves wind direction estimates—particularly in rain-
contaminated portions of the storm. Furthermore, the method
can be applied in near real time.

The hurricane model is simplistic but appropriate for MAP
techniques in well-developed tropical cyclones. Moreover, the
MAP procedure allows the operator to vary how much the
model is imposed.

MAP estimation mitigates the effects of noise and rain
but relies on a hurricane model fit to generate appropriate

Fig. 12. Hurricane Floyd (1999) example. (a) Conventional UHR wind field.
(b) Result of the fieldwise MAP ambiguity selection. (c) Fieldwise MAP
estimate of the wind field. The wind vector fields are down sampled by ten for
plotting. The black dots represent the eye center reported by the new method,
and the black dots with white x’s represent the conventional high-resolution
eye center based on the curl of the vector field. The smoothness of the MAP
estimate may be adjusted by scaling the variances of the priors. The MAP
estimation uses the variances suggested by the empirical priors.

prior distributions. Although the new method imposes a low-
order model, the effects are less severe than pure model-based
methods as the MAP estimation scheme preserves small-scale
information that is not represented by the model.
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MAP ambiguity selection provides an improved selection of
the ML ambiguities in tropical cyclones. Although rain and
noise artifacts remain in the result, MAP ambiguity selection
imposes the model more weakly than MAP estimation and even
standard nudging. Therefore, MAP ambiguity selection may be
more appropriate than MAP estimation for certain applications
(such as the study of smaller scale structures on the order of
3–10 km).

Simulation suggests that where an eye center can be found in
the data, the MAP estimation and ambiguity selection methods
are superior to the conventional high-resolution approach for all
realistic rain rates. The eye center location for the new method
is improved over the conventional method (using the curl of the
vector fields). However, the eye center estimates may be im-
proved further by a human analyst. Furthermore, the MAP esti-
mation procedure produces results that are more consistent with
the standard H∗Wind product, although the wind speed esti-
mates tend to remain underestimated compared to H∗Winds due
to the GMF and rain contamination. The method may be further
improved by using quality control and an improved GMF for
hurricane conditions (high wind speeds and rain rates).

Future work will include the development of quality con-
trol algorithms and simultaneous wind and rain estimation in
hurricanes. We will also consider a wind and rain field model
for simultaneous wind and rain MAP estimation. Future work
will also explore MAP nudging (pointwise MAP ambiguity
selection with NWP winds as the mean of the prior), which can
be applied to generic wind structures beyond tropical cyclones.
The MAP procedure assumes that a hurricane is present in the
data. Future research will involve the use of the MAP model
with automatic hurricane detection.
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