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Viscosity of suspensions modeled with a shear-dependent maximum 
packing fraction 

C. R. Wildemuth and M. C. Wi l l iams  

Chemical Engineering Department, University of California at Berkeley 

Abstract: A large amount of data from the literature on viscosity of concentrated 
suspensions of rigid spherical particles are analyzed to support the new concept 
that the maximum packing fraction (~0M) is shear-dependent. Incorporation of this 
behavior in a rheological model for viscosity (I/) as a function of particle volume 
fraction (~0) succeeds in describing virtually all non-Newtonian effects over the 
entire concentration range and also accounts for a yield stress. The most successful 
model is one proposed by Krieger and Dougherty for Newtonian viscosities, 
r/(~, ~0M), hut with ~0M varying from a low-shear limit ~OM0 to a high-shear limit 
~0M~. Microstructural interpretations of this behavior are advanced, with argu- 
ments suggesting that similar rheological models should apply to suspensions of 
nonspherical and irregular particles. 
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particle size scale (for spheres, the diameter) 
lumped kinetic parameter in eqs. (23) and (24) Greek 
butadiene-styrene 
coefficient in Arrhenius model, eq. (2) 
coefficient in Mooney model, eq. (3) fl 
parameter representing one of the three electrovis- 
cous effects (i = 1, 2, or 3) r/ 
fraction of total particulates that exist in the dis- r/0, r/oo 
persed phase, eq. (22) ~/s 
solution factor, in Arrhenius model, eq. (2) [~/] 
crowding factor, in Mooney model, eq. (3) 
kinetic rate coefficient for producing particles of r/,. 
dispersed or flocculated type, respectively z 
Einstein coefficient for particles of any shape, 
eq. (1); equal to [t/] Tc 
Krieger-Dougherty model, eq. (6) 
exponent to characterize shear-dependence in vis- rB 
cosity models of Cross, eq. (10), and eq. (23), and ry 
also in yield stress prediction eq. (24) ~o 
number of monodisperse components in a blend of CM 
spheres with different diameters 
polydispersity (in size) parameter (PM0, (0M~ 
generalized shape parameter 
temperature 
volume of "chamber" in figure 6, representing the 
entire volume of the sample 
total volume of particles in the sample 
sample volumes in which dispersed particles or 
flocculated particles, respectively, prevail; volumes 
of the "dispersed phase" or "flocculated phase", 
containing both particles and carrier fluid 

particle volume within the phase volume VD or 
V F, respectively 

coefficient in definition of r e in eq. (8); of order 
unity 
coefficient regulating F-sensitivity in eq. (10) 
shear rate, dvJdx2 in simple shear 
shear viscosity of the suspension 
low-shear and high-shear limiting values of t/ 
viscosity of the suspending fluid 
intrinsic viscosity, lim ( r / -  r/s)/~0 t/s 

~0~0 
reduced viscosity, ~l/qs 
Boltzmann's constant; in rc 
shear stress 
parameter characterizing sensitivity of viscosity to 
stress, in eq. (8) 
dynamic yield stress in the floc model 
yield stress 
volume fraction occupied by solids in a suspension 
maximum value of ~0 attainable by a given collec- 
tion of particles under given conditions of flow 
limiting values of ¢M at the low-z and high-z condi- 
tions, respectively 

1. Introduction 

At present there is no adequate  model  for descr ibing 
the viscosity, q, of  suspensions of  neu t ra l ly -buoyant  
rigid particles over the entire range of  compos i t ion  
(volume fraction ~o) and shear (rate ?) or stress r). Most  
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of  the theoretical efforts with suspensions have been 
directed toward the dilute limit, where the relative 
viscosity q~ -- ~/qs (with i/~ = viscosity of  the suspending 
liquid) is independent of  particle size scale (a) and 
polydispersity (PD) of  size, if electroviscous effects are 
absent. When particles are fully dispersed, theoretical 
rigor can be achieved; equations of  the form 

t/~= 1 + g ~ + . . .  (1) 

have been derived [1,2] for particles of  various 
uniform shapes. The coefficient K (S, z), identical to 
the intrinsic viscosity [~/] = l i m  (r/-~/~)/~0 ~/~, is depen- 

~ 0 ~ 0  

dent on the particle shape (S) and can represent non- 
Newtonian behavior through its dependence on z. For  
spheres, K =  2.5 and r-dependenc e is absent; for other 
symmetrical shapes K > 2.5 and z (or ~) dependence 
arises because of  particle orientation in the flow field 
[3]. When particles have an electric charge [4], size- 
dependence enters through the- f i r s t  electroviscous 
effect that arises from distortion of  the counterion 
cloud by the flow; for spheres, this leads to K =  
2.5 (1 +e i )  where el contains information about  the 
charge potential, dielectric constant, and a. 

