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Abstract. Consider two questions. What qualitative features should a spectrum of
wind driven wave amplitudes possess in deep water? Then, is it possible to compute
such a spectrum ab initio? In answer to the first question, at the least the spectrum
should exhibit a spectral peak determined by the acting wind; an asymptotic power law
tail; and an angular dependence between the dominant wind and wave directions. The
principal result of this paper is that a model to calculate a wind-driven sea spectrum
that satisfies the first two requirements starting from a broad suite of initial conditions
has been constructed and exercised. To this end, wind driving mechanisms and mod-
els for dissipation caused by wave breaking are investigated. This study does not in-
clude detailed hydrodynamic calculations, but rather an evaluation of physically plau-
sible model interaction terms. These are appended to Hamilton’s equations for a wave
field in deep water. This methodology leads to deterministic ordinary differential
equations for the evolution of the wave field in which three and four wave nonlinear
interactions are incorporated. The deterministic form of the equations is preserved
through the introduction of nonstochastic driving and dissipation terms. The time evo-
lution results presented fulfill the qualitative expectations desired for the spectrum.
The calculations also yield much more information. Full phase information is re-
tained. The relative magnitudes of the nonlinear interaction terms may be assessed as
functions of time. The same applies for the magnitudes of the driving and dissipating
terms. This information will be used to improve the model to where it is ready to con-

front experimental data.

1. Introduction

The objective of this paper is to introduce driving and dissipa-
tion terms into the Krasitskii (1994) formulation of Hamilton’s
Equations for ocean surface gravity waves in a manner that pro-
duces wave spectra in qualitative agreement with experiment.
Remarkably there is little in the literature to indicate that the in-
corporation of such terms has been considered in a systematic
fashion. Indeed examples of including dissipation within deter-
ministic models are usually ad hoc, see e.g., Smith [1998] and
Watson and Buchsbaum [1996]. The term ad hoc does not need
to be taken in a perjorative sense: the terms used in these works
were in accord with the stated aims of their investigations. None-
theless it seems that a systematic examination of driving and dis-
sipation within a deterministic framework is not only appropriate,
but even overdue.

The viability of a fast Fourier transform (FFT) computational
method for solving Krasitskii’s equations, employing a convolu-
tion method for computing the nonlinear interaction terms, has
been demonstrated in the absence of driving and dissipation [Wil-
lemsen, 1998]. The motivation for that work resided in part with
a perceived need for rapid yet accurate calculation of the evolu-
tion of the sea state for use, for example, in navigation. By way
of introduction it is useful to list the principal results of that pa-
per. They are as follows: (1) the FFT formulation was succesfully
implemented; (2) numerical stability was achieved, as evidenced
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by extremely accurate energy conservation; (3) rapid growth of
modes in resonance with respect to others was exhibited; and (4)
it took appxroximately 15 s of computer time to model 1 s of
wave evolution using the convolution method and of the order of
10 times this doing straightforward numerical integrations. This
time is not blazingly fast, but the work was performed on a circa
1992 machine. The calculations run much faster on a state of the
art platform.

In a further development, the fully nonlinear evolution of an
asymmetric Gaussian wave group has been investigated [Willem-
sen, 2001]. Such idealized waveforms are an excellent laboratory,
both theoretically and experimentally, for investigating effects of
nonlinearity on wave steepening and thus on the approach to wave
breaking [Magnusson et al., 1999; Banner and Tian, 1998]. An
important result from this study stems from the observation that
wave steepening may occur within the calculation as a conse-
quence of interference between two or more waves. However,
nonlinear dephasing of the spectral configuration which leads to
steepening in x space can cause the high end of the spectrum to
grow catastrophically. The precise manner in which this occurs
was discussed and illustrated with examples by Willemsen [2001].
In brief, only the nonlinear interactions can “pump” excess energy
from one part of the spectrum to another. Within the numerics the
excessive growth manifests as an “ultraviolet” instability.

The above observation can be interpreted as a signal that a
cutoff on the wave steepness should be imposed to prevent such
catastrophic growth. Physically this would correspond to wave
breaking when the wave steepness exceeds an appropriate thresh-
old.

Thus the next logical step in the computational program is to
incorporate driving and dissipation terms into the dynamical equa-

27,187



27,188

tions of motion. This will be done following a brief review of the
nonlinear equations to be solved in the form of Krasitskii [1994]
and of the methodology. Results from the amplified model will
then be discussed in detail. These were obtained by using differ-
ent initial conditions, different wind speeds, different dissipation
terms, and different dissipation “constants.” The present work is
not intended to provide detailed agreement with experiment, but
rather to demonstrate that important qualitative features of wind-
driven waves can be obtained. In brief, the principal results are as
follows:

1. As noted in earlier work, the nonlinear interactions by
themselves produce a marked increase in the high spectral com-
ponents within approximately one period of the dominant wave.
Specifically, components which were initiated at the level of
computer noise grow by several orders of magnitude, although
they remain several orders of magnitude smaller than the peak of
the spectrum.  This feature does not change with driv-
ing/dissipation.

2. With the growth model to be described below, different
wave numbers grow at different rates. After as few as five periods
of the initial dominant wave, a new spectral peak develops at a
wave number larger than that of that initial wave. The peak shifts
toward the red systematically as a function of time. The time
dependence of this shift is studied quantitatively in section 3.

3. The spectrum falls oft as a power law asymptotically above
the wind-driven peak of the spectrum. The exponent of the power
law varies only by a small amount as a function of initial condi-
tions and wind speed. It does, however, depend sensitively on the
form chosen to model the dissipation. In the course of these in-
vestigations it will be seen that if the dissipation is weakly nonlin-
ear, certain initial conditions can lead to numerical instabilities,
just as in the case of the models without dissipation. Other initial
conditions remain stable, and for these a spectral exponent may be
obtained. However, to tame the instabilities, more highly nonlin-
ear dissipation terms are required. The associated spectral expo-
nents depend on the degree of nonlinearity. Ruminations regard-
ing the value of the spectral exponent which emerges from the
calculations and its relationship to the dissipation term will be
presented in section 5.

4. The Fourier transform (FT) of the velocity potential is com-

puted along with the transform of the wave amplitude. It is found
that for wave numbers above the wind-driven spectral peak, this
function satisfies a linear theory relation to the FT of the ampli-
tude () = Ci 1§, a prelude to later notation, where C is the
phase speed) to a remarkable degree. Thus only the phase speed
factor modifies the spectral tail of the velocity potential from that
of the amplitude. (When there is little chance of ambiguity, the
FT of the potential and amplitude will be denoted as simply the
potential and amplitude.) As will be seen, this is because the
intrinsic nonlinear dynamics remains truly “weakly nonlinear.”
5. The probability distribution function (pdf) of the wave ampli-
tude h(x, t) is approximated very well by a Gaussian after as little
as a dominant initial wave period when the initial condition is
broadly distributed. When the initial condition models preexist-
ing swell, on the other hand, the pdf may under some circum-
stances remain markedly non-Gaussian even after 200 such peri-
ods.

2. Background
2.1. Autonomous Dynamics

Although full details regarding the convolution method will
not be reproduced here, it is useful to give an example, which
also serves to introduce notation. The convolution theorem states
that the convolution of function f with g, denoted C(f, g; k), can
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be evaluated by using Fourier transforms, denoted F, as follows

Clf g k)= fdk' fik - k') g(k') = FL{F() Fg)l.

One term in the nonlinear temporal evolution equation (see be-
low) for the Fourier component of the wave elevation is ({ is that
component, Y the Fourier component of the surface velocity po-
tential)

Ia(k)=fdk] C(kl)fdkz Ik - k- kol Wik - kj - kp) ko).

Then, directly from the definition of the convolution we have in
two steps

fdkz - kp - kol (k- kj- ko) Ckp) =
CUk'Ny G k- kp)

1,(k) = f dk; COKN, G k- kp) Sk,

which is itself a convolution. The fact that such convolutions can
be evaluated by using FFT programs is what makes the method
computationally powerful.

