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The simplest mixing problem corresponds to the mixing of a fluid with itself; this
case provides a foundation on which the subject rests. The objective here is to study
mixing independently of the mechanisms used to create the motion and review ele-
ments of theory focusing mostly on mathematical foundations and minimal models.
The flows under consideration will be of two types: two-dimensional (2D) ‘blinking
flows’, or three-dimensional (3D) duct flows. Given that mixing in continuous 3D
duct flows depends critically on cross-sectional mixing, and that many microfluidic
applications involve continuous flows, we focus on the essential aspects of mixing in
2D flows, as they provide a foundation from which to base our understanding of more
complex cases. The baker’s transformation is taken as the centrepiece for describing
the dynamical systems framework. In particular, a hierarchy of characterizations of
mixing exist, Bernoulli → mixing → ergodic, ordered according to the quality of
mixing (the strongest first). Most importantly for the design process, we show how
the so-called linked twist maps function as a minimal picture of mixing, provide a
mathematical structure for understanding the type of 2D flows that arise in many
micromixers already built, and give conditions guaranteeing the best quality mixing.
Extensions of these concepts lead to first-principle-based designs without resorting
to lengthy computations.

Keywords: microfluidics; mixing; chaos; diffusion;
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1. Introduction

In the past few years microfluidics has come of age. The applications are many, and
with the applications came the need to mix small volume of fluids in low-Reynolds-
number flows. Many of the applications are described in this issue (Ottino & Wiggins
2004). To this one can add many applications in the area of micro-reactors (Jensen
1999; Losey et al . 2002), although the length-scale in these applications can be con-
siderably larger and often referred to as ‘mini’ rather than ‘micro’. It is nevertheless in
this territory that the elements of chaotic-mixing theory find fertile ground. Numer-
ous experiments and theory developed since the early 1980s suggest ways to produce
efficient mixing in viscous-dominated flows.

One contribution of 11 to a Theme ‘Transport and mixing at the microscale’.
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938 S. Wiggins and J. M. Ottino

The objective of this paper is to review in a brief manner a few elements of the
necessary theory focusing mostly on mathematical foundations. Many recent appli-
cations of mixing in microfluidic applications can benefit by a closer linkage and
use of basic theory. Relevant material exists (Aref 1984), including presentations by
the present authors themselves (Ottino 1989; Wiggins 1992). Nevertheless, it may
be argued that mathematical advances that have taken place in the last few years
are not properly accounted for in these works and that often the presentations do
not qualify as tutorial. At the same time it seems of some benefit to have most of
the relevant terminology condensed in a single source. More importantly we want to
show ‘what can be done’ and ‘how it can be done’ rather than showing precisely ‘how
it is done’ to the point of transforming the theory into an engineering design proce-
dure. It should nevertheless be clear that a detailed design procedure is feasible and
that concepts presented here lead to first-principle-based designs without resorting
to lengthy computations.

Everything we will say corresponds to the case of a single fluid and vanishingly
small Reynolds numbers. Given the length-scales of typical microfluidic applications
(ca. 100 µm) flows are inertialess and what happens for finite Reynolds number is, in
general, of limited applicability. The restriction to low Reynolds number is crucial;
time does not enter directly into the equations and may be considered a parameter.

The mechanisms used to create the motion are of no concern here. Suffice it to say
that there are many: electro-osmotic effects, use of patterned walls, systems based on
clever use of geometric re-orientations (as in static mixers), etc. The important aspect
is that flows can be driven by various effects that are simply ineffective at larger
scales. It may be argued that the science base for microfluidics is already largely
developed and what remains is technological development. This is a technological
area dominated by ingenuity, and exploitation of increasingly clever mechanisms
and device development may be expected in the near future. The room for creativity
is significant; several possible mixing mechanisms, such as using small particles as
mixing devices and mixing within droplets, exploit phenomena that are manifestly
inefficient at larger scales.

The goal is to study the consequences of the motion independently of the mech-
anisms used to create the motion itself, and even the character of the fluid. The
point of view here is to focus on the very foundation of chaotic mixing (the simplest
possible case of stretching and folding or stretching and cutting) and to establish
clear definitions. The point of view is solely kinematical; diffusion of passive scalars,
though important in many applications, can simply be added to the stretching and
folding template (Ottino 1989). What remains is non-trivial though. We argue that a
certain type of map studied in dynamical systems theory, the so-called ‘linked twist
map’ (LTM), is the key to the understanding a large class of microfluidic systems.
Most importantly, LTMs provide an analytical framework where it is possible to
design mixers for a rigorously provable strong form of mixing: Bernoulli. The pay-off
for simplicity is generality. As with anything that is based on mathematics and the-
orems, results are absolute; it is in the application of the results where engineering
judgment should be exercised.

We address two questions.

(i) What is the best mixing (and how do we define and quantify ‘best’)?

(ii) What are the necessary and sufficient conditions that lead to the best mixing?
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To answer the first question we review elements of theory including some elements
of ergodic theory. Some of the more technical details are placed in Appendix A. As
to the second question, we will show that there is theoretical guidance in assuring
conditions for best mixing, when the term mixing is defined in a mathematically
rigorous way. We will exemplify concepts in terms of brief sketches belonging to
recent examples from the literature.

Mixing in many microfluidic applications takes place largely in continuous flows
and the key to effective mixing in continuous flows resides in the effectiveness of
the cross-sectional flow. In the limit of perfect mixing in the cross-sectional flow,
say in the plane x, y, elements sample all regions of the axial flow and this has
consequences such as (qualitatively) uniform residence times. In general, a very large
class of mixers can be regarded as a piecewise succession of duct flows (Franjione
& Ottino 1991; Mezić et al . 1999), where the cross-flow, vx, vy, and the axial flow,
vz, are independent; i.e. neither the cross-flow nor the axial flow depend on the
axial coordinate (note that this cannot happen if Re is finite). The simplest case
corresponds to vz = const. We will therefore focus on the key aspect of mixing,
which is mixing in the two-dimensional (2D) cross-flow (how to incorporate the case
of vz being a function of x, y is explained in Appendix B).

2. Foundations

(a) Dynamical systems terminology and concepts for describing mixing

The following section reviews definitions that are needed in the rest of the presenta-
tion. What we will say is mathematically rigorous; however, we will strive to not make
the presentation needlessly formal, and occasionally we will offer physical interpreta-
tions of the definitions. Arnold & Avez (1968) provide an accessible introduction to
the ergodic theory of dynamical systems. Newer and more up-to-date texts are hard
to follow on a first exposure to the subject. The relevant background from dynami-
cal systems theory can be found in Wiggins (1990), and many other places as well,
whereas the kinematical aspects of mixing are covered in Ottino (1989).

(i) Terminology for general fluid kinematics

Mappings. The motion of fluid particles is described mathematically with a map
or mapping. Let R denote the region occupied by the fluid. We refer to points in
R as fluid particles. The flow of fluid particles is mathematically described by a
smooth, invertible transformation, or map, of R into R, denoted by S, also having a
smooth inverse. The particles are labelled by their initial condition at some arbitrary
time, usually taken as t = 0. The application of S to the domain R, denoted S(R),
is referred to as one advection cycle. Similarly, n advection cycles are obtained by
n repeated applications of S, denoted Sn(R). Let A denote any subdomain of R. Then
µ(A) denotes the volume of A (if we are in a 2D setting, read ‘volume’ as ‘area’).
Thus µ is a function that assigns to any (mathematically well-behaved) subdomain
of R its volume. In mathematical terminology the function µ is known as a measure.
Incompressibility of the fluid is expressed by stating that, as any subdomain of R
is stirred, its volume remains unchanged, i.e. µ(A) = µ(S(A)). In the language of
dynamical systems theory, S is an example of a measure-preserving transformation.
We will assume that R has finite volume, which is natural for the applications we
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have in mind. In this case we can normalize the function that assigns the volume to a
subdomain of R, so that without loss of generality we can assume that µ(R) = 1. This
will make certain mathematical definitions simpler, and is a standard assumption in
the mathematics literature.

Orbits. For a specific fluid particle p, the trajectory, or orbit, of p is the sequence
of points {. . . , S−n(p), . . . , S−1(p), p, S(p), S2(p), . . . , Sn(p), . . . }. So the orbit of a
point is nothing more than the sequence of points corresponding to the point, where
the point has been (under the past advection cycles), and where the point will go
(under future advection cycles).

(ii) Specific types of orbits

The next three definitions refer to specific orbits that often have a special signifi-
cance for transport and mixing.

Periodic orbit. This orbit consists of a finite number of points (where the number of
points is the period of the orbit) and has the property that during each application
of the advection cycle each point on the orbit shifts to another point on the orbit.
Periodic orbits may be distinguished by their stability type. In the typical case,
periodic orbits are either stable (i.e. nearby orbits remain near the periodic orbit),
referred to as elliptic, or unstable of saddle type (i.e. meaning that typical nearby
orbits either move away from the periodic orbit, or approach the periodic orbit for a
time, but ultimately move away), referred to as hyperbolic. If one is interested in the
design of a micromixer, it may not seem particularly relevant to focus on particles
that undergo periodic motion during the advection cycle. However, they are often
the ‘template’ of the global mixing properties. For example, elliptic periodic orbits
are bad for mixing, as they give rise to regions that do not mix with the surrounding
fluid (‘islands’). Hyperbolic periodic orbits provide mechanisms for contraction and
expansion of fluid elements, and they can also play a central role in the existence of
Smale horseshoe maps, which may lead to efficient global mixing properties.