At higher ~0, the interaction between particles causes 
both a stronger ~0-dependence and additional mecha- 
nisms for r-dependence. The power-series expansion in 
~0, generalizing eq. (1), has but marginal value because 
only the ~- term can be evaluated [2]. Numerous  
empirical functions for the low-shear Newtonian limit 
q0(O) have been proposed; one review [5] cited over 
250 such equations. Many other reviews are also avail- 
able [6-8].  We will cite only a few pertinent theoreti- 
cally-obtained results. 

Arrhenius [9] proposed 

where the "solution factor" (h) was employed to define an 
effective volume fraction. Mooney [10] invoked a "crowding 
factor" (k) in deriving, from geometrical arguments, 

~/m = exp [D ( 1 - ~  )] (3) 

which is functionally identical to eq. (2). In both cases, there is 
an implied upper bound on ~ such that q --, ~oM causes r /~  ~ .  
This means h=  1 / ~ = k  in eqs. (2) and (3), and also 
D = C/~g. Both equations can be connected with the dilute 
limit by setting D = [~/], 

~0 = exp ~ - - ~  " (4) 
L ] - e / e u J  

which gives the correct result as ~0 ---, 0. 
A totally different function was developed by Brinkman 

[11] and by Roscoe [12], 
1 

~,o (1 - ~o)t.l (5 )  

but was deficient in its lack of ~0 M. Only in the special case of 
infinite polydispersity, when ~0M ~ 1, would eq. (5) be useful 
at high ~0. Krieger and Dougherty [13] introduced Mooney's 
concept of crowding factor into the Brinkman method to 
obtain 

1 1 
- _ ~0 ][~1~,~ (6 )  ~b0 = (1 - k ~0)[,lJ/k (1 

x 

where we have added the last step. Details of derivations of 
eqs. (3-6) and their interrelationships are provided elsewhere 
[14]. Still another approach, by Frankel and Acrivos [15], led 
in the high-(0 limit to 

9 @/~OM) l/3 
~ / r 0 ] ~ =  8 1 - (~9/~OM) 1/3 (7) 

by a purely hydrodynamics treatment of the resistance to fow 
of the suspending liquid in the narrow gaps separating 
uniform spheres. No reference to [~/] or other dilute-solution 
parameters was made. 

Far less effort has been directed toward shear-dependence 
at high ¢. Some z-dependence arises, even in non-aggregated 
systems, from the effect of the flow field on the population 
ratio of temporary doublets-to-singlets [ 16]: 

= ~ + ~0 - ~o (8) 
1 + r/Zc 

where ~oo is the high-shear limit; and zc = c~ z T/3 a 3 where x is 
Boltzmann's constant, T the temperature, and c~ is a number of 
order unity. Comparison of eq. (8) with data on monodisperse 
spheres led [17, 18] to empirical functions 

q,.o~ = (l - 1.47 ~0) -1s2 , r/m = (1 - 1.75 ~0) -1'5° (9) 

with a small numerical adjustment in the magnitude of re. 
These results represent a minimal level of r-dependence, 

which can become exaggerated when particle aggregation 
exists. Then, multiparticle clusters can break up with shear 
into smaller clusters. A kinetics argument, with the cluster 
breakup rate proportional to ~m led Cross to propose [19] 

_ ~ 0 -  t/_______~ ( 1 0 )  
~/=r/,~ l + f l 9  m. 

Comparable concepts have been advanced for various kinds of 
floc models [20, 21], for which asymptotic flow curves at high 
shear can be extrapolated back to an intercept rB ("dynamic" 
yield stress) with r, ~ ~ or ~o 3. Other models do not predict 
rs, and none predict a true yield stress, ry. 

The second electroviscous effect [4], here designated 
e2, affects binary and higher particle interactions by 
mutual repulsion. The consequent hydrodynamic  per- 
turbations lead to higher viscosities for charged- 
particle systems, through the consequences for overall 
shear-dependence are not fully understood. 