As is wellknown, the equations governing surface waves may
be obtained as a set of Hamilton’s equations from the energy
functional for the problem. The Krasitskii [1994] form of these
equations is obtained by making a systematic perturbation expan-
sion, with the relevant expansion variable being the wave slope
kC(k). The linear theory corresponds to retention of powers of
€ and y no higher than quadratic. The first correction term in the
Hamiltonian is third order, and the second correction term is quar-
tic. Thus one speaks of “three-wave and four-wave interactions.”

It is also wellknown that the three-wave interaction term has no
resonances in the limit of deep water (ki >> 1). Thus it may be
eliminated entirely by means of a canonical transformation. This
transformation has the effect of modifying the form of the fourth-
order interaction term in the Hamiltonian, which does contain
resonant interactions in deep water (except in one dimension
[Dyachenko and Zakharov, 1994], although one can be close to
resonance, as discussed by Willemsen [1998]. However, it is not
necessary to perform this transformation. The computational
labor of retaining the three-wave interaction is quite small. There-
fore in what follows it shall be left intact. The combination of
third- and fourth-order interactions retained here corresponds to
what would be called a fourth-order interaction had the canonical
transformation been performed.

Coefficients to be displayed below apply in the limit of deep
water, and in the absence of capillary effects. Very interesting
direct numerical simulations within the framework of Boussi-
nesqu equations have been performed by Pushkarev and Zak-
harov [1996, 2000] retaining capillarity and finite water depth,
but these cases will not be discussed here.

To this order, then, the Krasitskii equations in deep water
explicitly read

9

o=y
1
-Efdk] [kl 1k 71 - kek ] Wik p) Sk - k)

-ffdkldkz Ktk kp kp) wik -k - ko) Gk k) (12)
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]
a—g’;k =g Gt o [(dkglkpotk-kp)+ gl Tkl

Wk ) k- kp)
+ffdk,dk2 Kk kp, ko) Gk -k - kp)

(k) wiky). (1b)

In the above, all (wave number) k variables are twodimen-
sional, although for convenience vector notation (e.g., k = k) has
been suppressed. (For this work the vectors are actually one di-
mensional, but nothing changes in the form of the equations.
Again to avoid confusion with other workers’ nomenclature, di-
mension here refers to the dimension of the horizontal coordinates
and does not include the vertical.) Additionally, g is gravitational
acceleration.  Since the velocity potential and the displacement
are real quantities, their Fourier transforms must satisty the condi-
tions W(k) = w*(-k), L(k) = C*(-k), where the asterisk denotes
complex conjugation.

The integral kernels KQ and K‘V above are explicitly

I
Ky =gz Witk - kp - kol (K + 1k - k; - kol

Stk - kgl - 1k - kol) (2a)

1
Ky =2 ikl (gl + Vel = k= k1= k- k) (2b)

Equations (1) and (2) govern the dynamics of the wave field in
the absence of driving and dissipation. They are phase-retaining
equations and so intrinsically supply information which is sup-
pressed in the very formulation of the Wave Modeling (WAM)
type transport equations. They will now be supplemented with
expressions for wave growth and dissipation.

2.2. Deterministic Driving and Dissipation

Recall that Hamilton’s equations for ocean waves, in the Kra-
sitskii form or in any equivalent form, are both deterministic and
energy conserving. Introduction of driving and dissipation terms
as appendages onto Hamilton’s equations can destroy both of
these properties. (To avoid confusion in terminology, recall the
clementary harmonic oscillator. Its equations of motion can be
derived from Lagrangian as well as Hamiltonian dynamics. Alone
the oscillator conserves energy. A damping term is added to the
equations of motion to bring the oscillator to a stop in a finite
amount of time. This damping term is added in an ad hoc manner
to the equations which follow from an energy-conserving formal-
ism. Energy is no longer conserved.)

Modifications of the basic equations which involve statistically
fluctuating quantities (for example a fluctuating wind) give rise to
“Langevin” equations. These may serve as the basis for a com-
plete statistical mechanical characterization of the system under
consideration. Once external  statistically  fluctuating
drive/dissipation quantities are introduced, the system ceases to be
deterministic as well as energy conserving. An interesting exam-
ple of such a procedurc was provided some time ago by West
11983].

The present author spent a considerable amount of time at-
tempting to amplify the approach developed by West with the
goal of obtaining an approximate statistical mechanical frame-
work within which the Fourier transform of the wave amplitude
autocorrelation function, commonly referred to simply as “the
spectrum,” could be derived rather than postulated. At the very
least it was hoped that the program would provide independent
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support for the “random phase approximation” utilized in trans-
port formulations of wave dynamics of the kind elaborated upon
in great detail by Komen et al. [1994].

A consequence of these efforts was a working hypothesis for

further endeavors: all of the essential features of a wind-driven
wave spectrum can be derived, at least in a computational sense,
through suitable introduction of driving and dissipation terms
which are entirely deterministic. In considering the driving, for
example, the inertia of the ocean water is so much greater than
that of the atmosphere that short-term wind fluctuations impact
high-frequency “riders” on longer gravity waves but on average
do not contribute to the overall growth rate, at least to first order
of approximation. This was observed to be true with SWADE
data during the course of a storm [Willemsen, 1997].
The situation regarding dissipation is much cloudier. Neverthe-
less, following Phillips [1985] among others (see below), it seems
plausible that dissipation occurs throughout the spectral range,
although with weight factors such as wave number & to a power
required for the term to be dimensionally correct. Roughly speak-
ing, quantities broadly distributed in wave number space are
tightly distributed in real space, and this fits a picture in which
waves break in discrete groups (at least until the wind is so strong
that a foam description with an ill-defined interface becomes ap-
propriate). At the same time the dependence of dissipation on k
usually implies that the dissipation is strongest for large k. This
too is plausible if one wishes to attain a “mature” sea with wind
driving balanced with dissipation in an average sense across the
spectrum, because the shortest waves grow the fastest. A quanti-
tative elaboration of these remarks appears later.

2.3. Forcing Terms

As alluded to above, it is important at the outset to distinguish
between two separate scientific approaches to the problem of
characterizing wave growth and wave breaking. Consider for
definiteness the case of wave growth. One may invoke classic
fluid mechanics studies by Jeffreys [1924, 1925], Miles [1957],
Phillips [1957], Benjamin [1959], and more recently Belcher and
Hunt [1993] and Cohen and Belcher [1999]. These works repre-
sent first-principle attempts to identify and parameterize the
physical mechanisms responsible for wave growth.

In marked contrast to this work, there is a parallel body of
research that tries to construct computationally tractable yet realis-
tic models for driving and dissipation based on observation and/or
simulation. Again focusing on driving, one may start with Plant’s
[1982] model based on direct observation. Scaling arguments
which lead to a “fully developed sea” with k7% asymptotic spec-
tral falloff have been invoked by Kitaigorodskii [1983], Zakharov
and Filonenko [1966], and Phillips [1985], to name but a few, in
order to fix the functional form of both the driving and dissipation
terms. A relatively recent work by Belcher and Vassilicos [1997]
models dissipation based upon a combination of scaling and sta-
tistical ideas in the spirit of Kitaigodorodskii, Zakharov, and Phil-
lips but comes to a rather different conclusion: that the saturated
wave number spectrum in the downwind direction decays as k*
rather than k72, as observed by Banner [1990] and others. That
work may contain a number of assumptions which require further
justification from the experimental side, but it illustrates how the
carlier scaling arguments might be less constrictive than one
would think at first sight. In yet another direction, Al-Zanaidi and .
Hui [1984] developed a model for wave growth based upon nu-
merical studies.

The work described in this paper falls squarely into this second
camp. The aim is to draw upon reasonable hypotheses for driving
and dissipation models and then to use these models within the
FFT computational framework in order to describe the sea surface
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in a state of dynamical evolution (wave generation, wave dissipa-
tion, and fuily nonlinear coupling of the wave amplitude and ve-
locity potential). The key point regarding the treatment of dissipa-
tion (beyond viscous losses) in this paper is that one is attempting
to model the effects of wave breaking in a simple manner. There
is no attempt to address the complicated dynamical processes
which occur during wave breaking itself.