Homoclinic orbit. This is an orbit that, asymptotically in positive time (i.e. forward
advection cycles), approaches a hyperbolic periodic orbit, and asymptotically in neg-
ative time (i.e. inverse advection cycles) approaches the same periodic orbit. These
types of orbits are significant because in a neighbourhood of such an orbit a Smale
horseshoe map can be constructed (the ‘Smale–Birkhoff homoclinic’ theorem).

Heteroclinic orbits and cycles. This is an orbit that, asymptotically in positive time
(i.e. forward advection cycles), approaches a hyperbolic periodic orbit, and asymptot-
ically in negative time (i.e. inverse advection cycles) approaches a different periodic
orbit. If two or more heteroclinic orbits exist and are arranged in a heteroclinic cycle
(i.e. roughly, this means that a closed curve can be constructed from the union of
the periodic orbits and their intersecting stable and unstable manifolds), then it is
generally possible to construct a Smale horseshoe map near the heteroclinic cycle in
the same way that it is constructed near a homoclinic orbit.
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(iii) Behaviour near a specific orbit

Lyapunov exponents are a ubiquitous diagnostic in the chaotic dynamics literature.
It is important to understand that they are numbers associated with one orbit.
Additional information (such as ergodicity, to be discussed below) may allow us to
extend this knowledge to larger regions of the domain of the map.

Lyapunov exponent. This number is associated with an orbit and describes its sta-
bility in the linear approximation (i.e. the growth rate of ‘infinitesimal’ perturba-
tions). Elliptic periodic orbits have zero Lyapunov exponents. Hyperbolic periodic
orbits have some positive and some negative Lyapunov exponents. In incompressible
flows, the sum of all Lyapunov exponents for an orbit must be zero. It is impor-
tant to realize that a Lyapunov exponent is an infinite-time average. Consequently,
it can only be approximated in general. So-called finite-time Lyapunov exponents
have been considered by various people (see, for example, Lapeyre 2002); however,
it is important to understand that they are not on the same rigorous mathematical
footing as standard Lyapunov exponents (Oseledec 1968), and their applicability to
mixing must often be assessed on a case-by-case basis.

The limitations associated with the fact that Lyapunov exponents characterize
infinitesimal separations of orbits have been addressed with the development of
finite-size Lyapunov exponents (see, for example, Boffeta et al . 2001). This is an
interesting, and potentially important, development, but it should be realized that,
at present, there are no rigourous mathematical foundations for this concept. It is
mainly a computational tool whose effectiveness must be addressed on a case-by-case
basis, although it should be noted that work of Yomdin (1987) and Newhouse (1988)
on the growth of curves in 2D flows and curves and surfaces in three-dimensional
(3D) flows is certainly relevant to our needs.

(iv) Collections of fluid particles that give rise to ‘flow structures’

‘Flow structures’ are routinely and commonly seen in many flow visualization
experiments. Dynamical systems theory provides a way of describing what is seen in
these experiments, and also a way of predicting their evolution and their dependence
on parameters.

Invariant set. Let A be a subdomain of R. A is then said to be invariant under the
advection cycle (or an invariant set) if S(A) = A. That is, all points in A remain in
A under repeated applications of the advection cycle. Clearly, invariant sets strictly
smaller than R are bad for mixing, since they represent subdomains of the flow that
do not mix with the rest of R, except via the mechanism of molecular diffusion (but
we are restricting our discussion solely to kinematical mechanisms for mixing). The
orbit of a point p and a homoclinic orbit are examples of invariant sets (but ones
with zero volume).

Kolmogorov–Arnold–Moser (KAM) theorem. The KAM theorem is concerned with
the existence of quasi-periodic orbits in perturbations of integrable Hamiltonian sys-
tems, or volume-preserving maps. These orbits densely fill out tori or ‘tubes’. These
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tubes are therefore material surfaces, and fluid particles cannot cross them. Conse-
quently, these tubes trap regions of fluid that cannot mix with their surroundings
(without molecular diffusion). The theorem may seem essentially useless for direct
application in the sense that it is rare to be in an ‘almost integrable’ situation. More-
over, even if that were the case, rigorous verification of the hypotheses may be quite
difficult, and even impossible. The theorem does imply the existence of islands in
the neighbourhood of an elliptic periodic orbit (discussed below). In this sense, the
KAM theorem is surprisingly ‘effective’ and describes a phenomenon that has been
observed to occur very generally in Hamiltonian systems and is present in virtually
every computed example of Poincaré sections resulting in area-preserving maps. It
has become traditional to refer to all such material tubes or tori as ‘KAM tori’, even
if they are observed in situations where the theorem does not rigorously apply, or
cannot be applied. Such tubes have been observed experimentally (Kusch & Ottino
1992; Fountain et al . 1998).

Island. Elliptic periodic orbits are significant because, according to the KAM theo-
rem, they are surrounded by ‘tubes’ which trap fluid. Moreover, these tubes exhibit
a strong effect on particles outside the tube, but close to the tube. In a mathemati-
cally rigorous sense, these tubes are ‘sticky’ (Perry & Wiggins 1994). The tubes and
the neighbouring region that they influence in this way are referred to as ‘islands’.
Clearly, islands inhibit good mixing.

Barriers to transport and mixing. In certain circumstances there can exist surfaces
of one fewer dimension than the domain R that are made up entirely of trajecto-
ries of fluid particles, i.e. material surfaces. Consequently, fluid-particle trajectories
cannot cross such surfaces and in this way they are barriers to transport. KAM tori
are examples of complete barriers to transport: fluid-particle trajectories starting
inside remain inside forever. Partial barriers to transport are associated with hyper-
bolic periodic orbits. The collection of fluid-particle trajectories that approach the
hyperbolic periodic orbit asymptotically as time goes to positive infinity forms a
material surface called the stable manifold of the hyperbolic periodic orbit. Similarly,
the collection of fluid-particle trajectories that approach the hyperbolic periodic orbit
asymptotically as time goes to negative infinity forms a material surface called the
unstable manifold of the hyperbolic periodic orbit. Homoclinic orbits can therefore be
characterized as orbits that are in the intersection of the stable and unstable mani-
folds of a hyperbolic periodic orbit. Similarly, heteroclinic orbits can be characterized
as orbits that are in the intersection of the stable manifold of one hyperbolic periodic
orbit with the unstable manifold of another hyperbolic periodic orbit.

Lobe dynamics. As mentioned above, the stable and unstable manifolds of hyper-
bolic period orbits are material curves and, therefore, fluid-particle trajectories can-
not cross them. However, they can deform in very complicated ways and result in
intricate flow structures. The resulting flow structure is the spatial, geometrical tem-
plate on which the transport and mixing takes place in time. Lobe dynamics provides
a way of describing the geometrical structure and quantifying the resulting trans-
port. See Rom-Kedar & Wiggins (1990) and Wiggins (1992) for the general theory,
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Camassa & Wiggins (1991) and Horner et al . (2002) for an application to a time-
dependent 2D cellular flow and experiments and Beigie et al . (1994) for further
applications and development.

(v) Characterizing global aspects of fluid particle kinematics

By ‘global aspects’ we mean a feature related to the collective motion of a ‘large’
(this will usually mean non-zero volume) set of orbits. All of the definitions above
refer to specific fluid-particle trajectories, or collections of fluid-particle trajectories,
of the advection cycle. An understanding of these different types of fluid-particle
trajectories is important for quantifying the quality of mixing (up to now the term
‘mixing’ has been only loosely defined). As we shall see, mixing can be good in the
region of a Smale horseshoe, and bad in the region of islands. However, it would
be helpful if we could provide a characterization of the global mixing properties of
the advection cycle. In particular, we would like to characterize optimal mixing. The
following notions from ergodic theory can accomplish this task, in principle, but
verifying that they occur in specific mixers, or how to design mixers so that they
hold, requires additional considerations.

Ergodicity. Let x denote a point in R and let G(x) denote a function defined on R.
Then the time average of G(x) along the orbit of x, denoted G∗(x), is defined by

G∗(x) = lim
N→+∞

1
N

N−1∑
n=0

G(Sn(x)).

The space average of G(x), denoted Ḡ, is defined by

Ḡ =
∫

D

G(x) dµ

(recall that we have normalized the measure of the volume of R so that µ(R) = 1).
The transformation S is said to ergodic if, for a sufficiently large class of functions,
denoted by the set of functions G(x), we have G∗(x) = Ḡ (except, possibly, on certain
sets of zero volume). In other words, the time average of functions along an orbit
(with the possible exception of a set of orbits of zero volume, or measure zero) is
equal to the space average. This is significant because clearly the space average of
a function is just a number. From its definition, the time average may vary from
point to point, but not if the transformation S is ergodic. We remark that even if
the transformation is not ergodic on all of R, it may be ergodic on invariant subsets
of R. In fact, there is a mathematically rigorous way of partitioning R into invariant
sets, where the transformation is ergodic on each invariant set. This ergodic partition
(an idea originating in the work of von Neumann, Halmos and Rokhlin) is described
in Mezić & Wiggins (1999), where it is further developed as a flow visualization
method.