2 .  T h e  m a x i m u m  p a c k i n g  f r a c t i o n  

2.1 General 

Any model for r/(~o) claiming utility beyond the 
dilute limit must incorporate (0~, and to match the 
dilute limit it must contain [~/] or K. Both eqs. (4) and 
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(6) achieve these goals and are capable of good re- 
presentations of experimental data in the low-shear 
limit. Our experience is that the Krieger-Dougherty 
(KD) model is the most successful, particularly as 
(a--+ (aM, and we believe its derivation to be the most 
general and rigorous. Most of what follows, then, will 
utilize the framework of the KD model, eq. (6). 

It is notable that almost all physical and chemical 
features of a suspension are characterized through 
either [q] or (aM or both. Thus, [q] reflects S, el, and a 
degree of shear-dependence consistent with S and el; 
for uncharged spherical particles there is no shear- 
dependence in [q], and in general the dependence is 
expected to be weak. There is no effect of size scale a 
(except through el) or PD of individual particles, nor 
of particle surface chemistry. Appearances to the con- 
trary are indications of particle aggregation, with [t/] 
then representing the aggregate and not the dispersed 
particle. 

However, it is through (aM that most system param- 
eters are manifested, and always more strongly than 
through [,/] when (a achieves moderate and high values. 
Most obviously, (av=(av(S) because of different 
packing efficiencies for various shapes; the upper 
bound here for monodisperse particles is (aM = 0.74 for 
spheres. For any given shape, PD enters by increasing 
(aM since the small particles can fit in the vacancies be- 
tween large particles; this leads to an upper bound (for 
infinite PD) of (aM = 1. An independent treatment [22] 
for predicting t/n0 when N monomodal components 
were mixed led, in the N --+ oo limit, to/lr0 = (1 - (a)-3; 
this corresponds to [~/] = 3 in eq. (6), using (aM = 1. 
Temperature changes influence ,/, (T) over all ranges of 
(a, but thermal expansion differences between particles 
and the liquid carrier cause (a to change and thus 
also (a/(av, which is most important at high (a. 

Perhaps most significantly, (aM reflects the state of 
aggregation, so it represents indirectly the particle 
electric charge and surface chemistry that influence the 
tendency to form aggregates, their microstructure, and 
their resistance to breakup. The microstructural varia- 
tions that are possible range from chainlike to globular. 
In the latter case, it is clear that carrier fluid immobi- 
lization within the aggregates makes the effective (a 
larger, so even with a constant (aM the enhanced (a/(av 
causes a larger ~/~0 (in fact [24], and also according to 
eq. (6)). 

2.2 Shear dependence 

We propose to assign the principal shear-dependence 
of suspensions to (aM. The convenience of this is ob- 
vious: established functional forms for */0 ((a/(aM), such 

as eq. (6), can be used directly. The physical rationale 
is simple and appealing: a low-r limit (am0 exists 
because of random initial orientations of particles and 
possible aggregated microstructure, while at very high 
v (aM--+ (aMo~ (a higher value) because the flow permits 
particle orientation, particle migration (in polydisperse 
systems) to fit particles into voids optimally, and 
breakup of microstructures associated with particle 
aggregation. With this (aM(V) assignment, it is sug- 
gested also that all other parameters affecting (aM will 
influence the r-dependence as well. This provides a 
useful framework for coupling S, PD, ei, e2, and 
surface chemistry with non-Newtonian behavior. 

It is, of course, necessary to demonstrate that 
(aM = (aM(V). This is most dearly done with data on 
spherical particles, for which [,/] is independent of 
shear; we therefore present the non-Newtonian data of 
Maron and coworkers [25-27] on latex spheres. To 
avoid too much dependence on eq. (6), we analyze the 
data initially in terms of the empirical but popular 
Eilers model [28] that has been found highly reliable 
for the Newtonian viscosity of dispersed spheres: 

I 1[ 1.25(0 2= 1 q- (11) 
r#= 1-+ 1-1.35(a [-(a/(a~sJ 

where the second form is our generalization, using 
[~/] = 2.5 and (aM = 0.74 for spheres. (Eq. (6) becomes 
identical to eq. (11) if [17] (aM = 2, a value close to those 
that describe a great variety of data when eq. (6) is 
used.) An advantage of the Eilers model is its con- 
vertability to a simple linear form for preliminary data 
analysis, 

# , / ~ / 2  _ 1 1 
_ _  ( t / j /2_  1) + 0.5 [~/]. (12)  

(a (aM 

Thus, plots of (t/~/2- 1)/(a vs. (#/J12_ 1) should produce 
straight lines with slope 1~(aM and intercept 0.5 [~/], if 
the model is obeyed. An analogous linearization can be 
made from the Mooney model, eq. (3). The data 
[25-27] were plotted as suggested by both equations, 
for conditions of constant r. At low (a, both fit the data 
well and gave similar values of [~/]. However, at high (a 
the Mooney model often provided an unacceptable fit 
and occasionally led to (aM > 1. For this reason, the 
parameters [r/] and (aM(r) arising from the Eilers fit 
were selected for presentation. 