Note that the two approaches listed above are not mutually
exclusive. For example, Belcher and Hunt derive a us” law for the
energy growth due to the wind (where u- is the friction velocity).
This is precisely Plant’s form. The difference is that Belcher and
Hunt (and other approaches in the same vein) attempt to compute
the numerical value of the overall coefficient multiplying us’.
The situation here is analogous to introducing macroscopic (hy-
drodynamic) viscous dissipation with a physically plausible func-
tional dependence, but with a viscous coefficient which must be
determined experimentally, and understood only at a more micro-
scopic physical level. Reaching more deeply into the physical
plausibility, it may be said that the “viscous dissipation” is a lin-
ear approximation to a more complicated dissipation functional of
the velocity potential, with the first expansion coefficient identi-
fied as “the viscosity” of the fluid.

In truth, there is likely to be no single value for the unknown
coefficient for wave growth, as different values will be appropri-
ate depending on things such as the stability condition between
the ocean and the atmosphere [Pierson, 1990]. The value of the
numerical investigation described here is to establish certain
bounds within which growth and dissipation coefficients may
reasonably lie in order to produce a realistic ocean surface.

2.3.1. Growth terms. Consider the following four essential
issues to be dealt with in formulating a phenomenological model
for wave growth in response to a wind. First there is the func-
tional form of the driving itself. Next is the problem of parame-
terizing the wind velocity. Then, one must ensure that the wind
drives waves appropriately depending on their phase speed, as
will be discussed in more detail below. Finally, one must ade-
quately parameterize the directional properties of the wind.

The growth of a wave field driven by the wind is often de-
scribed in terms of the growth of the energy, for example, dE/dt =
o(U) E, in which a(U) is a function of the wind speed U. Con-
sidering Belcher and Hunt [1993]for concreteness, however, the
computed growth function may also be written as 9%, /0t o< us°G,
where as was previously noted u- is the wind friction velocity.
Note that their calculation was performed in a frame moving at the
phase speed of the spectral component ;. This seems a natural
starting point for the present modeling effort.

However, since the friction velocity is not necessarily simply
proportional to the nominal wind velocity, this form is awkward,
for one would like to shift to a “laboratory” frame of reference via
the shift U — (U - ¢;), where ¢ is the phase velocity. This is
close to the Al-Zanaidi and Hui [1984] form, save that they use
U(M) to define an appropriate wind speed. For the purposes of
this paper, we will simply introduce a “parameter” U (in meters
per second) in a driving function similar to that of Al-Zanaidi and
Hui. This formulation will be refined in order to make compari-
sons with experimental data in future work.

An important set of considerations includes the following: the
wind should cause waves with phase velocities smaller than its
velocity to grow, waves with larger phase velocities may be di-
minished, and waves with phase velocities opposite to the wave
direction should also diminish. To represent these requirements
parsimoniously, introduce the angle ¢ between the wind direction
and the wave direction, and let the phase velocity always be a
positive quantity, i.e., ¢y will refer to the wave speed rather than
its velocity. This leads us to consider the Donelan and Pierson
[1987] model for wind driving:
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d
—a(;[kx(Ucosq)/ck—l)IUcosq)/ck—lI(oka. 3)

It is readily verified that this functional form satisfies the afore-
mentioned constraints by virtue of the factor containing an abso-
lute value. The angular frequency factor w, renders the expres-
sion dimensionally correct. While in d = 1 the cos ¢ term can take
only the values %1, it has nontrivial variability when d = 2. The
precise specification of the directional term is a matter of debate
within the modeling community. The current placement seems
logical on the basis of the frame of reference in which Belcher and
Hunt, for example, perform their calculations.

A final point applies to all of the numerical examples discussed
below. Since the work is in d = 1, it is useful to initiate the wave
field as a progressive wave in the direction of the wind. In the
work of Willemsen [1998,2001] it was useful for the initial wave
to propagate symmetrically in the right and left directions. Wrap-
around boundary conditions in x space (hereinafter called con-
figuration space) enable the right and left moving waves to col-
lide, producing the opportunity to explore interference between
opposing waves. In this work, the (FT of the) velocity potential is
adjusted in relation to the (FT of the) wave amplitude in such a
manner as to achieve the desired progressive wave.

2.3.2. Dissipation terms. Within the present formalism, ordi-
nary viscous dissipation takes the functional form Jy, /0t =
-vk*y,, where v denotes the kinematic viscosity. Our goal is to
consider suitable additional terms which model wave breaking as
a form of dissipation. The approach taken is in the spirit of Ko-
men et al. [1984]: one examines candidate dissipation functionals
and asks if the resulting spectra are physically realistic and vice
versa. These authors initially started with a Pierson and Mosko-
witz [1964] (PM) spectral form but found that this was consistent
with a dissipation function that they considered to be implausible.
They then substituted a plausible dissipation function and let the
spectrum emerge as a result of the calculation. What we will do
below is exhibit a range of dissipation functions and their result-
ing (d = 1) spectra. The work is different from that of Komen et
al. because we are not working within the transport formalism.
Later research will probe the relationship between models of the
kind being introduced here with transport models, but this has not
been done as of this writing.

A short calculation indicates that the dimension of \, denoted
[wl, is LT, (This follows from the dimension of a velocity
potential in configuration space: the dimension of W must take
into account the dimensionality of the Fourier transform.) Thus
[ow(k, 1)/dr] = L™T?, and any model term for dissipation is con-
strained to have this dimension.

We approach the construction of such a term in two steps.
First, certainly the combination .y satisfies the dimensional
constraints. Then, if we restrict the possible factors which de-
scribe the dissipation to include g (gravitational acceleration),
wave number k, and  itself, we need to construct a dimensionless
function of these three quantities. In d = 1 we may consider any

SR g ), while in d = 2 we may consider fik"y/ g).
Before proceeding to utilize these observations, it is interesting
to note that in earlier times there was no compelling restriction to
introduce solely dimensionless quantities into physical theories.
The “fundamental constants” of physics and chemistry include the
electric charge e, Planck’s constant #, the velocity of light ¢, etc.
It is within the context of perturbation theory that the dimen-
sionless combination ¢*/#c, the “fine structure constant,” is recog-
nized as a useful parameter in quantum electrodynamics. The
parsimonious mathematical description of friction between bodies
called for the introduction of a parameter with dimensions, the
same for viscosity as already described, and diftusion as well.
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Today, however, one dares introduce a new dimensional quantity
to describe physical phenomena only when all other possibilities
have been exhausted. We proceed with this caveat.

The temptation arises to try to fix the form of the putative dis-
sipation term by using scaling arguments, specifically in the form
of Phillips [1985]. For example, from equation (1b) one finds
that the nonlinear four-wave interaction term scales with wave
number as k"2 under the assumption that y and { scale accord-
ing to their intrinsic dimensions. Demanding only that the dissipa-
tion term scales in the same manner yields function flx) = K2

However, within the linearized theory, Y o ¢; € holds dynami-
cally, and it holds to an excellent approximation for large k even
when nonlinear terms, driving, and dissipation are included in the
calculation. (This result is obtained from the models to be consid-
ered below.) The “dynamical” proportionality above leads to a
different scaling theory. Let f{x) = x*. Then matching the four-
wave nonlinear term with the dissipation yields the prediction ¢
0 oe 21 - 2D ywhich is quite different from the preceding. It
will turn out that the exponent describing the asymptotic power-
law falloff of the wave number spectrum is sensitively dependent
on the dissipation term selected, as the above scaling argument
suggests, but not sensitively dependent on other parameters of a
given model. For example, the choice y = 4 leads to the predic-
tion that I, falls off as k™.

This choice is singled out for illustration because preliminary
results revealed that when x =2 for d = 1, instability set in for a
“wind speed” U =5, which is the very “demon” we wish to avoid.
Instability does not set in when ) = 4; so the paper deals almost
exclusively with this choice. We will find, however, that K'% s
far from what is observed in the calculations, which casts doubt
on the scaling argument. We will return to a discussion of this
argument in section 5 once various initial conditions have been
evolved.

