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Abstract. Velocity and shear stress distributions and the relationship between maximum near-
bottom orbital velocity u,,, and maximum shear velocity ux, in an oscillatory boundary layer are
computed for hydraulically smooth, transitional, and rough turbulent flow using unsteady boundary
layer theory and a single, continuous expression for eddy viscosity K. Velocity profiles over a half
wave cycle calculated using a time-independent form of K compare favorably with available meas-

ured profiles in smooth, transitional, and rough turbulent flows; computed shear stress profiles
agree reasonably well with measured stress profiles. Use of a time-dependent eddy viscosity gen-
erally improves the agreement between measured and computed velocity and shear stress near the
bed but not in the outer boundary layer. Maximum computed bottom shear stress, however, does
not differ significantly from values calculated with a time-independent K owing to the choice of
ux, as the turbulent velocity scale in K. The ratio of maximum orbital velocity to maximum shear
velocity is computed as a function of two nondimensional parameters, a Reynolds number
Re+=ux,,d,/v and an inverse Rossby number &y=wz o/ux,; 8,, is wave boundary layer thickness, ®
is wave frequency, Vv is kinematic viscosity, and z is the bottom roughness parameter. These
independent variables of the nondimensional unsteady boundary layer equation can be related to
the more commonly used wave boundary layer parameters which are expressed in terms of orbital
velocity instead of shear velocity. At the fully rough and fully smooth turbulent flow limits,
Uxn/Uyp 1S given by a single curve as a function of &, or Re+, respectively. These curves compare
favorably with available measurements and expressions for wave friction factor. The nondimen-
sional equations also yield the dependence of ux,,/u,,, on &y and Rex for transitionally rough tur-

bulent flow.

Introduction

Near-bed wave velocities on the continental shelf are
often comparable in magnitude to near-bed current veloci-
ties (including wind-driven currents and tides) during low to
moderate wave conditions and can become considerably
larger on the mid- and inner shelf, particularly during
periods of large swell. Comparable wave and current velo-
cities near the bed translate into boundary shear stress
values for the wave component of flow that are consider-
ably larger than those associated with the current owing to
differences in wave and current boundary layer scales.
High wave-generated shear stresses readily mobilize the
finer fractions of typical continental shelf bed sediments
and deform beds of predominantly sand-sized sediment into
symmetrically shaped ripple forms. Initial motion of sedi-
ment, bedload transport, ripple geometry, and ripple migra-
tion rates are wave-dominated processes over much of the
continental shelf. In addition, shear stress, bottom rough-
ness, velocity profile structure, and suspended sediment dis-
tribution in the bottom boundary (Ekman) layer are
significantly influenced by the dynamics of the wave boun-

dary layer.
Copyright 1995 by the American Geophysical Union.
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Despite the importance of wave boundary layer
dynamics to near-bed flow and sediment transport, direct
field measurements of flow in the wave boundary layer on
the continental shelf are almost nonexistent because of the
technical difficulties of making velocity measurements
within 10 cm of the bed, which is typically irregular, in
water tens of meters deep. As a result, it has been necessary
to rely on oscillatory boundary layer models to provide esti-
mates of velocity and shear stress in the wave boundary
layer and of wave boundary layer height for near-bed velo-
city and sediment transport calculations on the continental
shelf. Recent developments in laser velocimetry, such as
the instrument described by Agrawal and Aubrey [1992],
may soon provide direct measurements of wave boundary
layer velocity on the continental shelf. Such measurements
will be valuable for testing the models, but it is unlikely that
they will become routine in the near future. Our reliance on
wave boundary layer models for predictions of flow and
sediment transport on the shelf and for interpreting near-bed
measurements makes it important that these models be as
complete and as accurate as possible.

Our understanding of wave boundary layer dynamics is
based on 30 years of experimental flume and wind tunnel
studies [e.g., Jonsson, 1963; Kamphuis , 1975; Jonsson and
Carlsen , 1976; Hino et al., 1983; Sleath, 1987; Jensen et al.,
1989] and theoretical analyses [e.g., Kajiura, 1968; Smith,
1977; Grant and Madsen, 1979; Long, 1981; Brevik, 1981;
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Myrhaug , 1982; Trowbridge and Madsen, 1984; Fredsde,
1984]. Much of this work focuses on velocity structure and
shear stress in hydraulically - rough oscillatory boundary
layers. One of the motivations for these studies has been to
establish the relationship between maximum near-bed wave
orbital velocity u,, and maximum wave-generated boun-
dary shear stress Tg, or maximum shear velocity usx, as is
necessary for calculations of sediment transport and wave
energy dissipation under surface gravity waves. The most
widely used relationship between orbital velocity and boun-
dary shear stress is the semiempirical wave friction factor
diagram developed by Jonsson [1966] who expresses fric-
tion factor f,, as a function of the ratio of near-bed wave
orbital amplitude to physical bottom roughness length a,/k;
and a wave Reynolds number Re,=u,,a,/v; v is kinematic
viscosity.