Results are shown in figure 1 for neoprene spheres of 
diameter 0.11 Ixm in water [26], over a measured stress 
range 0 < v < 50 Pa. The excellent unification of the 
data demonstrates that for these particles the function 
r# depends uniquely on (a/(av, with (aM(V) incorporating 
virtually all shear-dependence. Values of (aM ranged 
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Fig. 1. Non-Newtonian viscosity data [26] plot ted as a funct ion 
of reduced volume fraction ~0/COM, with q~g = ~0M(T ). Particles 
are neoprene latex spheres of uniform diameter 0.011 gm; 
suspending fluid is water. Values of (@M, T) pairs corresponding 
to the data symbols are: [] (0.534, 0); • (0.581, 5); • (0.594, 20); 
• (0.598, 30); • (0.602, 50); © (0.615, oo), with T in Pascals. For 
all dilute cases ( • )  at all stresses, (PM = 0.615 was assumed. 
The solid line represents eq. (6); see text 
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Fig. 2. Non-Newtonian viscosities for three latex systems. 
Values of (~oM, r) pairs are: neoprene latex [26], © (0.581, 5); 
• (0.594, 20); • (0.598, 30); ~ (0.602, 50); styrene-butadiene 
latex [25], [] (0.700, 10); • (0.712, 20), <> (0.719, 30); • (0.729, 
50); styrene-butadiene latex [27]; zx (0.682, 0.025); • (0.700, 
0.60); v (0.705, 1.0), with v in Pa 

from COM0=0.534 to COMoo=0.615. (The solid line in 
figure 1 is the best fit of  eq. (6) to these data; see later 
discussion.) A similar display is given in figure 2 for 
this same system together with two other latex sphere 
systems: both butadiene-styrene (BS, 84:16) copolymer  
in water, with a = 0 . 1 2 p m  [27] and a = 0 . 1 4 g m  [25]. 
Once again the superposition is very good; the solid 
line is the same as in figure 1 and is seen not to 
represent an opt imum for the entire set here. Values of  
COg obtained from the BS data were considerably 
higher than those from the neoprene data, being in the 
range 0.68-0.73 [14] and having less r -dependence as 
suggested by this small COg span. 

These differences in COM magnitude suggested that  
the neoprene latices were actually in a state of  some 
aggregation (thus, low COg) while the BS latices were 
close to being non-aggregated (high COg, approaching 
the ideal of spherical close packing, 0.74). Support ing 
evidence is provided by [r/l, averaging about  2 . 8 - 2 . 9  
for neoprene but only 2 .5 -2 .6  [27] and 2 .3 -2 .6  [25] for 
BS. This indicates the neoprene systems contained a 
significant number of doublets or higher aggregates 
even at high dilution, consistent with the tendency 
predicted by the low COM values. A very slight tendency 
was noted with all systems for [1/] values to decrease 
with r, again consistent with the low-c0 presence of  

doublet aggregates and their breakup into dispersed 
spheres as r increased. 

Suspensions of spherical particles having different 
chemical character were also analyzed [17, 18, 25 -33] .  
Particles consisted of other polymer  latices, bi tumen,  
and glass, using as carrier fluids water, glycerol, 
mineral oil, lithene, and solutions involving some of 
these. Particle sizes ranged widely, 0.055 < a < 65 gin. 
Some of the data represented Newtonian behavior,  but  
most were non-Newtonian and some of the data reported 
were for the high-shear limit. All these are shown in 
figure 3, representing data reduction in terms of the 
Eilers model to obtain COM. The superposit ion of data  is 
deemed excellent, considering the diversity of  system 
parameters. The solid line represents eq. (6) with 
[r/] COM = 2.0. 