2.4. How Do We Know That We Are Actually Driving and
Dissipating the Ocean Surface?

As is well known from common practice, a term in the equa-
tion of motion for { which is proportional to { is considered to be
a “driving term” if the coefficient is real and positive, despite the
fact that { is constantly changing sign as a function of time. Simi-
larly, a term is considered to be “dissipative” if the coefficient is
real and negative, as in the case of viscosity. However, when a
nonlinear term is introduced to represent dissipation, it is not a
priori obvious that the term is unambiguously dissipative. It must
be demonstrated.

The consistent way of verifying that non-Hamiltonian modifi-
cation terms are in fact doing what they are supposed to be doing
may be found in the Landau and Lifshitz [1960] textbook on Me-
chanics. Although their argument was supplied for a Lagrangian
system, the method is readily adapted to describe a Hamiltonian
system. What follows is an example of how the argument works.

Let the unperturbed Hamiltonian describe the linearized theory

H“:%J dk Wiy + 5 J' dk 1P, @)

The aim is to compute dH,/dt in the presence of driving and dissi-
pation terms. Simply carry the time derivatives inside the inte-
grals and apply the equations of motion, which for linear driving
and simple viscous dissipation read

L,

o5 = Ikl gy + oy Gy (5a)
0
—gik =-g Ck——sz Wk' (Sb)
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The linear terms cancel in dH,/dt, and one has left

dH /dt = +og j dk o 15 = v J dk W Iy, 2. (6)

The manifest positivity of the integrands demonstrates that the
driving and dissipation terms are indeed adding to and subtracting
from the energy, respectively. (Of course, o— o(U, k) can be
negative in the Donelan-Pierson model; the term then describes
direct wind-driven diminution of the wave energy. The term (U,
k) should appear inside the integral for that model. )

Of course, one can solve the simple set of equations (5) ex-
actly. The eigenfrequencies are

Q = (0w - vi)2 + (1) 2 + 0o + VK2 - o - vk (7)
a result which clearly demonstrates the driving/dissipating nature
of the added terms. But the point is that the same principles in-
voked above apply when using the fully nonlinear Hamiltonian
with more complicated dissipation terms, which cannot be solved
exactly. The proof is a tedious and uninstructive procedure; so it
will not be reported here. As discussed by Landau and Lifshitz, it
becomes useful to invoke Euler’s theorem on homogeneous func-
tions in order to demonstrate the positivity of the integrands in-
volved in the more complicated cases. The only caveats which
emerge are that the argument y in the function f(x) discussed
earlier must be replaced by Iyl and that only even powers of x are
allowed (otherwise one cannot guarantee that the term is dissipa-
tive).

3. Illustrative Model Results

The full nonlinear model of equations(la) and (1b) has been
run in d = 1, augmented by the Donelan-Pierson driving term,
equation (3), with ¢ = 0, an overall numerical coefficient o, =

0.0125, and a dissipation term of the form B{k" Ny JAg}* @, wi
with coefficient B to be discussed. The functional form corre-
sponds to function “f’ discussed earlier being set to flx) = x*.
Recall that this form was chosen because preliminary investiga-
tions showed that x> was too weak in the sense that the same in-
stabilities which led to this investigation recurred.

The time integrations were done by using Matlab function
“ode45.” which is a variable time step Runge-Kutta ((4),(5))
solver. Code optimization was not an issue here beyond success-
fully implementing the FFT techniques, as was discussed earlier.

Before viewing specific scenarios, it is useful to examine Fig-
ure 1. This figure portrays the growth time constant associated
with the Donelan driving function. The sharp cusps which are
observed occur at k - values which are approximately at the posi-
tions of the singularities that exist in the time constant (inverse of
the driving coefficient) when U = ¢,. Values of k above a given
cusp correspond to modes that can grow in this wind field. Val-
ues of k below the cusp correspond to modes that have negative
driving terms, that is, waves that are suppressed because they are
traveling faster than the wind. These negative time constants are
depicted as positive in order to include them in the semilogarith-
mic plot. The utility of this plot is illustrated by the following
example. Notice that when U =15 ms’', modes right down to k =
0.075 have experienced at least one efold growth after 1000 s.
The e-folding time at k = 1 is slightly less than 2 s.

We now turn to examining a series of configurations character-
ized by initial conditions and wind speeds. Our attention will
focus on the evolution of the wave spectrum as a function of time,
but it must be kept in mind that the present methods retain full
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Growth parameter o = 0.0125

Growth risetime s

0.5
k rad m-1

Figure 1. Growth time constant associated with the Donelan-Pierson driving function. Curves labeled U =
5,10, and 15 ms™ represent one e-folding time for wave growth at any given wave number at that wind

speed, with the growth parameter o = 0.0125.

phase information of the wave field A(x, f), and the velocity poten-
tial as well.

In addition, we maintain full information as to the relative
strengths of the driving, dissipation, and nonlinear terms. This is
useful for evaluating the appropriateness of the truncation of the
nonlinear interactions to fourth order. Although detailed results
will not be presented, typically after about 1000 s mean wave
slopes are of the order of about 0.01, while the maximum slopes
are of the order of 0.05. So the system is truly only weakly
nonlinear. Direct measures show that the linear terms are of the
order of 5 to 10 times larger than the three-wave interaction term,
which is in turn of the order of 5 to 10 time larger than the four-
wave term. These measures will become even more significant
for d = 2 because of the existence of true four-wave resonances.

Consistent with the intent of this work, the examples which
follow are not always “‘comparing apples to apples” as when only
a single parameter is varied at a time. This type of systematic
investigation will be done in the near future. The point here is to
illustrate the various “‘degrees of freedom” which are available for
exercising the computational scheme.

3.1. Swell Models

“Swell” models are those that have initial conditions strongly
dominated by a single mode of the spectrum. Before proceeding,
some detail regarding discretization of the spectrum is in order.
The work in this paper has been done with a maximum wave
number of | m™, corresponding to a highest frequency of 0.5 Hz.
This spectral range corresponds to that encountered in the
SWADE data analyzed by Willemsen [1997]. The “resolution” is
determined by the number of points utilized in discretizing the
wave number continuum extending from k =—1to k = +1. In this
work n = 1024 was chosen. This number is close to the limit of
memory required to run the calculations efficiently with the pre-
sent platform.

Because of the discretization, the wave numbers are equally
spaced by an amount dk. Now, two different scenarios may arise
for swell models: the dominant initial mode can be precisely at
one of the discrete wave numbers determined as mentioned, or it
can be somewhere in between. (For example, suppose one starts
with hi(x, 0) = cos kyx, where k, is not an integer multiple of dk.
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Figure 2. Temporal evolution of the wave amplitude spectrum for an initial swell with X = 100.5 m, driven by
a wind with speed 15 m s, The initial condition is on — lattice. TAV, time averaging. This averaging is performed
over a 10 s interval which ends at the times indicated by symbols: 10 (o), 100 (+), 500 (x), 1000 (box), 1500 (dia-

mond), 2000 (star). These times are in seconds.

Its discrete Fourier transform exists but it is not as sharply peaked
as when k) is an integral multiple.) For convenience a wave num-
ber which exactly equals a discretized value will be called “on-
lattice.”

3.1.1. On Lattice. Let us first consider a model which is on-
lattice and in which U > Cp, where Cp is the phase velocity at the
initial peak of the spectrum. Specifically, we choose U=15ms™
and A, =100.5 m with a corresponding Cp = 12.52 ms”, and we
select the dissipation parameter B = 1. The condition U > Cp can
be re-expressed in the form k > k*, k* = ¢/U%. Such modes are
driven to grow by the wind forcing term, while those satifying the
reverse inequality decay. In the present configuration k* = 0.044
m’,

Turning to Figure 2, the ordinate is <IG(k, ni>>, where < ... >
denotes the time average over a span of 10s. The figure caption
indicates the symbols corresponding to the final time for each
curve. The amount of 10 s encompasses multiple periods for
almost all of the modes and is thus a suitable averaging time. An

average over a greater amount of time runs the risk of being bi-
ased owing to nonstationarity of the process under consideration.