It is instructive to mention Lyapunov exponents in this context. As stated in
§ 2 a (iii), Lyapunov exponents are the time averages of quantities related to the
stretching and contraction rates along individual orbits. Therefore, if the transfor-
mation is ergodic, almost every orbit has the same Lyapunov exponents. (‘Almost
every’ means that the orbits that do not satisfy this property have zero volume.)
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Of course, in mixing applications we are generally not interested in time averages
and space averages of just any function, but functions of physical relevance to the
mixing process.

Mixing. This is a critical concept. In fact, the astute reader will have noted that
we have used the phrases ‘good mixing’, ‘efficient mixing’ and ‘poor mixing’ above,
but we have never defined what we mean by the term ‘mixing’ (a situation that is
all too common in practice). Within the domain R let B denote a region of, say,
black fluid and let W denote any other region within R. Mathematically, we denote
the amount of black fluid that is contained in W after n applications of the mixing
process by µ(Sn(B) ∩ W ), that is the volume of Sn(B) that ends up in W after n
advection cycles. Then the fraction of black fluid contained in W is given by

µ(Sn(B) ∩ W )
µ(W )

.

Intuitively, the definition of mixing (as the number of applications of the advection
cycles is increased) is that for any region W we would have the same fraction of
black fluid as for the entire domain R, i.e.

µ(Sn(B) ∩ W )
µ(W )

− µ(B)
µ(R)

→ 0 as n → ∞

or, since we have taken µ(R) = 1, µ(Sn(B) ∩ W ) − µ(B)µ(W ) → 0 as n → ∞. In
fact, this is the mathematical definition of a mixing transformation. For any sub-
domains B and W , µ(Sn(B) ∩ W ) − µ(B)µ(W ) → 0 as n → ∞. Thinking of this
in a probabilistic manner, this means that, given any subdomain, upon iteration it
becomes (asymptotically) independent of any other subdomain. Mixing transforma-
tions are ergodic, but ergodic transformations need not be mixing.

It is important to point out (although it was probably apparent to the practically
minded reader) that the definitions of ergodic and mixing are ‘infinite-time’ quantities
in the sense that certain limits as the number of advection cycles approach infinity
must be considered. (Indeed, many mathematicians define the subject of dynamical
systems theory as the study of the ‘asymptotic in time’ or ‘long-time’ behaviour of
the system.) Clearly, this is not desirable for applications where one would like the
number of advection cycles to be as small as possible in order to achieve the limit.
The study of the rate of approach to the limit that defines mixing transformations is
a very difficult problem and a subject of much current interest in the ergodic theory
community. This topic is referred to as the ‘decay of correlations’.

Decay of correlations. In many areas of applications the decay of correlations of
a scalar field is used as a diagnostic for quantifying mixing. We now show how
this concept is related to the definition of mixing given above. First, we need a few
technical definitions and notation. For a region B in R the function χB, referred to
as the characteristic function associated with B, assigns a ‘1’ to a point that is in B,
and ‘0’ to all other points. Then the volume of B can be written as

∫
χB dµ = µ(B)

(think of dµ as the ‘infinitesimal volume element’ of integration). Similarly χSn(B)∩W

assigns 1 to a point that is at the intersection of the nth mapping of B with W , and 0
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to all other points. So in terms of integrals over characteristic functions, the limit in
the definition of mixing above can be written as∫

χSn(B)∩W dµ −
∫

χW dµ

∫
χB dµ → 0 as n → ∞,

and we can view this as an integral formulation of the mixing condition. This expres-
sion can be written in a more useful form. First, note that

χSn(B)∩W = χW χSn(B).

Now Sn(B) is the set of points that map to B under S−n. Therefore,

χSn(B) = χB ◦ S−n.

Putting all of this together, the integral expression derived above can be rewritten
as ∫

χW (χB ◦ S−n) dµ −
∫

χW dµ

∫
χB dµ → 0 as n → ∞.

The latter expression suggests a modification of the definition where we might replace
the characteristic functions with arbitrary functions (from a certain class of functions
of interest). So for functions f and g (from the class of interest) we define the corre-
lation function

Cn(f, g) ≡
∣∣∣∣
∫

g(f ◦ S−n) dµ −
∫

g dµ

∫
f dµ

∣∣∣∣.
In the language of ergodic theory, f and g are referred to as observables, and the decay
of the correlation function for general observables is considered. In applications, it
is usually a specific observable that is of interest. In applications one typically takes
f = g = ‘a scalar field’, and considers the decay of correlations of a scalar field. Of
course, if the transformation is not mixing then we should not expect the correlations
to decay to zero. If the transformation is mixing, however, then the rate of decay of
correlations is a quantifier of the speed of mixing.

A study of the decay of correlations of different classes of mappings is currently at
the forefront of research in dynamical systems theory. An excellent review is given by
Baladi (1999). Results have been obtained where the decay of correlations is expo-
nential, and where the decay is polynomial. Unfortunately, there are no results that
rigorously apply to the types of maps that arise in mixing applications. However, it
has been proven that on the (zero volume) invariant set associated with horseshoe
maps (technically, and importantly, the invariant set needs to be uniformly hyper-
bolic), the decay of correlations is exponentially fast (horseshoe maps are discussed
in § 2 a (vi)). Evidently, this should influence nearby orbits, but the nature of this
influence is unclear at the present time.

Entropy. There are many different types of entropy in the dynamical systems lit-
erature. The one we speak of here is ‘topological entropy’. Quoting from Newhouse
& Pignataro (1993), ‘The topological entropy of a system is a quantitative measure
of its orbit complexity. In a certain sense, it is the maximum amount of information
lost per unit time by the system using measurements with finite precision’. Hence,
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positive topological entropy indicates orbit complexity in this sense. Newhouse &
Pignataro present a novel numerical method for estimating the topological entropy
by estimating the logarithmic growth rates of curves. The theoretical basis for this
numerical method is the work of Yomdin (1987) and Newhouse (1988) mentioned
earlier. This is why the dynamical systems notion of entropy is relevant to mixing as
it is related to the growth of material curves in the flow. A relation between positive
topological entropy and Smale horseshoes was established by Burns & Weiss (1995).
The famous Pesin formula (Pesin 1977) gives a relationship between metric entropy
and Lyapunov exponents.

Chaos. The term ‘chaos’, associated with chaotic mixing and chaotic advection, has
been missing from our list of dynamical systems concepts and terms up to this point.
From its ubiquitous presence in the literature, one might think that it should have
a position of prominence. However, with everything we have defined and discussed
so far, it really is unnecessary. The reason for this is that chaos, in much of the lit-
erature, is more of a descriptive term than a quantitative term (such as ‘ergodicity’
or ‘exponentially decaying correlations for mixing maps’). Even though one can find
the term ‘chaos’ defined in textbooks (although not always consistently), it is prob-
ably fair to say that there is still no universal acceptance of a single definition (and
there may never be). Nevertheless, practically speaking, a good working definition
might be that a map is chaotic on a bounded invariant set if it is ergodic and the
orbits have some positive Lyapunov exponents. Some people may want to weaken
this definition. The Bernoulli property discussed below is probably a stronger prop-
erty than what one might want to call ‘chaos’, even though the Bernoulli property
certainly embodies how one might imagine a deterministic chaotic system to behave.
In any case, this should give an idea of the difficulties of pinning down a universally
accepted definition of the term ‘chaos’. However, the good news is that this is of
little practical consequence. The precise, quantitative definitions given above serve
not only to define but also to quantify the concept of mixing.

(vi) Specific classes of maps

Bernoulli shift. After reading a few lines of this next definition, the reader interested
in designing a micromixer may feel an overwhelming urge to skip the rest of the
section. We strongly urge them to forge ahead because the Bernoulli shift embodies
the essence of how the fluid particles move in an efficient mixing flow. The Bernoulli
shift is a dynamical systems theory description of ‘tossing a (fair) coin’, a process
that in the minds of most people is truly random. Still, it may appear to some as
quite a stretch to relate (in some way) coin tossing to fluid mixing. However, it can
be argued that under certain conditions (that can be realized and measured in the
laboratory) a ‘change of coordinates’ can be constructed that transforms a mixing
process to the Bernoulli shift. We will see that actually carrying out such a coordinate
change is not critical. Rather, the fact that such a coordinate change exists means
that our micromixer (or, some subdomain of the micromixer) immediately inherits
the remarkable properties of the Bernoulli shift; properties that would be essentially
impossible to verify by working solely with the mixer itself. In order to understand
what these properties are we must first describe the Bernoulli shift as a dynamical
system.
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Consider the set of bi-infinite sequences, where each element in the sequence is
either ‘0’ or ‘1’. We call this set Σ2, where the superscript two denotes the two
‘symbols’, 0 or 1. So an element of Σ2 has the form

s = {· · · s−ns−n+1 · · · s−2s−1.s0s1s2 · · · sn−1sn · · · },

where si is either 0 or 1, for all i. The two infinite sequences in our bi-infinite
sequence are separated by the period. The reason for two infinite sequences will
become apparent when we relate the Bernoulli shift to the baker’s transformation in
Appendix A.

Mathematicians typically put some additional ‘structure’ on Σ2. For example, a
distance function, or metric, may be defined so that closeness of symbol sequences
can be considered. However, the mathematical arena of ergodic theory is probability
theory and Σ2 is then equipped with the necessary structure to make it a probability
space. This is done by first assigning a probability to each symbol. For our example
we assign 0 and 1 equal probabilities of 1

2 , and from this it is possible to define
subsets of Σ2 in such a way that probabilities can be assigned to the subsets.