Similar success with a correlation for monodisperse  
spherical particles in terms of CO/COM was obtained by 
Chong et al. [34] for Newtonian viscosity. Their  cor- 
relation function was 

=[1 + 0.75 CO/COM] 2 ,1~o ~ ~ 1 (13) 
which has similarities to eq. (11). Eq. (13) does not 
contain [r/] explicitly; it agrees with the Eilers model  
(and the Einstein result) in the dilute limit if  ¢%t = 0.60, 
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Fig. 3. Non-Newtonian and Newtonian viscosities for a variety 
of systems containing spherical particles. The systems of 
figures 1 and 2 are represented only in the infinite-shear limit: 
[] [25], • [26], • [27]. Other systems are: polystyrene latex in 
water, a=0.1-0.4~tm [17] A and a = 0 . 1 - 1 g m  [18] 4~; 
bitumen with a = 4 lain in water and talloil [28] +; glass with 
a=4-40~ tm [29] in glycerol <~ and lithene O; glass with 
a = 49 ~tm in ZnBr2 and glycerol [30] o; glass with a = 65 gm in 
ZnI2 and glycerol [31] v; polymethylmethacrylate latex in 
water, a = 0.055 ~tm, in the zero-shear and infinite-shear limits 
[32] ×; glass with a = 8 and 12 gm in glycerol, and a = 4 gm in 
ZnBr2 and glycerol [33] © 

but this causes disagreement  with Eilers as ~0/~oM ~ 1 
(when ~0M = 0.74 is required). No  a t tempt  was made  to 
correlate non-Newtonian data in terms of  ~oM(z ) as is 
proposed here. 

Evidence for the need for a v-dependent  ~0M has 
appeared before, but  this has escaped widespread  re- 
cognition. Maron and coworkers [25-27] ,  in a t tempt -  
ing to fit their data with an empir ical  model ,  r epor ted  > 
that ~oM appeared to increase with z. Krieger  and 
coworkers [16-18] fitted their q(z) da ta  with eq. (8), ~_ 
but then found that t/0(¢ ) and ~/oo (fP) requi red  two 
distinct values of  pM - i.e., CM0 and ~0M~ in our  
framework [see eq. (9), for which ~oM0=0.57 and 

~o~t~ = 0.68]. 

2.3 Yield stress 

The concept of  ~0M(T) permits  a yield stress to be 
predicted for ~0 > ~0M0, a concentrat ion level that  can be 
achieved by normal mixing procedures  at high ~. This  
possibility has apparently not been pointed out  before.  

We illustrate this with the neoprene latex da ta  [26] 
from figure 2, using ¢ > 0.45. Values of  V/o and ~/oo were 

taken from Krieger and Dougher ty  [16], and eq. (11) 
was used to make predictions in the form of  smoothed  
curves for ~/£ vs. ¢ at constant ~. Results are d i sp layed  in 
figure4, showing that ~0M0=0.534 and q~M~=0.615. 
Clearly, suspensions can be prepared  with loadings  
between these limits when finite shear is app l ied  and,  
when the shear is removed (or reduced),  the condi t ion  
r/,. --* ~ is achieved as z ~ ~:y. Thus, as long as ¢ > (oM, 
a yield stress is inescapable. This feature should arise 
also for nonspherical particles and for aggregat ing 
systems, though no explicit  reliance on such compl ica-  
tions is needed as long as the system can be character-  
ized in terms of the phenomenological  ~oM (z). 

2.4 Derivation of stress dependence 

The ~y-behavior described above provides  a useful 
framework for developing a descr ipt ion for ~oM(~). We 
envision a solid-like mater ia l  structure inside a 
chamber volume Vc to which stress is app l ied  with a 
semi-permeable piston; a f igurative representa t ion  of  
the process is given in figure 5. The init ial  microstruc-  
ture (figure 5 a) is rather loose and chain-l ike,  corre- 
sponding to ~oM0 and Vc0, with the remain ing  space 
filled by the suspending fluid. Appl ica t ion  of  shear,  
with r > Zy0, causes al terat ion of  the init ial  s tructure 
and a fluid-like condit ion develops, but  pressure on the 
semi-permeable piston allows fluid to be squeezed out  