The figure displays several qualitative features which all the
swell models considered have in common. First, the nonlinear
interaction produces strong excitation of harmonics of the initial
on-lattice wave number within the first 10 s of the time evolution.
Although, as has been mentioned, in d = 1 there are no true reso-
nances, it will be convenient in later discussion to discuss such
sharp peaks as quasi-resonances (QR). (Also in the future the
“time evolution® will often be abbreviated to “the run.”) By ¢ =
100s the large k tail has grown by from 7or 8 to approximately 23
orders of magnitude primarily owing to the growth term alone.
(From Figure 1, we can estimate the growth as approximately exp
(100/2) = 5 x 10*") In addition, the amplitude at the initial spec-
tral peak has diminished by 3 orders of magnitude, but the ampli-
tudes of its harmonics have increased. Nonetheless, some of the
QR have been washed out by the surrounding spectral compo-
nents.
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Figure 3. Temporal evolution of the wave amplitude spectrum for an off-lattice initial swell with A = 247 m, driven by

a wind with speed 15 m s"'. Symbols as in figure 2.

Leaping ahead to 500 s, the entire spectrum has been lifted
except at the initial peak, which continues to lose energy. If one
considered the driving term alone, one would expect the spectrum
below k* = 0.044 to be decreasing, whereas in fact it is seen to be
increasing (though remaining very small in comparison with the
rest of the spectrum.) This can only be interpreted as an “inverse”
cascade from higher wave numbers to lower ones as a conse-
quence of the nonlinear interaction.

Especially striking, however, is that the spectrum “saturates” at
wave numbers above appxroximately 0.35, with the largest value
at the end of the spectrum coinciding with the highest value
achieved at t = 10 s. Inasmuch as the growth term is still opera-
tional, saturation must be caused by the counteraction of the dis-
sipation term. However, the precise form of the saturated regime
must reflect, additionally, the nonlinear exchange among modes.
The spectrum below the saturation point is lower. Referring back
to Figure 1, the reason at least in part is that the wind has not
acted long enough to significantly increase this portion of the
spectrum. The net effect is to produce a windinduced peak in the
spectrum.

As time increases in multiples of 500 s, the wind peak marches
to lower wave numbers. The saturated region maintains its quan-

titative pattern, with the numerical values coinciding to within the
size of the marker symbols. In addition, the resonant values
which persisted above the “continuous” part of the spectrum at 1 =
100 s are swallowed up by the wind and dissipation effects: by the
time the wind peak passes to the left of a resonant contribution, its
magnitude is no greater than the value of the saturated regime on
either side of it.

The saturated regime has been examined separately on a log-
log plot. One finds that the data at values of k somewhat above
the wind peak are accurately fit by a powerlaw dependence. For
example, the ¢ = 2000 s exponent was determined to be (-3.32) for
k > 0.37. Notice that this value implies that the data for r > 500
s are encompassed by the fit. At the later times, a relatively broad
transition regime exists between the location of the wind peak and
the onset of quantitiable power law behavior.

Finally, one may inquire into the dependence of the wind in-
duced spectral peak wave numbers as a function of time. From
Figurel one infers that the decrease in k. as ¢ increases is to be
expected. Yet when k. values inferred from the growth term are
superimposed on this figure, it becomes obvious that the quantita-
tive trend is noticeably different from that expected from that
term. Treating k.. versus f, as an independent data set, one
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Figure 4. Temporal evolution of a wave amplitude probability distribution function for an on - lattice initial condition

driven by a wind with speed 10 m s

finds that the function £, = (5.61 x 10% exp (-6.84 k,..) gives a
reasonable fit over the interval t = 500:2000 s.

This functional form is somewhat surprising and must arise
from the complete interaction of nonlinear terms, driving, and
dissipation (see, e.g., Hara and Mei [1991]). It was found that
this qualitative behavior is encountered in all of the cases studied,
although a graph supporting the goodness of fit will be exhibited
for only one case. Thus while the numerical coefficient and the
value of the decay constant may be case and model dependent, the
qualitative prediction stands a good chance of being tested ex-
perimentally.

The results of the preceding paragraphs provide an a posteriori
justification for terminating this run, and the others as well, at ¢ =
2000 s. Inverting the functional form, the wind induced peak
wave number shifts only logarithmically with time, so it takes
longer and longer to shift that peak downward by equal amounts.

The same swell initial condition was run with U= 10 ms™, so
that Cp > U. All of the qualitative features observed for U= 15m
s™" occur for this model as well. The principal quantitative differ-
ences are that the wind peak is considerably retarded in time in
comparison with the U =15 m s case, as is to be expected from
figure (1) albeit with the caveats expressed above; the spectrum at
wave numbers below the wind peak vary from 7 to 2 orders of

magnitude (progression toward smaller k) below the correspond-
ing spectrum for U = 15 m s'; by t = 2000 s a larger number
number of harmonic QR below the wind peak are still present.

A further noteworthy difference is that the 15 m 5! case devel-
oped a number of satellite peaks in the vicinities of the harmonic
peaks; these are absent for the 10 m s case. However, while the
satellites are an interesting phenomenon their presence hardly
affects the appearance of the sea surface because they are orders
of magnitude smaller than the principal peaks. Additionally, since
Cp > U the spectrum below £*(10) = 0.098 m.”" s expected to
decrease, for the reasons discussed for the first case. It does not,
and this again is interpreted to be a consequence of nonlinear
interactions.

The most interesting result from this run is that saturation in
the high end of the spectrum (above the wind peak) behaves quan-
titatively almost identically as it did in the first run. The large-k
tail, from k = 0.48 to k = 1, is of power law form with exponent
(=3.20 ) based on the r = 2000 s data. The earlier time data lines
up with this later data to within the same accuracy as was shown
in Figure 2 for U= 15m s It seems, therefore, that the spectral
exponent is insensitive to the wind speed.

Earlier, reasons were given for selecting the specific dissipa-
tion function used in this work: a dissipation function propor-
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Figure 5. Temporal evolution of a wave amplitude probability distribution function for an off - lattice initial condition

driven by a wind with speed 15 ms™.

tional to hyl* (rather than the lyl* form we are working with) some-
times led to catastrophic high wave number divergences in the
calculations. However, it did not always behave in this manner.
In numerically stable runs at wind speeds of 10 ms ™ and 15 ms™,
for example, spectral exponents with values between (-2.15 ) and
(-2.5) were generated. Thus the spectral exponent does depend
sensitively on the precise form of the dissipation function.

The on-lattice swell model has been exercised under several
other initial conditions, and all of the results are qualitatively as
described for the two above. Most importantly the exponent of
the spectral tail remains in the range (-3.2) to (-3.32) and thus
appears to be universal within numerical/statistical uncertainties.
For example, a significantly different on-lattice swell model with
Ao =402.1 m, U=20ms" yields a spectral exponent of (~3.32),
the same as for the first case within roundoft, for a range begin-
ningatk=0.13m".,

3.1.2. Off Lattice. Next, consider swell which is off-lattice,

that is, the dominant wave number does not correspond to one of

the discretized values of the model. Again one may envision a
wide variety of initial conditions, but here only a single case will
be reported in order to demonstrate the differences which arise vis
a vis the on-lattice models.

The casc to be considered is U =15 m s and A, = 247 m (ad-
mittedly a very long wavelength, but one wishes to explore limit-
ing cases). This wavelength corresponds to k = 0.0254, which is

close but not exactly equal to a lattice wave number with the dis-
cretization described at the beginning of this section. A conse-
quence is that the discrete Fourier transform of, say, cos kyx, is
peaked about lattice values close to &, but it has much broader
shoulders than if k, was an on-lattice value.