We define a map from Σ2 into itself, called the shift map, or Bernoulli shift. The
shift map, denoted by σ, acts on a bi-infinite sequence by shifting the period one
place to the right, i.e.

σ(s) = {· · · s−ns−n+1 · · · s−2s−1s0.s1s2 · · · sn−1sn · · · }.

From the probability interpretation that can be put on Σ2, it is clear that as we shift
we are equally likely to have a ‘0’ or ‘1’ immediately to the right of the period. Hence,
the analogy with tossing a fair coin should be clear. This was first studied by Jacques
Bernoulli and is why his name has come to be associated with this formalism.

Many properties that are difficult, or seemingly impossible, to prove for the typical
types of maps that arise in applications can be (relatively) easily proved for shift
maps. Mixing and ergodicity are such properties. As an example, it is easy to see
that the Bernoulli shift has an infinite number of periodic orbits of all periods. These
are just the periodic sequences.

It is often possible to show that another map has the same properties as the
Bernoulli shift by showing that it is isomorphic to a Bernoulli shift. An isomorphism
is a one-to-one correspondence between points in the space of symbol sequences and
points in the domain of the map that preserves the essential structures in both spaces.
In more applied terminology, an isomorphism is a coordinate transformation (but one
must take care here because, often, there are certain technical properties that this
coordinate transformation must satisfy, e.g. volume preservation, measurability, etc.).
For our purposes, it will transform our micromixer into the Bernoulli shift (and vice
versa).

Bernoulli transformations. A measure-preserving transformation is called Bernoulli
if it is isomorphic to a Bernoulli shift.

The Bernoulli shift is the paradigm for deterministic chaos. As we show in
Appendix A, the baker’s transformation is Bernoulli (see figure 1). In general, the
following chain of implications holds:

Bernoulli → mixing → ergodic,
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Figure 1. (a) One iteration of the baker’s transformation on the unit square, (i) at the beginning
the upper half of the square is black and the lower half is white. The square is squeezed,
stretched, cut, and re-stacked. (b) The second iteration of the baker’s transformation. (c) The
fourth iteration of the baker’s transformation. Note how quickly the black and white material is
‘mixed’. Also note that there is no loss of material from the original domain (the unit square).

and the direction of the arrows cannot be reversed. Thus, Bernoulli is the most
desired property for mixing and the baker’s transformation is the best mixing trans-
formation.

Smale horseshoe. The Smale horseshoe map has some similarities to the baker’s
transformation, but also some key differences from the point of view efficient mixing.
We describe the map geometrically, following figure 2. We begin with the unit square
exactly as in our description of the baker’s transformation. The square is squeezed
in the vertical direction and expanded in the horizontal direction. Now comes the
key difference from the baker’s transformation: rather than cutting off the part that
has squeezed out of the original square and putting all of it back into the square (as
for the baker’s transformation), we fold back into the square part of what has been
squeezed out, with a part remaining outside the square. If we consider the square to
be the region in which we are interested in the mixing of fluid, it is clear that the
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Figure 2. The Smale horseshoe map acting on the unit square.
Note the loss of material from the original domain (the unit square).

Smale horseshoe map has ‘lost’ some of the fluid that we were interested in mixing.
With further mapping, the amount of original material that remains in the unit
square becomes smaller and smaller (an experimental study of horseshoe detection
in a fluid flow is presented in Chien et al . (1986)).

One might argue that we did not need to leave part of the fluid outside the square to
begin with. We could have found some way to ‘stuff it back inside’. Incompressibility
is obviously a hindrance. However, even if this were possible, it would dramatically
affect the mixing properties. The baker’s map solves this issue by ‘stuffing the fluid
back inside’ in a way that results in good mixing. It ‘cuts’, rather than ‘folds’. In
this way, the contracting and stretching directions are always the same at every
point in the fluid. This is highly desired for good mixing. When one ‘folds’, these
contracting and expanding directions can rotate, resulting in lack of control of the
mixing process.

Still, the Smale horseshoe map can have a tremendously positive influence on mix-
ing. It has an invariant set of zero volume and, if we restrict the map to this set of
zero volume, it is isomorphic to a Bernoulli shift. This seems to be vastly inferior to
the baker’s transformation, where the invariant set was the entire square, and the
baker’s transformation is isomorphic to a Bernoulli shift on the entire square. Never-
theless, the chaotic invariant set of zero volume of the Smale horseshoe certainly has
a ‘randomizing influence’ on fluid in its neighbourhood. However, quantifying that
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influence can be difficult, and it can be quite hard to eliminate islands (sometimes
very small) of unmixed fluid.

(vii) An example: the baker’s transformation

Consider now a number of the ideas introduced above in the context of a specific
mapping (or transformation).

The baker’s transformation is defined on the unit square, with periodic boundary
conditions. In figure 1a, we show the unit square, with the upper half of the square
black, and the lower half white. The map contracts the square in the y-direction by
a factor of 1

2 , and expands the square in the x-direction by a factor of two (hence, it
is area preserving). More precisely, it has the form

S(x, y) =

{
(2x, 1

2y) mod 1, if 0 � x < 1
2 ,

(2x, 1
2(y + 1)) mod 1, if 1

2 � x < 1.

The term ‘mod 1’ refers to the enforcement of the periodic boundary conditions.
Geometrically, it means we ‘cut off’ the part of the square protruding from the
right-hand vertical boundary of the square (x = 1) and stack it on top of the part
remaining in the square. After this, the square now has four alternating black and
white strips, each of width 1

4 , as we illustrate in figure 1b, c; repeated applications
produce 8, 16, 32, . . . , 2n strips.

What happens in the limit of an infinite number of iterations? In this limit the unit
square becomes completely filled out with an infinite number of alternation black and
white lines. In this way, the black and white material has become completely mixed
(recall that this is purely kinematics; there is no molecular diffusion).

The baker’s transformation is a highly efficient mixing transformation. We can
get an idea of this by applying the mathematical definition of mixing given above
to the black and white regions. Let B denote the region of black material and W
the region of white material. The area of B, denoted µ(B), is equal to 1

2 . The area
of W , denoted µ(W ), is also equal to 1

2 . Consider the situation after n advection
cycles. Mathematically, Sn(B) ∩ W denotes the black material that is in the region
originally occupied entirely by white material. By construction, this consists of 2n−1

black strips, each of length 1 and width 1/2n+1. Hence, we have µ(Sn(B) ∩ W ) = 1
4 ,

and therefore
lim

n→∞
µ(Sn(B) ∩ W ) = µ(B)µ(W )

(of course, the definition of mixing requires this limit to hold for every choice of sets
W and B in R).

The Lyapunov exponents of orbits of the baker’s transformation can also easily
be computed. For a given point (x, y) in R, the nth iterate of (x, y) under S (i.e. n
successive applications of the advection cycle) is denoted by

Sn(x, y) ≡ S ◦ S ◦ · · · ◦ S(x, y)︸ ︷︷ ︸
n map compositions

.

The Jacobian of the nth iterate of the point (x, y) under S is given by

DSn(x, y) = DS(Sn−1(x, y))DS(Sn−2(x, y)) · · ·DS(S(x, y))DS(x, y),

Phil. Trans. R. Soc. Lond. A (2004)



Foundations of chaotic mixing 951

where D denotes the derivative operator. Then the Lyapunov exponents of the orbit
of (x, y) are given by the logarithms of the eigenvalues of the matrix:

lim
n→∞

(DSn(x, y)TDSn(x, y))1/(2n) ≡ Λ.

This limit exists under fairly general conditions and is discussed in the fundamental
paper of Oseledec (1968). The Lyapunov exponents have the following interpretation.
Consider an infinitesimal circle centred at (x, y). As it evolves, the circle deforms to
an ellipsoid; the Lyapunov exponents are the average logarithmic expansion rates of
the principal axes of this ellipsoid. In the case of the baker’s transformation—except
where x = p/2k, where p and k are non-negative integers (this condition arises form
the discontinuity associated with the ‘cutting’)—we have

DSn(x, y) =

⎡
⎣2n 0

0
1
2n

⎤
⎦

and therefore,

Λ = lim
n→∞

⎡
⎣22n 0

0
1

22n

⎤
⎦1/(2n)

=
[
2 0
0 1

2

]
.

So the Lyapunov exponents for almost all (i.e. except for the measure-zero set of
countable points where the expression for the Jacobian does not hold) orbits are
log 2 and log 1

2 .
Another interesting point is that the stretching and contraction directions are con-

stant and uniform. That is, they do not ‘rotate’ from orbit to orbit. This ‘control’
over the stretching and contraction directions for all orbits is essential for under-
standing and analysing the mixing properties. We shall have more to say about this
issue below.

It is instructive to ask what makes the baker’s transformation such an efficient
mixing mechanism. The key feature is the compression and expansion along perpen-
dicular directions at every point of the domain, then the cutting and stacking. Two
points should be emphasized.

(i) The directions for the saddle point behaviour, i.e. the compressing direction
and the expanding direction, are the same for every point of the domain. In
general maps this is not true. In general these directions ‘rotate’ with respect
to each other so that at some points the expansion direction could be close to
the compressing direction at other points.