STRESS 
(PASCALS) 0 5 5 5 0  cO 

' 'I 

1 

q 

dp= 0.615 I 

I I "1 
0.45 0.50 0.55 0.60 085 

VOLUME FRACTION 
Fig. 4. Viscosity prediction of eq. (11), qf(~o), when fitted to 
the data of figure 1 at different constant values of shear stress 
r. The viscosity becomes asymptotically infinite (T ~ Zy) when 
~o --* ~OM, but this condition occurs with different values of eM 
as r varies. The two limiting values ~OM0 and ~0M~ are dis- 
played as boundaries of the ~0-region (shaded) within which a 
yield stress may occur 
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Fig. 5. Schematic representation of material structural change 
as stress increases, to illustrate how ry depends on ~0M. The 
solid-like material is contained in a chamber having a mov- 
able piston (cross-hatched) that is permeable only to the 
suspending liquid. (a) Initial condition, with floc structure 
occupying the entire chamber domain and ~0~ = ~0M0. (b) Ap- 
plication of stress to the piston causes partial collapse of the 
floc structure, creating regions of densified dispersed structure 
and expelling some liquid through the piston; thus, at this 
elevated ry, the value of ~0M has increased. (c) Even with the 
highest possible stress (ry), the process is limited to a complete 
conversion of the floc structure to the densified structure 
which is characterized by ~0M~ 

~5M(r) 

S / 
0 

SHEAR STRESS, "r 
Fig. 6. Schematic representation of {oM(r) 

until another solid-like condition is achieved with 
Vyl > VyO. The microstructure is viewed (figure 5 b) as 
consisting of mixed chains and densified regions; 
Vc < V~0, since particle volume Vp is constant and 
some fluid has escaped, and ~oM1 =V1,/Vc is thus 
increased. A succession of such incremental steps 
ultimately achieves a limiting case (figure 5c) char- 
acterized by q~M~ and Vy~o beyond which fiuidization 
cannot occur for geometrical reasons and no more fluid 
can be squeezed out. A schematic depiction of the 
expected ~oM(r) function is given in figure 6. 

For purposes of the derivation, we simplify the inter- 
mediate microstructure as a blend consisting of only 
two "phases": The loose flocculated phase having a 
particle volume VpF and total volume VF, and the 
dense dispersed phase with particle volume VI, D and 
total volume VD. This provides the relationships 

Vp Vl~ 
('OM V c VF+ V~ ' (14 )  

VF= VpF/@MO, V D = VpD/~OMoo, (15 )  

Vp = VpF q- VpD = constant. (16) 

From eq. (14) we obtain the differential form 

- v e  
d(,o M -  (VF+ VD)2 (dVF+ dVD) , (17 )  

and eq. (15) gives dVF=dVpF/fOMO and dVD= 
dVDJPMo~. Together with dVer = - dVeD from 
eq. (16), these allow eq. (17) to be expressed as 

(18) 

where df=dVpz)/Vp and f is the fraction of total 
particulates that exist in the dispersed phase. This can 
be integrated to get 

(0 M (,OMo ~gMO ~0 oo 

using the condition ~OM = ~OMO at f = O. 
What still needs to be determined is how f depends 

on r (or on )~). We envision that the two phases of 
figure 5 are in a state of dynamic exchange that 
depends on r (analogous to chemical reactions between 
phases at a given temperature): 

VpF ~ J/PD (20) 

and that the exchange rate can be written 

dVpF 
kD VpF -- kF VpD. (21) 

dt 
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At steady state, eq. (21) yields Veo = (ko /kF)  VpF and 
therefore 

VpD 1 
f -  - (22) 

VpF @ VpD 1 + (kr /kD) 

The rate constant for floc recovery, kv, is taken to 
depend on Brownian motion and thermal stability of  
the floc; thus we presume it to be independent  of  r. 
However, the rate constant for floc destruction (or 
dispersed-phase creation), ko ,  should depend on the 
hydrodynamic forces employed to overcome inter- 
particle attractive forces. Hence, the ratio k e / k  D should 
be z-dependent primarily through kD(r). Since the 
exact mechanisms for floc breakup are not precisely 
known, we use kD o( r m with m > 0. Therefore,  eq. (22) 
becomes 

1 
- -  (23) f = 1 +A z - m '  

with A and m to be evaluated by experiment.  Behavior  
of (0M(r) dictated by the combinat ion of  eqs. (19) and 
(23) can easily be made to resemble figure 6. No re- 
strictions have been made concerning particle shape or 
polydispersity, factors that might  be expected to in- 
fluence A and m as well as ~0M0 and q)M~. 