Figure 3 displays the spectral evolution of this model. Com-
paring with figure 2 both similarities and differences are evident.
In no particular order of importance, the qualitative similarities
are as follows: progression of the wave peak toward the red as a
function of time. the formation of a saturation regime onto which
all of the curves coincide, and quasi-resonance formation as a
consequence of the nonlinear interaction. Qualitative differences
include a striking reduction in the number of QR which are ex-
cited: note that none are excited at all below the swell peak. A
curious data collapse occurs between the initial swell peak and its
first quasi-resonant excitation which was not present in on-lattice
models, and overall there is a much smoother structure.

Quantitatively, the spectral exponent for this model is ( —3.33)
for k > 0.37. This exponent is consistent with the on-lattice mod-
els, reinforcing the suggestion that it is universal. The temporal
evolution of the wind peak wave number is again found to be of
exponential form. but the parameters are different: 1, = (1.22 x
107) exp (-15.1 k). Comparing Figure 3 with Figure 2, it is
evident that the wind peak is approaching the swell spectral peak
at a much slower rate in the off-lattice case than in the on-lattice
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Figure 6. Temporal evolution of the wave amplitude spectrum for an initial “Pierson-Moskowitz” spectrum calculated
with parameter u =5 m s, driven by a wind with speed 10 m s,

case, even though the wind speed U = 15 m s in both cases.
This, together with earlier observations regarding the QR, sug-
gests that the resonant effects of the nonlinear interaction are sup-
pressed in the off-lattice case. It further suggests that resonant
effects play a significant role in the approach to full development
at a given wind speed.

To conclude the discussion of swell models, we look at exam-
ples of the evolution of the probability distribution function of the
wave amplitudes. Figure 4 applies to the on-lattice model U = 10
m s and Ag=100.5 m. The times in this figure are nominally 10
s, 50 s, 100 s, and 2000 s in order of decreasing magnitudes at the
h = 0.05 gridmark. The times are “nominal” because all of the
amplitudes in the 10 s interval below the nominal value are in-
cluded in order to improve statistics. The behavior consists of a
contraction of the wave amplitudes over time, starting from a very
broad and multimodal distribution (the t = 10 s case is much
broader than the figure indicates, extending to approximately *
0.5 m) and evolving into a narrow, smooth distribution suggestive
of a Gaussian. An attempted fit reveals, however, that the shape is
not truly Gaussian, although it is close.

Figure 5 refers to the off-lattice model and reveals two interest-
ing properties of the corresponding distribution. It also starts as
an essentially bimodal distribution (positive and negative ampli-

tudes corresponding to the initial condition). However, it main-
tains this bimodal structure, changing significantly over the first
100 s of the run as the wave height range diminishes. The second
point of interest is that subsequent change in the shape of the pdf
occurs comparatively slowly between 100 s and 2000 s. Even at
that late time the pdf has not entirely lost its bimodality.

These two very different observations beg for quantitative
comparisons with experimental data. This will be attempted in
further work. To anticipate later comments, in nature it is much
more likely that one will encounter off-lattice swell than on-lattice
swell; that is the initial swell will rarely be peaked about a single
wave number. Thus the second numerical experiment may behave
qualitatively more like what one is likely to encounter in a field
experiment than the first one. If the second scenario is accurate,
the implications for predicting extreme events are far from trivial.

3.2. Broad Initial Spectra

The initial spectra used in this subsection are loosely based on
a Pierson and Moskowitz [1964] form. They will be labeled as
PM, although it would be a stretch to claim that they are PM spec-
tra one would use to describe experimental data. The functional
form used is the same as in the work of Willemsen [2001]:
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Figure 7. Shift of the wind peak in the spectrum as a function of time for a PM (5) initial condition driven by a wind

with speed 10 m s™. The solid line represents a fit to the d
order of magnitude in time.

Fk) = Wok P exp (-a/k?).

The parameter o equals a constant o, divided by wind speed U*.
(It is not to be confused with the wind driving parameter of the
same name.) For all of the cases described below, the value of U
used in this formula is 5 m s”'. This leads to the selection ¢ =
168 so that the spectral peak occurs at the value of k such that the
phase speed equals U. The exponent B used in this formula is
chosen to be 7/2. (Again, it is not to be confused with the dissipa-
tion coefficient.) Overall this choice of parameters gives rise to a
curve which is smoothly varying with a weak maximum and a
very small domain in which power law fall off is dominant.

The initial wave amplitude spectrum is defined by using ; o<

'\/Ikl”z F(k), with the extra power of k arising from the relation
between { and the wave action. Inasmuch as “pure” PM initial
conditions as defined here lead to very cuspy wave shapes in con-
figuration space, the {; are assigned random phases. This pro-
duces a very choppy initial wave field. Consequently, the overall
constant of proportionality is chosen so that the maximum slope
of the initial wave field is not too large. For the cases discussed
below, the maximum initial slope was set to 0.1.

ata described in the text. Notice that the fit is good over an

There is a further change in this set of models which involves
the dissipation parameter 3. Inasmuch as the value B = 1 used for
the swell models led to very rapid damping of the wave fields at
the onset of the runs, a value = 0.125 was introduced into this
set of runs in order to evaluate the differences this produces.
Further discussion of the consequences of varying B is reserved to
the next section. For now, suffice it to say that rapid damping still
occurs and that the important qualitative features encountered in
the swell models occur here as well.

Reverting to the use of U as defining the imposed wind speed,
the first case considered is defined by U = 10 m s"'. Examination
of figure 6 indicates that red shifting of the wind peak as a func-
tion of time, saturation of the spectral tail, and the prospect of
asymptotic power law falloff are all present in this model. Differ-
ences from the swell models include a descent (rather than an
ascent) from the initial spectrum into the saturated spectrum,
stimulation of QR only in the region below the wind peak, and an
apparently much more narrow spectral range. This latter is in fact
merely a consequence of the absence of an overriding swell peak.
Inspection of the swell cases in retrospect reveals that the wind-
sea spectral range is of the same order of magnitude as that in this
figure.
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Figure 8. A typical wave amplitude pdf within the class of PM initial conditions. Particulars are indicated in the figure.

Quantitatively the power law falloff as calculated from t =
2000 s data starts from k = 0.58, thus encompassing the earlier
time spectra. The spectral exponent is (-3.22). Evidently the

value of the spectral exponent does not depend on whether the
initial condition is swell or broadly distributed.

In addition, the temporal advance of the wind peak toward the
red is again exponential: £, = (8.39 x 109 exp (-44.6k,.q). The
range and validity of this fit may be evaluated from Figure 7. An
inevitable distraction is that for closely spaced times the precise
positions of the wind peaks in k-space may lie so close together
that they cannot be resolved. This phenomenon is what gives rise
to a sequence of plateaus in the data: they are an artifact devoid of
physical significance.

The pdf for this case is persistently Gaussian from early times.
Figure 8 shows an approximate fit which gives an idea as to the
validity of such a functional representation. Hower, random
phases were assigned to the spectral components in the first place,
so it is plausible that this resulting form for the pdf is “built in.”

The PM (5) initial condition was subsequently exercised at U =
15 m s'. The spectral exponent in this case was found to be
slightly different from the preceding, taking a value of (-3.34)
starting from k = 0.51. Surprisingly, however, to within roundoff
errors the expression for the temporal advance of the wind peak is
identical to the case U=10m ™. A difference is that the range of
the fit extends all the way from t = 10 s to 2000 s, extrapolating

accurately beyond the range in which it was initially computed.
In addition the “goodness of fit” is quantitatively better, with
fewer and less pronounced plateaus.

Figure 9 completes this section. It is an example of yet another
method of visualizing data that could be applied to any of the
other models as well. To explain the figure, recall that the calcu-
lational method produces functions {(k, f). For each k and for the
range of ¢ indicated in the figure, one may calculate the FT with
respect to ¢, yielding a new function {(k, ®). The modulus
squared of this function is a surface represented by contours in the
figure after the replacement f = w/2n . The outermost contour
represents a threshold value so that smaller values are suppressed
from the graph, hence the narrow range in k.

The first significant feature of this figure is the very clear
asymmetry which exists between positive and negative f. The
interpretation of this asymmetry is rooted in the observation that
within the linear theory, the argument of the wave field (kx - wr)
represents a right moving wave, in the direction of the wind. The
existence of (a much smaller number of) left moving (negative
frequency) waves does not seem physically unreasonable, but it
will require more work to thoroughly understand how they arise
within the calculations.