(ii) The previous issue is related to the idea of folding. There is no folding (just
cutting and stacking) in the baker’s transformation. Folding can be bad for
mixing, as regions of the fold may mix poorly with the rest of the domain.
Repeated folding in different locations can aid in the elimination of this bad
mixing behaviour, but it cannot eliminate it entirely (this is why, to date, for
such generic area-preserving maps as the standard map it has not been proved
that they have a region of non-zero area on which the map is mixing (see Sinai
1994)).
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(a) (b)

Figure 3. Geometry of the flow patterns for the two halves of the advection cycle.
(a) Streamlines in the first half-cycle; (b) streamlines in the second half-cycle.

The message here is clear. Squeezing, stretching and folding fluid is good for mixing.
However, squeezing, stretching and cutting can be much better. Consider now some
ways of realizing this in the design of micromixers.

3. LTMs: a basic building block for chaotic mixers

The obvious question is, How do we design a mixer so that it has the Bernoulli prop-
erty? To a mathematician, this might seem a naive question since rigorous proofs
that maps possess the Bernoulli property on regions of non-zero volume are notori-
ously difficult. A few examples are known, the baker’s transformation being one of
them. To a physicist or engineer, the known examples have a rather artificial flavour,
epitomized by the baker’s transformation, and, consequently, tend not to provide
inspiration for digging out ‘useful’ concepts from mathematics that are difficult and
often less than user-friendly. The situation is not bleak, however; in this paper we
describe a new (from the point of view of applications to fluid mixing) type of map,
or advection cycle, that has been rigorously shown to possess the Bernoulli property.
Most surprisingly (and very fortuitously for design purposes) many previously built
micromixers, as well as a variety of potentially new micromixers, can be optimized
for the Bernoulli property if they are designed so that the flow patterns give rise to
an LTM. In order to show how this can be done we begin by describing the flow
patterns and how we derive an LTM from them, and, in the process, explain pre-
cisely what an LTM is and, most importantly, its mixing properties. The material
presented here is based on a series of papers by Burton & Easton (1980), Devaney
(1980), Wojtkowski (1980) and Przytycki (1983) published in the pure mathematics
literature. The (loose) connection of this material with physical systems is in the
context of celestial mechanics. As we shall see, however, the theory is tailor-made for
mixing applications (Wiggins 1999).

(a) LTMs: definitions and relation to flow patterns

Consider a region of fluid, possibly a 2D cavity with solid boundaries (e.g. Chien
et al . 1986) or the cross-flow in a 3D flow in a channel with an axial flow in the
direction normal to the page, containing a stagnation point surrounded by closed
streamlines, as shown in the figure 3a. The fact that we are showing our region to be
an (enclosed) square with circular streamlines is irrelevant for our conclusions. The
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horizontal and vertical dashed lines are axes centred in the middle of the region and
merely serve as an (essentially arbitrary) reference point. The stagnation point is on
the horizontal axis, offset to the left of the centre.

Imagine that the flow pattern is altered at some later time and by some mechanism
(the details of which are unimportant to the argument). The alteration involves mov-
ing the stagnation point to the right of the centre, as shown in figure 3b. We remark
that the flow domain could contain multiple ‘recirculation cells’. Our arguments can
be applied to any number of them.

The flow cycles between the upper and lower patterns in a periodic fashion, which
is the advection cycle of interest to us. The cycling could occur as a result of the
imposition of periodic time dependence in a cavity flow, or as a result of the flow
pattern changing periodically in the cross-section of a flow as in a discontinuous duct
flow. The utility of this approach is that it is independent of the details of how the
flow is created, and relies only on the geometry of the flow patterns. Clearly, the
length of the period of cycling will also play an important role in the rate of mixing,
and we will address this later.

The fluid particle motion from the beginning of a half-cycle to the end of the same
half-cycle is described by a twist map. For the closed streamlines in each half-cycle
let (r, θ) denote streamline coordinates (the actual trajectories in the (x, y)-plane
need not be circular; they can be made circular by some nonlinear transformation).
That is, on a streamline r is constant and θ is an angular variable that increases
monotonically in time. The map of particles from the beginning to the end of a half-
cycle is given by S(r, θ) = (r, θ + g(r)). We will see that the function g(r) is the key
here. It provides the angular displacement along the streamline during one half of
the advection cycle. Typically it varies from streamline to streamline, and it is from
this property that the phrase twist map arises. For example, g(r) may increase as r
moves from the elliptic stagnation point to a particular streamline (i.e. g(r) achieves
a unique maximum), and then it decreases monotonically to zero on the boundary.

We can now define an LTM over the entire advection cycle. Let A1 denote an
annulus whose inner (denoted r1

i ) and outer (denoted r1
o) boundaries are streamlines

centred at (c, 0) in the first half of the advection cycle. Let A2 denote an annulus
constructed in the same way and centred at (−c, 0) in the second half of the advection
cycle. We show the two annuli in figure 4. The two annuli must be chosen so that
they intersect each other transversally, in the sense that they intersect each other in
two disjoint regions, as shown in the figure.

Obvious questions arise. How do we choose the annuli A1 and A2? Or which
annuli A1 and A2 do we choose? There are clearly many such choices of pairs of
annuli that will satisfy the transversal intersection condition. The theory of LTMs
does not answer this question. It is only concerned with the behaviour on a pair of
annuli satisfying the transversal intersection property, and some additional properties
described below. For mixing purposes, in a given situation we will need to find the
largest and/or largest number of annuli in the flow domain satisfying the hypotheses.
We will next discuss these hypotheses on a given pair of annuli. Also, in each half-
cycle depicted in figure 3 we show one ‘recirculation region’, i.e. one region of closed
streamlines. In some applications a half-cycle may contain multiple recirculation
regions (separated by heteroclinic and/or homoclinic orbits). This poses no difficulty
in the application of the LTM approach, since we merely need to find transversally
intersecting annuli in each half-cycle. However, it does raise questions about how
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Figure 4. Geometry of the annuli that make up the LTM
from each half-cycle of the advection cycle.

many annuli can be found and, as we shall see, the sense of rotation may also be
important (i.e. co- versus counter-rotation).

Let S1(r, θ) = (r, θ + g1(r)) be a twist map defined on A1 with dg1/dr �= 0 and
g1(r1

i ) = 2πn, for some integer n. Then r1
o is chosen such that g1(r1

o) = 2πn + k1,
where k1 is an integer whose value will be discussed shortly.

Let S2(r, θ) = (r, θ + g2(r)) be a twist map defined on A2 with dg2/dr �= 0 and
g2(r2

i ) = 2πm, for some integer m, and g2(r2
o) = 2πm + k2. Furthermore, we suppose

that the annuli intersect transversally in two disjoint components in the sense that
r1
i ∩ r2

i �= ∅ and r1
o ∩ r2

o �= ∅ (see figure 4).
The map defined by S2 ◦ S1 on A1 ∪ A2 is referred to as an LTM.† Let

αi ≡ sup
ri
i �r�ri

o

dgi

dr
.

The value of αi is a measure of the strength of the differential winding of the map.
αi �= 0 is just referred to as the ‘twist condition’. Regarding the annuli as chosen and
fixed, there are four important parameters for the LTM: k1 and k2, which describe
the number of twists for each twist map, and α1 and α2, which describe the strength
of each twist.

† Strictly speaking, the map S2 ◦ S1 is not defined on all of A1 ∪ A2 since S1 is only defined on A1
and S2 is only defined on A2. In this situation we can define S1 (respectively, S2) to be the identity
map on the part of A1 ∪ A2 that is not A1 (respectively, the part of A1 ∪ A2 that is not A2). Since
S1 (respectively, S2) is the identity map on the boundary circles defining A1 (respectively, A2) this
extension of the maps to a larger domain can be done smoothly. Conceptually, from the physical point
of view, this point can be ignored. It says nothing more than that we consider S1 (respectively, S2)
only to be acting on A1 (respectively, A2), and it does nothing to points that are in the part of A2
(respectively, A1) that does not intersect A1 (respectively, A2).
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We can now state the main results on mixing. There are two cases to consider. One
is where the annuli rotate in the same sense. This corresponds to k1 and k2 having
the same sign (the co-rotating case). In this case, if each map is at least a double
twist (|ki| � 2) and α1α2 > 0, then on A1 ∪ A2 the LTM has the Bernoulli property.

Interestingly, if the annuli rotate in the opposite sense, i.e. k1 and k2 have opposite
signs (the counter-rotating case), then the conditions that the LTM has the Bernoulli
property on A1 ∪ A2 are more restrictive. If the product of α1 and α2 is negative,
then we must have α1α2 < −C0 ≈ 17.244 45.

As mentioned earlier, these results were proved by Burton & Easton (1980),
Devaney (1980), Wojtkowski (1980) and Przytycki (1983). They also indicate that,
all things being equal, it is easier to achieve the Bernoulli property in the co-rotating
case, as opposed to the counter-rotating case.

It is then apparent that, in designing a flow for optimal mixing, the key quantities
we need to understand are gi(r), i = 1, 2, on the annuli of choice, since these functions
determines the rotation properties of the annuli, the radii of the annuli, and the
strength of the twist, αi, which in the context of fluids is the shear rate. This is
significant because the design of a mixer with the Bernoulli property boils down to
the properties of one function describing closed streamlines in each half-cycle of the
advection cycle.