3. Data  analysis with eq. (6) 

3.1 Non-Newtonian viscosity 

The KD model of  eq. (6), generalized to permit  
(OM = (OM(r), was used to curve-fit the data of  Maron  
and coworkers [25-27].  A least-squares procedure was 
used, with input variables in pairs of  ~/r and ~0 for each 
value of r. An important  constraint was that  [~/] = 
constant, consistent with our theoretical understanding 
for dispersed spheres. Results provided opt imal  values 
of  [r/] and ~OM at each r, and also opt imal  values of  
parameters in the ~0M(r ) function: ~0M0, ~0M~, A, m. 
This procedure eliminated the subjectivity associated 

with the graphical analysis, cited earlier in conjunction 
with use of  the Eilers models, that led to the correla- 
tions of  figures 1 - 3. 

Agreement between the measured and predicted qr 
was generally very good - e.g., for the neoprene latex 
[26] at ~0 = 0.559, the largest discrepancy over the whole 
z-range was 1.7%. The optimized parameters  are given 
in table 1. Values of  ~M(r) agreed very well with those 
obtained by graphical means with the Eilers model  
[14], so the displays in figures 1 - 3  (obtained by the 
latter means) needed no alteration. 

Earlier use of the Eilers model  suggested that  [~/] was 
weakly r-dependent, implying slight aggregation in the 
dilute limit. This implication is reinforced by the 
magnitudes of [~/] in table 1, all of  which exceed 2.5 
slightly. Thus, another data-fitting procedure  was 
executed by allowing [q(r)]. This modest  change im- 
proved the data-fit significantly throughout  the whole 
range of ~0 and r. This was most noticeable for the 
neoprene latex data [26], for which the m i n i m u m  sum- 
of-squares for the entire collection of ~/~(~0, r) points 
was reduced from 420.6 to 2.5. While this procedure  
also reduced the sum-of-squares for the other two data 
sets [25, 27], this arose primari ly from improvements  in 
predicting the high-~0 regime at the expense of  the 
lower-~0 regime [14]. Values of  the parameters  emerging 
from these curve-fits are displayed in table 1 in paren-  
theses. 

Addressing first the parameters  arising f rom the 
constant-[r/] fitting procedure, we note that  the two BS 
latices had similar (0M and [r/]. This is not surprising, in 
view of their similar chemistries. The system with the 
higher concentration of potassium oleate emulsifier  per  
gram [27] had the higher [~/], 2.75 vs. 2.59, which is 
consistent with the ea effect. This higher coulombic  
activity would also be expected to lead to lower (0M, 
which indeed is also seen: ~0M0 = 0.676 VS. 0.678 and 
~0Mo~ = 0.732 vS. 0.758. The neoprene latex, emulsif ied 
with sodium n-rosinate, had [11] in the same range 
(2.61) as the BS latices but very different ~0M. While  

Table 1. Parameters*) for fitting eqs. (6), (9), and (23) to data on spherical latex particles 

Ref. Particle z range (Pa) Largest (co [/7] @M0 q~Mm A, Pam m 

26 • neoprene 5-50 0.559 2.610 0.5626 0.5875 33.1 1.167 
(3.284-2.659) (0.5785) (0.6006) (47.1) (1.131) 

25 BS 5 -  80 0.673 2.589 0.6775 0.7585 49.3 1.102 
(3.113-2.313) (0.6928) (0.7334) (82.4) (1.279) 

27 BS 0.025-1 0.641 2.748 0.6755 0.7315 0.624 1.005 
(3.059-2.771) (0.6876) (0.7082) (0.866) (1.008) 

*) Values in parentheses were obtained by allowing [~/] to be r-dependent, with the range of [I/] then displayed. Other values 
correspond to the constraint of [q] being independent of r. 
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the parameter ~0M approached the limit of  0.74 ex- 
pected for hexagonal close packing of  uniform dis- 
persed spheres in BS systems, its magni tude for the 
neoprene system (0.578-0.601) was far short of  this. 
We conclude that there was little tendency toward 
aggregation with the concentrated BS spheres, but  a 
significant amount with the concentrated neoprene 
spheres. 

Table 1 shows that m was comparable  for all three 
systems, 1.00-1.17; this comes close to duplicating the 
exponent 1.0 on 7 in eq. (8), though derivation of  the 
latter might not have been expected to be entirely valid 
as ~o ~ PM and the two models have different origins. 
A major difference among the three latex systems is 
seen in the low-v non-Newtonian transition of  one BS 
suspension [27]. This is reflected in the abnormal ly  low 
value of A (0.62Pa m, vs. 33 and 49 Pare), but  the 
reasons for it are not understood. 