Visualization of a second significant feature has been enhanced
by the insertion of two continuous curves at positive and negative
frequencies. These curves represent the linear dispersion relation



27,200 WILLEMSEN: DRIVING AND DISSIPATION FOR OCEAN SURFACE GRAVITY WAVES
f-k Spectrogram; PM(5), u=15; t=19390:2000s.
05 T

fs1

0.256

krad./m.

Figure 9. Wave number-frequency contours for a PM (5) model driven at 15 m s™". The crosshatched lines indicate

the linear dispersion relation 2nf =\/g|kl.

2nf = \/g_lk-l In the work of Willemsen [2001] the frequency
spectrum at each k was also computed, but it was found instruc-
tive to display the results in a different manner. The peak fre-
quency at each wave number was determined and from this an
effective phase velocity was computed. These were plotted as a
function of k to exhibit deviations from the linear theory. The
deviations can be understood in terms of mode mixing. The com-
plexity displayed in figure 9 suggests that such a simple compari-
son is not likely to prove fruitful in the presence of driving and
dissipation. For one thing, the maxima of the contoured function
are significantly shifted away from the linear dispersion relation,
both for right and left moving waves. Even more striking is a
visually obvious alignment of the positive frequency contours
along an axis which is flat as a function of f. No clear theoretical
explanation for this alignment has yet come to mind.

4. Further Exploratory Calculations

The results discussed above have centered about a few well-
posed features of the time developing wave spectrum. However,
as discussed in Willemsen [2001], one has the ability to monitor
the magnitudes of the third and fourth order nonlinearities as
functions of wave number and time (examples were discussed

earlier), to study the instantaneous driving and dissipation func-
tions, and to study the overall energy and action evolution of the
system. That is, each separate contribution to the time derivatives
of { and y can be examined in isolation to assess its relative role,
as well as the ensemble behavior which manifests in global quan-
tities. Of course one may also examine the wave field and the
velocity potential in real space and time. It would be erroneous to
believe that the full richness of data which the computational
method supplies has been explored within this paper.

In addition the work in this paper has been restricted to a non-
fluctuating wind field for reasons cited earlier. Along with this, a
steady wind throughout the course of the calculation has been
assumed. Incorporation of new features (wind drift at first, wind
fluctuations if deemed necessary) is completely straightforward,
and it will be done in future investigations.

Having stated these caveats regarding the scope of the present
work, it remains for us to tie up a couple of loose ends germane to
the actual work that has been described.

First, it is interesting to ask what happens if the wind is sud-
denly turned off after acting for the length of the runs reported.
Figure 10 displays the results whena U =15 m s”' wind acting on
the PM(5) initial spectrum is removed after
2000 s. The figure contains 50 separate curves, each one corre-,
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Figure 10. Compilation of data demonstrating the falloff in the spectrum of a PM (5), 4 = 15 m s”' run when the driv-
ing term is shut off (o = 0) after 2000 s of evolution from the initial condition. The lines represent time averaged spec-

tra at times 10, 20,...., 500 s after shutoff.

sponding to a time average over 10 s at 10-, 20-, ..., 500 s end-
points after removal of the wind. The curves have been superim-
posed in order to emphasize the remarkable lack of change over
approximately a factor of 2 in k-space just under the spectral peak;
and also to show that the spectrum above the peak appears to
“pivot” about the peak value. Quantitatively one finds that the tip
of the cascade behaves as <IC(f, kpo)*> = 0.34 r%°* for ¢ in the
interval 20-500 s after shutting the wind off.

This falloff implies that the spectral exponent also changes
with time. At the latest time considered, t = 500 s, this exponent
had declined to a value of (-4.28). Similar results are obtained for
different initial configurations. For example PM (5) with U = 10
m ™ shows a r* falloff for the tip of the spectrum, and a spec-
tral exponent of (-4.29) after 500 s.

Finally, the case PM (5), U= 10ms"', was recomputed by us-
ing parameter 8 = 0.0625, that is, half the value discussed earlier.
There were no qualitative changes in any of the spectral properties
that have been examined. As is to be expected, the spectral levels
are higher with the smaller damping parameter. In the region of
the spectral tail the quantity 1§ is larger by approximately a factor
of 2. The slope of the tail did not change. This is most convinc-

ingly visualized by plotting the ratio of the results (not shown):
this ratio is flat as could be over the range of the power law fit.

5. Summary, Conclusions, and Future Directions

The results which have been discussed represent a solid ad-
vance toward achieving the goal of being able to calculate a wind-
driven sea spectrum ab initio. Such a spectrum should exhibit a
spectral peak determined by the acting wind, a power law tail
which is in agreement with experiment, and directional character-
istics which must also be in agreement with experiment. The first
two features have been attained qualitatively; more work involv-
ing tuning of parameters will be required in order to make com-
parisons with field data.

The Donelan-Pierson driving function successfully produces a
wind peak in the spectrum which migrates to the red as the wind
forcing persists. The precise numerical coefficient can and should
be adjustable to accommodate differences in air/sea properties
which go beyond wind speed. For example, Donelan [1999]
utilizes different overall numerical coefticients for favorable and
unfavorable wind-wave configurations. Yet another issue to be
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addressed in future work concerns the appropriate choice of the
nominal wind speed U to be used in the calculation in terms of a
measured wind speed.

An important aspect of the driving function which was not
treated in this paper is that the directional properties of the spec-
trum will follow directly from the formulation. There is no free-
dom to massage the spectrum which emerges once the model is
exercised in d = 2. No problems of principle block implementa-
tion of calculations in that dimensionality. The stumbling block
at present is computational resources: n = 1024 in d = 1 amounts
to a 32 x 32 lattice in d = 2, which is too small to give reliable
information.

The dissipation function utilized in this work was constructed
in the time-honored manner of invoking dimensional analysis on
the variables considered to be germane to the dissipation process.
In more detail, however, a specific form of the function

™/ 4/ g ) was adopted, namely, the fourth power of its argu-

ment. The available numerical evidence suggests that this choice
is the overriding determinant of the asymptotic spectral exponent.

Further interesting quantitative results emerged from analyzing
the results of the numerical computations. One is the logarithmic
law governing the shift of the wind peak as a function of time in
the presence of a steady prolonged wind. While the parameters of
the fit were found to be very dependent upon the case under con-
sideration, the qualitative dependence held in every case. It is
hoped that this prediction can be checked experimentally. In
future work the shift of the peak under variable conditions will
also be analyzed.

One issue regarding wave aging which the present work does
not address is the shift of the overall amplitude of the spectral tail
by a factor Ulcp (wind speed over peak phase speed) raised to a
power as discussed, for example, in Banner [1990]. A possible
reason for not detecting this trend in the present calculations is
that the wave number range is about an order of magnitude Jlower
than the data examined by Banner.

A second interesting observation regards the “pivoting” of the
spectral tail about the initial wind peak once the wind forcing is
removed. The power law decay of the high wave number tip of
the spectrum as a function of time implies that the magnitude of
the spectral exponent increases with time. Again, it would be
very useful to analyze data with this prediction in mind. Recall
also that the region of the spectral peak did not respond very rap-
idly to the elimination of the wind forcing. This is qualitatively in
accord with the well-known persistence of swell for very long
times.

Additionally, the scaling of the FT of the velocity potential
with the FT of the wave amplitude for wave numbers above the
wind peak presents both experimental and theoretical challenges.
Has this scaling been observed? Why is a simple relation from
linear theory so accurate in the presence of nonlinearity, driving,
and dissipation? This is especially intriguing in light of Figure 9,
which shows strong deviations from the linear dispersion rela-
tion.

We have also seen that a considerable range of values of the
dissipation parameter 3 is permissible without changing any im-
portant features of the spectrum and its evolution. This said,
however, the results reported above do suffer from what could be
a serious quantitative problem. It is that the dissipation term re-
duces the energy in the system dramatically over the first 10 s or
so in every run that has been conducted. This is not in good
qualitative agreement with experiment.