Finally, there is a technical problem that must be addressed in applying the cur-
rently known LTM results for the purpose of concluding that the mixing has the
Bernoulli property on the two chosen annuli. Let us describe the situation above a
little more carefully. We are concerned with two flow patterns that alternate (blink-
ing flow): call them pattern 1 and pattern 2. Now the LTM formalism and results as
developed by mathematicians, they are not focusing on all of pattern 1 and pattern 2.
Rather, they are focusing on one annulus (in isolation) in pattern 1 and one annulus
(in isolation) in pattern 2 that intersect ‘transversely’.

Hence, in the mathematicians’ formalism, the LTM maps particles between the
annuli as we alternate the application of the twist maps to each annulus, and the
theorems describe mixing of particles in the two annuli. Now in order for this to
make sense, the same particles must remain in the two annuli for all time. This is
not true for two arbitrarily chosen flow patterns. However, it is true if pattern 2
is a rigid rotation of pattern 1 (this is precisely what is done in the analysis of
the partitioned pipe mixer described in Khakhar et al . (1987)). Since the flow is
bounded, and we know where all the particles go, we suspect that some strong
mixing results can be proven in the case where this is not true. But this is a problem
that awaits further mathematical analysis. Further, we remark that if one is only
interested in constructing Smale horseshoes, this does not require this condition as
the invariant set associated with the horseshoe is directly constructed in the overlap
regions between two appropriately chosen annuli (see Devaney 1978; Wiggins 1999;
Khakhar et al . 1986).

(b) Optimization of mixing: qualitative arguments

Consider now the issue of optimization of mixing in terms of the size of the two
annuli in the discussion above. Here we give qualitative arguments for circular stream-
lines. Nevertheless, the approach is general. Here the maximal size will be determined
by the transversal intersection condition and the size of the domain. This is com-
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Figure 5. Geometry associated with choosing an annulus in each half-cycle
so that their superposition has the largest area.

pletely independent of the properties of gi(r). Once this is chosen, the ‘twist proper-
ties’, i.e. double twists, sense of the twists, and strength of the twists, must still be
verified.

As above, consider an LTM. The horizontal and vertical axes are at the centre of
the cavity, and we will assume that the streamlines in the second half of the advection
cycle are obtained by reflecting the streamlines in the first half of the advection cycle
about the vertical axis (see figure 5).

The distance of the stagnation point (assumed to be on the horizontal axis) from
the origin in the first half of the advection cycle is denoted by c > 0. The distance
of the stagnation point from the origin in the second half of the advection cycle is
then −c. Denote the radii of the two circular streamlines defining the annulus in the
first half of the advection cycle by ri and ro. Let A denote the area of the domain.
For the moment, assume it is a square with sides of length b, so that A = b2. Then
we must have

c + ro < 1
2b (3.1)

(this condition ensures that the outer circles of the annuli cannot protrude outside
the domain).

For a given c > 0, the condition that the two annuli intersect transversely (as
described earlier) is guaranteed if

ri − c > 0 (3.2)

(this ensures that the two inner circles intersect transversely), and

ri + 2c > ro (3.3)

(this ensures that the outer circle of one annulus intersects the inner circle of the
other annulus transversely).
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Conditions (3.2) and (3.3) together guarantee the transversal intersection property
for the two annuli. If the various conditions are satisfied, then mixing is Bernoulli on
the union of the two annuli. Hence the mixing area is given by

Amix = 2π(r2
o − r2

i ) < A. (3.4)

The idea now is to maximize this area, subject to the constraints (3.1)–(3.3). We
want to simplify this a bit. We claim that (3.4) is maximized provided that

ro − ri (3.5)

is maximized.
It follows from (3.2) and (3.3) that we can make (3.5) large by choosing some ε > 0

very small, and
ri = c + ε, ro = 3c − ε. (3.6)

Then (3.1) will be satisfied provided

4c < 1
2b. (3.7)

The way to interpret this is as follows. For a given c > 0, we have optimized the
region of mixing, subject to c satisfying the constraint (3.7). Using (3.4) and (3.6),
we have

Amix = 16π(c2 − cε). (3.8)

Now ε > 0 can be taken as small as we like, so the region of mixing scales like c2.
From (3.7), if we choose the maximum value of c as c = 1

8b, then substituting this
into (3.8) gives

Amax
mix = 1

4π(b2 − cε). (3.9)

The cε term can be taken as small as we like. The area of the cavity is b2; therefore
π/4 ∼ 78% of the cavity is Bernoulli mixing, provided the twist conditions hold.
Clearly, there is considerable scope for improving this.

4. Examples of mixers that can be analysed as LTMs

Many mixers fit within the LTM framework. This is significant because LTMs provide
an analytical approach to the design of devices producing a mathematically optimal,
and precisely defined, type of mixing.

Two comments first. The first example of a chaotic flow, the blinking vortex flow
(Aref 1984), is also the most transparent and the most immediately analysable exam-
ple. In this case the flow itself is already in the form of an LTM and the functions
gi(r) can be controlled at will. This connection was described in Wiggins (1999).
It is remarkable that, in some sense, this example encompasses a large number, if
not all, of other examples. It is also important to stress that the most conceptually
efficient way to think about mixing is in terms of maps and not in terms of deviations
for integrability. The most useful heuristic is ‘streamline crossing’, i.e. streamlines in
a bounded domain at two different times must intersect. This precisely the central
message of the LTMs.

Let us consider a few examples, the first two from recent devices intended for
microfluidic applications, and others from older systems that illustrate mechanisms
that may be used in future microfluidic applications.
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Figure 6. Flow patterns computed for different ζ-potential distributions on the walls of the cavity.
(Reproduced with permission from Qian & Bau (2002). Copyright (2002) American Chemical
Society.)

Qian & Bau (2002, fig. 4) considered flows generated by electro-osmotic flow
(EOF) in cavities (until recently EOFs have been used primarily as an alternative to
pressure-driven flow in microchannels, the simplest case corresponding to uniformly
charged walls). However, several other scenarios are possible; an early study consid-
ering the effects on non-uniform charge was made by Anderson & Idol (1985). The
authors computed flow patterns for specific (non-uniform) ζ-potential distributions
on the walls of the cavity. Different ζ-potential distributions gave rise to different
cellular flow fields in the cavity, as shown in figure 6. Qian & Bau also suggested
that one could switch between different flow patterns through ‘judicious control of
embedded electrodes’ in the walls of the cavity. In this way a blinking flow can be
realized. Not surprisingly, they demonstrated numerically that such flows can give
rise to chaotic fluid particle orbits.

Clearly, such a scheme also fits squarely within the LTM formalism. If we superim-
pose two chosen flow patterns that are rigid rotations of each other, the structure of
the LTM is clear. One way of applying the results on LTMs is to choose annuli in one
flow pattern and other annuli in the other flow pattern, such that the annuli inter-
sect pairwise ‘transversely’ in two disjoint components, as described earlier. Then the
switching time between patterns, T , is chosen such that for each annulus the outer
circle rotates twice with respect to the inner circle during the time T/2. We then need
the twists to be ‘sufficiently strong’, which will also depend on whether or not the
chosen annuli pair are co- or counter-rotating. If this can be done, then, appealing
to the dynamical systems results described earlier, the flow will be Bernoulli in the
region defined by the chosen annuli. Of course, there are numerous open problems.
For example, which ζ-potential distributions lead to the maximal region on which
the LTM results hold? However, such an analysis is possible using formulae for the
flow patterns given by Qian & Bau (2002).

Another possibility for flow manipulation is the use of patterned walls. In fact, a
patterned wall, at the time of writing, is a more robust mechanism than the EOF
for flow manipulation. Stroock et al . (2002) built and conducted experiments in a
micromixer consisting of a straight channel with ridges placed on one of the walls of
the channel at an oblique angle with respect to the axis of the channel. When the fluid
is driven axially by a pressure gradient, the ridges on the floor of the channel give
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Figure 7. Closed streamlines in the cross-section of each half-cycle. (a) The mixer; (b) flow
visualizations in the cross-section. (Reproduced with permission from Stroock et al . (2002).
Copyright (2002) AAAS.)

rise to a transverse flow. In the (x, y)-plane or cross-flow the streamlines are closed
and helical in three dimensions. If the ridges are arranged in a periodic pattern down
the axis of the channel, a herringbone pattern zigzagging to the right and to the left,
each period consists of two half-cycles, producing two cells. If the pattern is such
that the two cells are asymmetric with respect to the y-axis, then, if one looks at the
mixer along the axial path, the elliptic points corresponding to the centre of the cells
switch positions after one cycle. The overall map then consists of the composition of
two maps: the maps between each half-cycle and the map between cycles is an LTM.
This is shown in figure 7 (Stroock et al . 2002, fig. 2). The LTM results described
here provide a basis for design and analysis of rigorously defined mixing properties
in such flows.

Several extensions become apparent. For example, if the cross-section is not mirror
symmetric as in a rectangle, but is, for example, trapezoidal, then a herringbone
pattern is unnecessary. In this case a patterned wall is all that is needed. The key
idea is to shift the location of the elliptic point (see figure 8).