It should be recognized that data correlations of  the 
form t/,. vs. (0/~0M(7) -- e.g., figures 1--3 -- do not imply  
that the same curve should be followed by all systems. 
Even if ~0M were not a function of shear, the presence of  
the exponent [~/] q~M in eq. (6) causes particle shape 
factors and the state of  aggregation to influence 
r#(~/~M) through the magnitude of [r/]. Variations of  
PD also cause the product [~/] ~0M to vary f rom system 
to system, since ~0M then varies. These trends are 
illustrated in figure 7, where the predictions of  eq. (6) 
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Fig. 7. Viscosity predictions of eq. (6) for non-Newtonian 
behavior caused by CM(r) for various constant values of the 
product [~/] CM- The highest curve corresponds to [r/] {o M = 2.5 

are given for several constant values of  [t/] (,9 M. The 
upper value 2.5 was selected to represent perfectly dis- 
persed spheres ([q] = 2.5) o f  infinite PD (~0M = 1) but 
could also represent other cases. Smaller values cor- 
respond to lesser degrees of  PD ((0M < 1) for dispersed 
spheres, or other cases. 

Other modifications to the r/r(~0/{OM) curve-shape 
occur when r-dependence is found in the product  
[r/] ¢M. If [t/] is r-independent (as assumed for the non- 
parenthetic values in table 1, for spheres), then {OM 
provides the shear influence and [~/] (0M increases with 7. 
In table 1, this case provides three illustrations, with 
[t/]{0M changing 1 . 4 7 ~  1.53 [26], 1.75 ~ 1.96 [25], 
1.86 ~ 2.01 [27]. The latter two variations are nearly 
the same in range and in magnitude,  explaining why 
they superimposed with each other so well in figure 2. 
The neoprene latex [26] differs considerably in its [t/] ~0 M 
values from the other two, a difference manifested in 
figure 2 by the curve (for neoprene) not representing 
the BS data equally well. 

When [t/] is also r-dependent, the product  [,/] q)M may  
either increase or decrease with 7 or remain nearly 
constant. In the latter case, figure 7 is a suitable rep- 
resentation, but in general deviations from the curve- 
shapes in figure 7 would occur. With the parenthet ic  
values in table 1, [q] {0M is seen to decrease with 7 as: 
1 .90- ,  1.60 [26], 2.16--* 1.70 [25], 2 .10-* 1.96 [27]. 
Note that these curve-fits (all superior to the corre- 
sponding constant@] cases) provide in the Newtonian  
limit for [r/] 0 (0M0 ~ 2; this corresponds to equivalence 
of eq. (6) with the Eilers model. The high-7 limits are 
also close to the expectation for close-packed spheres: 
[t/] ~0Moo = (2.5) (0.74) = 1.85. Indeed, the product  
[~/] ¢M was found [14] to be nearly invariant with 7 over 
two orders of  magnitude of 7. 

3.2 Yield stress 

A unique feature of  the fPM(T) model in eq. (19) is 
that it can be inverted to predict Ty. Since, by defini- 
tion, (0M is the value of (0 above which flow is im- 
possible, then the value of 7 prevailing at that  fp is 
identified as 7y. Solving eqs. (19) and (23) for z gives 

Ty({0) = [A (°M°°( (P--{OM---~O]] 1/m (24) 
[ (flMO \ ~OMoo - -  (fl ] ] 

where it is understood that ~gMo o > {0 > {0M0. Other  
functions for f (7 )  in eq. (23) would lead to other pre- 
dictions for 7y(~O), but in principle such an inversion 
can always be made. Eq. (24) meets the requi rement  
that Ty ~ 0 as ~0 ~ q)MO and 7y--* oo as ~o---, (PMoo (no 
flow possible). Clearly, the behavior of  ry(¢) in eq. (24) 
does not resemble a simple power-law dependency on ~o, 
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as reported for the dynamic yield stress re. However,  
because the rheological data employed here do not 
encompass the yielding phenomenon (note, from 
table 1, that ~0 < ~t0), they cannot be used to test 
eq. (24). 

4. Other work 

The rheological concepts described here were 
developed in the context of  studying the rheology of  
dense coal suspensions in a variety of  neutrally buoyant  
organic liquid carriers [14]. Because the coal particles 
were nonspherical, were screened to provide a variety 
of size distributions, and exhibited varying degrees of  
aggregation in the different carriers, there was a need 
for a simple but flexible model to accommodate  all 
these effects. The data on coal suspensions, together 
with curve-fits of  the present model to non-Newtonian 
viscosity and yield stress, will be presented in a sub- 
sequent publication [35]. 
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