A degree of “ramping up” of the dissipation term exists within
the present formulation in the following sense: the “new” dissipa-
tion term is of comparable magnitude to the viscous dissipation
term when hyl is of order vk™'”"® . In the saturated regime we have
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found Iyl = ¢, 1) with 1G] o< k™**77 (taking the spectral exponent
in the middle of its observed range for the sake of argument).
Thus focusing solely on the wave number dependence, at times
before saturation is reached the viscous dissipation term domi-
nates, while after saturation the two terms are comparable.

However, the viscosity V is very small numerically (107% m?
s, so the new dissipation term soon overwhelms viscous losses.
This would suggest that a dramatically smaller dissipation coeffi-
cient B might be required for the system to gain energy from the
wind significantly before losing it to dissipation. Utilization of a
very small value of B might, however, cause instabilities to reap-
pear. Balancing growth rates and dissipation rates in a more real-
istic fashion is the most important goal for future research.

Finally, to focus this goal, note that “observation” of a spectral
exponent as a consequence of temporal evolution within the cur-
rent computational scheme is interesting: but why does the expo-
nent take the value that it does? In section 2 the possibility of
invoking Phillips-like arguments which tie together the scaling
properties of the nonlinear, driving, and dissipation terms was
mentioned. Recall, however, that one arrives at very different
results depending on whether y scales like its intrinsic dimension,
or like its “dynamical dimension,” found to be ¢,C.

To demonstrate the Phillips-like approach in detail, assume we
are in the asymptotic scaling region so that if k — Ak, with A a
scale factor, § — AL, The dynamic scaling property of y leads
toy — 7»"’"”2\11. Then in abbreviated form, the scaling behavior
of equations (la) and (1b) supplemented with the driving and
dissipation terms for transverse dimension d is

ng——) l—p[ 7\'1/2 + }\’zlﬂ/Z-p + x211+5/2-2p +(X(7\.k, U) 7\,”2]

ot (8a)

%,k N k—p ( 1+ xl+l-p + 7\,2(“2-2[) +v 7\’3/2 + B }L4(z[+l-p)).

(8b)
A word of explanation is in order. The first term of the right hand
side of equation (la) is Ikhy,. If k — Ak, the term becomes
AMAP™2) lkly,, whence the term A" in equation (8a). The
nonlinear terms’ scale factors include those of the fields, the inte-
grals, and the kernels.

Consider first the exponents of the three-wave and four-wave
nonlinear interactions in equation (8a) in d = 1. They are equal if
p = 2, which coincides with the so-called “old Phillips spectrum”
albeit for the wrong “d.” In this case the entire nonlinear source

g,

term for Y scales as A except for the implicit dependence

within the function ok, U). (For very large k this scales as 1/c,?
— Mc,® but within the range of k studied in this paper that as-
ymptotic scaling is not realized.) In addition, with this value for p

. . .9 .
the entire nonlinear source term for —\laj;(‘ scales as A2 with the

exception of the viscous dissipation term, which we have already
argued is numerically insignificant. It would appear, then, that
consistent scaling of all of the principal terms in the equations of
motion has been achieved. Unfortunately, however, in d = 1 we
have found that the scaling exponent p = (3.2 to 3.3)/2.

The way to proceed under this circumstance is to insert the ob-
served value into eqations (8a) and (8b). The result is surprising
and intriguing if not necessarily comforting. If for definiteness the
value p precisely equal to 1.6 is inserted, one finds

ng__% 7&-['6[ 7\’1/2 +)\’(),9+ 7\11.3 +OL(7\J(, U) )\’l/2]

ot (9a)
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?%’;k__) );l.()[ 1+ }\'l)A_‘_ x(),x +v )\'3/2 + B xl.()]‘

(9b)
The result is that there is no matching of scaling exponents among
all of the relevant terms. Rather, there is a single term which
dominates all others in either equation, and it is the B-dependent
dissipation term. Referring to equation (8b), this corresponds to
the choice 5p = 8 when d = 1. If the slightly larger value p = 1.65
is inserted instead, the result is qualitatively the same, except that
the ensuing exponent for the dissipation term is (-.25) rather than
Zero.

The result just obtained may be tested by using the weaker dis-
sipation function described in section 2 corresponding to X =2. In
this case the model dissipation scales as A ®ind=1. Ifp=4/3,
the spectral exponent becomes (-2.67), which is in the right range
for the cases cited earlier using this model. Unfortunately, how-
ever, this leads to nonlinear source terms in equation (8a) which
scale as a positive power of A. It is possible that this is why these
models still tended to diverge numerically. Additonally, of
course, the dissipation term is not dominant.

Passing to d = 2, equations (8a) and (8b) imply that the scaling
‘exponents of the nonlinear interaction terms match if p = 3. With
this choice each of the nonlinear terms in equation (8a) scales as
A2 while those in equation (8b) scale as A™*. Remarkably, for
both the cases =2 and ¥=4 the P—dependent dissipation term
scales as A%, suppressed with respect to the nonlinear interaction
terms. The spectral exponent is then (-6), which is not acceptable.

The alternative scenario being developed seeks to predict a
value of p which makes the dissipation dominant. In the case X =
4 one finds that p= 11/5 leads to A" scaling of the dissipative
term. This value succeeds in making the dissipative term over-
whelm all others. In the case ¥ = 2, the situation becomes more
complicated, as in d = 1. The dissipative term scales as A ifp =
5/3. Once again this leads to nonlinear source terms in both equa-
tions (8a) and (8b) which scale as a positive power of A, so that
the dissipative term is not the dominant one.

The problems in front of us begin, then, as follows. The
“principle of dominant B-dependent dissipation” has arisen as a
direct result of the computations reported here for d = 1. If we
apply this principle to d = 2, we are led to predict asymptotic
spectral falloff of the form 1§} o< k23, Numerical convergence is
not guaranteed, but it seems likely as a consequence of the princi-
ple. This rate of spectral decay is, however, again considerably
larger than what is expected, exceeding even the “old Phillips”
spectrum for d = 2.

So suppose one attempts to tune the dissipation function in
such a manner that the above principle applies yet the parameter p
is forced to take the value 7/4 in d = 2, thus producing the “Toba”
spectrum in wave number space. We may, in fact, leave the dissi-
pation term aside for the moment, and observe that the choice
p=7/4 leads to terms in equations (8a) and (8b) which scale as
positive powers of A, threatening stability. The largest term oc-
curs in equation (8a) and scales as A" Notice that these powers
follow directly from linear combinations of p and d and are en-
tirely independent of the dissipation parameter X.

In light of this observation, can the principle of dominant dis-
sipation lead to a prediction for the value of x? Once restrictions
discussed in section 2 regarding the argument of the dissipation
function are respected, we have afresh:

f(kmw/\/E )= (K g — A (kT ). (10)

Taking into account the additional factors @,  that enter the full
dissipation function we arrive at the condition (5) - 7)/4 > 5/4, or
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x > 12/5. The value y, = 4 certainly satisfies this condition. We
see that the dissipation function may be the dominant term with-
out necessarily determining the value of p provided one is willing
to entertain the existence of non-negative scaling exponents in the
equations of motion. Again, though, the existence of such posi-
tive exponents may threaten numerical stability.

To summarize, it has been discovered that a principle of dissi-
pative dominance governs the asymptotic spectral exponent ob-
tained numerically in this work. A competing principle of similar
scaling of nonlinear and dissipative processes does not lead to the
observed values of the exponent. Utilizing the new principle, it is
possible to predict that a spectral exponent in agreement with
experiment in d = 2 may emerge provided that the degree of
nonlinearity of the dissipation function which models wave break-
ing exceeds a specific lower bound. It remains to be seen whether
calculations in that dimensionality comparable in scope to those
performed here will remain numerically stable and bear out these
predictions. We have been able to argue that there does not exist
a basis for ruling out possible agreement with experiment, but it
must be left for future calculations to indicate if it is in fact real-
ized.
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