There are many other examples that can be fitted within the LTM framework. In
fact, some of these examples are older, going back to static mixing concepts. The
partitioned pipe mixer (PPM) of Khakhar et al . (1987), analysed experimentally by
Kusch & Ottino (1992), is representative of a large class of spatially periodic flows,
and the first continuous flow that was shown to be chaotic. The PPM consists of
a pipe partitioned into a sequence of semicircular ducts by means of orthogonally
placed rectangular plates (figure 9). A cross-sectional motion is induced through
rotation of the pipe wall. At every length L along the pipe axis, the orientation of
the dividing plate shifts by 90◦. Thus a series of two co-rotational flows is followed
by two co-rotational flows but shifted by 90◦. This particular geometry of the PPM
is just one of three possible spatially periodic configurations which may be realized.
Franjione & Ottino (1992) considered two variants of this flow. One qualitatively
captures the motion in a sequence of pipe bends (the ‘twisted-pipe’ flow of Jones
et al . (1989)): two counter-rotational vortices followed by two counter-rotational
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Figure 8. Micromixer with a periodical varying trapezoidal cross-section driven by a grooved
bottom wall. ‘A’ and ‘B’ denote the beginning of each half cell where the cross-sectional flow is
shown.

flow in

(a)

(b)

(c)

Figure 9. The partitioned pipe mixer. (a) The duct and the internal arrangement of plates.
(b) The cross-sectional flows for the PPM at the indicated locations. (c) Cross-sectional flows
that would occur for the Kenics mixer.

vortices. The other a flow resembles the motion in a Kenics static mixer: two co-
rotational vortices followed by two counter-rotational vortices. As discussed earlier
in this article, the PPM design fits the LTM formalism precisely.

Static mixers try to mimic the baker’s transformation. Static mixers invariably
involve internal surfaces; two regions have to be split and then reconnected (a method
that tries to mimic cutting in two dimensions). This is an issue that makes these sys-
tems complicated to build at small scales. Some remarkably small mixers have been
built (e.g. Bertsch et al . 2001), but these designs are scaled-down versions of designs
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Figure 10. The rotated arc mixer.

commonly encountered in routine large-scale applications. However, this need not
be the case and other design possibilities, more in line with current microfabrication
technologies, should be explored.

Nevertheless, large-scale applications may be a source of inspiration. Consider the
rotated arc mixer (Metcalfe et al . 2001, 2004). The design depends critically on a
clever use of the cross-sectional flow. The system consists of two hollow cylinders
with a very small gap between them; the outer cylinder rotates while the flow is
driven axially by a pressure gradient. The inner cylinder has a strategically placed
cut-off, exposing the flow contained in the inner cylinder to the drag of the moving
outer cylinder (figure 10).

In the example in figure 10 there are two cut-offs per period, but obviously the
system can be generalized to any number of cut-offs. With two cut-offs per period, the
system corresponds exactly to an LTM. The theory for the case of more than two cut-
offs has not yet been developed. It is apparent that this design can be implemented,
at least in theory, by means of EOFs.

Another variation on the cavity flow is the exploitation of time-dependent changes
in geometry by adding a secondary baffle (figure 11). This idea goes back to Jana et
al . (1994), and variations on this idea have been patented in the context of polymer-
processing applications. In the original case the cross-flow was induced by an upper
wall sliding diagonally. However, it is easy to see that the design will work as well
when the driving is due to the patterned ridges, as developed by Stroock et al .
(2002). In this case the portrait changes from one figure of eight to another, but
the location of the central hyperbolic point has been shifted (Jana et al . 1994). In
some sense this resembles two LTMs, but in fact the hyperbolic point changes the
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Figure 11. Micromixer with a periodic series of baffles driven by a grooved bottom wall.
‘A’ and ‘B’ denote the beginning of each half cell where the cross-sectional flow is shown.

mathematical structure. The theory for this case remains to be developed and the
g(r) has a double-hump structure. However, the same mathematical approach taken
in the original LTM papers should apply.

All the above designs are spatially periodic. For example, vertical and horizontal
elements in the case of the PPM mixer, right-handed (R) and left-handed (L) helices
in a static mixer, or zigzagging to the right and to the left (R-L-R-L-R) in the Stroock
mixer. Thus, in all the above mixers, when we assemble the mixer we have a sequence
of R-L-R-L-R, and so on. This clearly works, but, if there are unmixed regions and
tubes, resulting from the map, they will persist even with an infinite number of
elements. In other words, it is possible for unmixed streams to pass through the
mixer. In the past, the only way to investigate the presence of islands was to propose
a design and to resort to computations. However, to the extent that a sequence of
R-L can be viewed as a twist map, we can now be assured that mixing is effective in a
region that can be calculated a priori. The task is therefore to mix these regions with
the outside, unmixed regions. Symmetry manipulations provide a route by which to
achieve this objective (Franjione & Ottino 1992; Ottino 1990).

5. Other mathematical directions

(a) Pseudo-Anosov maps

Recently, techniques from the study of the topology of maps of surfaces (Boyland
1994) have been applied to mixing in macroscopic flows by Boyland et al . (2000).
These pseudo-Anosov maps also have the Bernoulli property, and LTMs can be
viewed as an example of such maps where it is straightforward to control the region
of the flow on which the Bernoulli property holds. While the mathematical language
may appear formidable (and we will not go into it here), once it has been translated
into the context of a mixing problem it becomes ‘almost’ intuitive. This is a line
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of research that should be pursued more vigorously. MacKay (2001) has written a
review of the subject.

(b) Complex time dependence

In this article we have been concerned with either 2D time-periodic flows, or spa-
tially periodic steady flows. It is natural to ask if gains in mixing can be made by
making the flow ‘more unsteady’ in the sense of making the time dependence more
complex. Some early work, both theoretical and experimental, has been done in this
area by Franjione et al . (1989).

However, it must be emphasized that the dynamical systems framework has not
been fully developed so that the same types of analyses can be carried out as for
time-periodic or 3D steady flows. Moreover, there are some fundamental differences.
Nevertheless, this promises to be a rich and rewarding line of research.

In recent years an effort to develop the building blocks of a geometric theory for
the dynamics generated by aperiodically time-dependent velocity fields has begun.
Aspects that have been studied include bifurcation theory, normal form theory, shad-
owing lemmas, and chaos- and Smale-horseshoe-like constructions. Numerical meth-
ods for computing hyperbolic trajectories and stable and unstable manifolds have
also been developed. An overview of all of these issues can be found in Mancho et
al . (2003).

6. Concluding remarks

It is important to realize that there is a gap between the rigorous mathematical
results on mixing in LTMs and the flows arising in mixers in the sense that the
LTM results do not immediately apply to the entire flow domain in a way that will
allow us to conclude that the entire domain has the Bernoulli property. Rather, the
mathematical results of LTMs apply to a given pair of annuli, one in each half-cycle
of the advection cycle, on which the hypotheses of the relevant theorems are satis-
fied. Nevertheless, we have seen that in simple situations two appropriately chosen
annuli can occupy a significant fraction of the flow domain (ca. 78%). A particularly
important general conclusion is that there is also a clear difference between the co-
and counter-rotating cases. Thus, for a particular flow configuration we must deter-
mine the maximal region occupied by pairs of annuli from each half-cycle on which
the LTM results hold. There are many possibilities here. For example, suppose the
first half-cycle contains one recirculation cell (i.e. one elliptic point surrounded by
closed streamlines) and the second half-cycle contains two (or more) recirculation
cells. This will necessitate choosing some annuli that counter-rotate and some that
co-rotate. Is this better, or worse, than having one recirculation cell in each half-cycle
with the elliptic point displaced in the second half-cycle with respect to its position
in the first half-cycle? What if there are hyperbolic points in each half-cycle (as in
the case of figure 11, where g(r) has two maxima)? Does this help, or inhibit, mix-
ing? There are numerous open questions and more work is obviously necessary. It is
apparent, however, that the way forward is clear. The theoretical tools and approach
surrounding LTMs provide the framework for the development of a predictive the-
ory for the design of mixing systems and, in particular, micromixers. In fact, the
LTM framework will apply to any situation where the flow can be modelled as what
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we refer to as a ‘segmented flow’. Segmentation can occur in either space or time
(or both). An example of a temporally segmented flow is a blinking flow or two 2D
steady flows, each having regions of closed streamlines, that are temporally switched
between each other. An example of a spatially segmented flow is a duct flow. This
consists of a series of 3D spatially steady flows, each having closed streamlines in the
cross-section, that are joined in space. The examples we have shown have been seg-
ments whose axes are all in a line. However, this is not necessary, and the serpentine
channel (Liu et al . 2000) would fall into this classification, and therefore the LTM
approach should apply.

We are grateful to Robert MacKay and Howard Stone for comments on an earlier version of this
paper. The work of S.W. has been supported by Office of Naval Research Grant no. N00014-01-
1-0769. The work of J.M.O. has been supported by DOE, Office of Basic Energy Sciences.

Appendix A. Proof that the baker’s transformation
is isomorphic to a Bernoulli shift

In our list of definitions above we described a property that was even stronger than
mixing: the Bernoulli property. A map has the Bernoulli property if it is isomorphic
to a Bernoulli shift. What does this mean, and why is it useful to know? We now want
to explain this, and also to show that the baker’s transformation has the Bernoulli
property.

We begin by describing the most common example of a Bernoulli shift.
We define a map from Σ2 into itself, called the shift map. The shift map, denoted

by σ, acts on a bi-infinite sequence by shifting the period one place to the right, i.e.

σ(s) = {· · · s−ns−n+1 · · · s−2s−1s0.s1s2 · · · sn−1sn · · · }.

Recall that an isomorphism is a one-to-one correspondence between points in the
space of symbol sequences and points in the domain of the map that preserves the
essential structures in both spaces. We construct it explicitly for the baker’s trans-
formation.

Every number in the unit interval [0, 1] can be represented by its binary expansion.
We can use each ‘half’ of a bi-infinite sequence to form the binary expansion of a
number in the unit interval as follows:

x =
∞∑

i=0

si

2i+1 , y =
∞∑

i=1

s−i

2i
.

This observation leads to a natural way for defining a map from Σ2 to points in the
unit square R as follows:

φ({s−ns−n+1 · · · s−2s−1.s0s1s2 · · · sn−1sn · · · }) = (x, y) ≡
( ∞∑

i=0

si

2i+1 ,
∞∑

i=1

s−i

2i

)
.

The goal now is to relate the shift dynamics on Σ2 to the baker’s map on R through
the map φ. This is related to what we mentioned in our (informal) definition of an
isomorphism concerning ‘preserving the essential structures’. Mathematically, this is
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accomplished by ‘proving that the following diagram commutes’:

Σ2 σ−−−−→ Σ2⏐⏐�φ

⏐⏐�φ

D
S−−−−→ D

In other words, if we take any bi-infinite sequence of zeros and ones,

s = {· · · s−ns−n+1 · · · s−2s−1.s0s1s2 · · · sn−1sn · · · },

and we start in the upper left-hand corner of the diagram, then map to R by first
going across the top of the diagram, then down, we will get the same thing if we first
go down, then across the bottom of the diagram. In other words, we want to show
that for any sequence s ∈ Σ2, we have φ ◦ σ(s) = S ◦ φ(s). We will work out each
side of the equality individually and, hence, show that they are equal.

From the definition of the map φ we have:

φ ◦ σ(s) =
( ∞∑

i=0

si+1

2i+1 ,
∞∑

i=0

s−i+1

2i

)
.

This is the easy part. Showing the other side of the equality sign requires a bit more
consideration. Note that the map is linear and diagonal on R. Therefore, we can
consider the baker’s map acting on the x- and y-components individually.

For

x =
∞∑

i=0

si

2i+1 we have 2x =
∞∑

i=0

s+1i

2i+1 ,

y =
∞∑

i=1

s−i

2i
we have 1

2y =
∞∑

i=1

s−i

2i+1

(which is smaller than 1
2), but this is not the end of the story. With respect to the

y-component, we need to take into account the ‘cutting and stacking’ (i.e. the ‘mod 1’
part of the definition of the baker’s transformation). Note that in the expressions for
2x and 1

2y the symbol s0 no longer appears. Somehow it needs to reinstated, and
taking proper account of the cutting and stacking will do that. Now, if s0 = 1, the
x-component is greater than or equal to 1

2 . This means that after mapping by the
baker’s transformation this point is outside the square, and therefore it is in the part
that is cut off and stacked. Stacking means its y-component is increased by 1

2 , i.e.

1
2y =

∞∑
i=1

s−i

2i+1 .

Now if s0 = 0, this additional term contributes nothing to the sum. Combining these
facts, we have shown

S ◦ φ(s) = S

( ∞∑
i=0

si

2i+1 ,
∞∑

i=1

s−i

2i

)
=

( ∞∑
i=0

si+1

2i+1 ,
∞∑

i=1

s−i+1

2i

)
.
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Now since φ is invertible, φ ◦ σ(s) = S ◦ φ(s) is equivalent to S = φ ◦ σ ◦ φ−1. This
looks very much like the formula for a similarity transformation for matrices. We
know that if two matrices are similar, they share many basic properties. The same is
true in this more general setting. In particular, by composing this expression for S
with itself n times we have Sn = φ ◦ σn ◦ φ−1. From this we can conclude that there
is a one-to-one correspondence between orbits of S and orbits of σ. In particular,
we can then immediately conclude that S has an infinite number of (saddle-type)
periodic orbits of all periods.

Appendix B. Construction of an LTM from a duct flow

In this appendix we show how to rigorously obtain a linked twist map (LTM) for a
spatially periodic duct flow. We refer to each spatial period as a cell, and the flow
is described by a mapping from the beginning of a cell to the end of a cell. This
mapping is the composition of two mappings, each a twist map. The first twist map
is the mapping of particles from the beginning of the cell to the half cell. The second
twist map is the mapping of particles from the end of the half cell to the end of the
cell.

The cell-to-cell LTM obtained in this way will be discontinuous in the sense that
each twist map is computed separately and continuity at the half cell is not enforced.
In this case the requirement that the flow patterns at the beginning of consecutive
half cells are related by a rigid rotation is rigorously true.

(a) Construction of the first twist map

We assume that we have a duct flow in the first half of the cell having the following
form:

dx

dt
=

∂ψ1

∂y
(x, y),

dy

dt
= −∂ψ1

∂x
(x, y),

dz

dt
= k1(x, y).

Since the x- and y-components of the velocity field (i.e. the cross-flow) do not depend
on the axial coordinate z we can consider transforming this 2D velocity field into
standard action-angle variables. This requires the assumption that in some region in
the cross-flow there is a pattern of closed streamlines given by ψ1 = c.

(b) Action-angle transformation in the cross flow

If this assumption holds then it is well known from classical mechanics that in this
region there is a transformation (x, y) → (r, θ) satisfying the following conditions:

(i) r = r(c), i.e. r is constant on the closed streamlines in the cross-flow,

(ii)
∮

ψ1=c

dθ = 2π,

(iii)
dθ

dt
= Ω1(r).

The action variable is given by

r =
1
2π

∫
ψ1=c

y dx,
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and the angle variable is given by

θ =
2π

T (ψ1)
t,

where T (ψ1) is the period of the orbit in the cross-flow (which is a level set of ψ1),
and t denotes the time along the streamline measured from a certain starting point
on the streamline.

We assume that this action-angle transformation on the x, y-component of the
velocity field has been carried out so that these equations subsequently take the
form

dr

dt
= 0,

dθ

dt
= Ω1(r),

dz

dt
= w1(r, θ), w1(r, θ) = k1(x(r, θ), y(r, θ)).

We remark that there may be multiple regions of closed streamlines in the cross-flow
separated by homoclinic or heteroclinic orbits, or even solid boundaries. In general,
a separate action-angle transformation is required for each such region of closed
streamlines (and the different transformations may not be simply related).

(c) Action-angle-axial transformation in the half cell

Now we introduce a final change of coordinates, which leaves the action-angle
variables in the cross-flow unchanged, but modifies the axial coordinate so that all
particles on a given streamline in the cross-flow take the same time to travel the
length of the half cell. We refer to these coordinates as action-angle-axial coordinates
(Mezić & Wiggins 1994).

Suppose Ω1 �= 0. Then the transformation of variables (r, θ, z) → (r, θ, a), defined
by

r = r, θ = θ, a = z +
∆z1(r)

2π
θ −

∫
w1(r, θ)
Ω1(r)

dθ,

where

∆z1(r) =
1

Ω1(r)

∫ 2π

0
w1(r, θ) dθ

transforms the velocity field in (r, θ, z)-coordinates to the form

dr

dt
= 0,

dθ

dt
= Ω1(r),

da

dt
= A1(r),

A1(r) =
∆z1(r)

2π
Ω1(r) =

1
2π

∫ 2π

0
w1(r, θ) dθ.

(d) Explicit expression for the twist map

Now an LTM can be constructed from the velocity field in (r, θ, a)-coordinates.
Let z = 0 be the starting point of the channel. From the coordinate transformation
above we see that the beginning of the first half cell, z = 0, corresponds to

a =
∆z1(r)

2π
θ −

∫
w1(r, θ)
Ω1(r)

dθ.
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The end of the first half cell (beginning of the second half cell) is at z = 1
2L, which

corresponds to

a = 1
2L +

∆z1(r)
2π

θ −
∫

w1(r, θ)
Ω1(r)

dθ.

The time of flight, T , from the beginning of the first half cell to the end is given by
solving a(T ) = A1(r)T + a(0), where

a(0) =
∆z1(r)

2π
θ −

∫
w1(r, θ)
Ω1(r)

dθ and a(T ) = 1
2L +

∆z1(r)
2π

θ −
∫

w1(r, θ)
Ω1(r)

dθ.

After some simple algebra we easily find that

T =
L

2A1(r)
.

Therefore, the twist map for the first half cell is given by

r → r, θ → θ +
LΩ1(r)
2A1(r)

,

or

r → r, θ → θ +
πL

∆z1(r)
.

(e) Construction of the second twist map

The construction of the twist map in the second half of the cell proceeds in exactly
the same way as the construction for the first half. We suppose the flow in the second
half is given by

dx

dt
=

∂ψ2

∂y
(x, y),

dy

dt
= −∂ψ2

∂x
(x, y),

dz

dt
= k2(x, y),

where ψ2(x, y) describes the streamline pattern in the cross-flow, which we choose to
be a rigid rotation of the flow pattern defined by ψ2(x, y), and k2(x, y) describes the
axial velocity. We then proceed with the same series of transformations as above.

The first and second twist maps are composed to give the LTM describing the
mapping of fluid particles from the beginning to the end of a cell.
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