The traditional focus on rough turbulent wave boundary
layers stems from its prevalence in natural settings and the
relative simplification achieved by being able to disregard
the viscous sublayer. It is often argued that oscillatory
flows in the coastal environment are generally hydraulically
rough. Hydraulically smooth and transitional turbulent
flows can exist, however, particularly in lower-energy
environments or in the absence of oscillatory ripples which
greatly increase bed roughness. A few studies have
attempted to characterize a broader range of flow condi-
tions. Jonsson’s [1966] wave friction factor diagram
extends through rough, transitionally rough, and smooth
turbulent flow and laminar flow based on a combination of
theoretical and semiempirical expressions for these flow
regimes. The theoretical studies of Kajiura [1968] and
Fredsde [1984] include viscous sublayer effects in order to
compute velocity distributions for smooth and transitionally
rough turbulent flows. Hino et al. [1983] measured velocity
and turbulence profiles in a smooth, transitionally turbulent,
oscillating wind tunnel flow. More recently, Jensen et al.
[1989] carried out an extensive set of flume experiments of
velocity and turbulence structure in smooth, transitionally
rough, and rough turbulent oscillatory boundary layers.

In this paper a theoretical formulation for velocity and
shear stress in wave boundary layers under conditions rang-
ing from smooth to rough turbulent flow is presented in
order to address three issues relevant to the use of wave
boundary layer models in continental shelf environments.
The first is whether a single expression for eddy viscosity
can be used to characterize profiles of velocity and shear
stress in turbulent oscillatory boundary layers for all
hydraulic roughness conditions, i.e., all roughness Reynolds
numbers. The eddy viscosity formulation proposed herein
is similar in nature to the form used by Kajiura [1968] but is
smooth and continuous in the vertical. The data of Jensen
et al. [1989] provide excellent tests for these calculations.
Also considered here is whether a time-independent eddy
viscosity, such as is used in most oscillatory boundary layer
models, provides sufficiently accurate profiles of velocity
and shear stress over a full wave cycle. To address this
question, velocity and shear stress computed using a time-
independent eddy viscosity are compared with results using
a time-varying form similar to that proposed by Trowbridge
and Madsen [1984]. Finally, the model is used to generate
curves characterizing the ratio of maximum bottom shear
velocity to maximum bottom orbital velocity for the full
range of turbulent flow conditions. The limiting curves for
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Figure 1. (a) Example of velocity profiles in an oscillatory rough
turbulent boundary layer over a half wave period. (b) Profile of
velocity at maximum flow conditions (#,=u,,), normalized by
maximum orbital velocity u,, as a function of nondimensional
height above the bed £=z/8,=zWux,. In this example, u,,=120
cm/s, T=12 s, u,,=7.8 cm/s, and z(=0.007 cm.

rough turbulent flow and smooth turbulent flow are com-
pared to existing expressions and data for the wave friction
factor.

Unsteady Boundary Layer Equations

When water depth h is less than about half the
wavelength L of a surface gravity wave, wave orbital
motion will be present at the bed. For waves of small steep-
ness, parameters such as wave orbital velocity and orbital
diameter can be calculated using small-amplitude wave
theory. The wide applicability of small-amplitude wave
theory outside of the nearshore zone makes it relatively
straightforward to estimate inviscid wave velocity at the
bed, given estimates of wave height, period, and water
depth [e.g., Madsen, 1976]. This theory assumes that the
bed is frictionless, but owing to the no-slip condition at the

‘bed surface, a thin wave boundary layer exists at the bed in

which the velocity increases from zero to the near-bed orbi-
tal velocity u, (Figure 1). As near-bed orbital velocity
varies through a wave period, so does the velocity structure
in the wave boundary layer and the shear stress at the bed.
A phase difference ¢ exists between maximum orbital velo-
city at the top of the boundary layer u,, and maximum
boundary shear stress T, which depends on the velocity
gradient at the bed.

Velocity Distribution in an Oscillatory Boundary Layer

The velocity structure in the wave boundary layer and the
relationship between boundary shear stress Ty or shear velo-
city u*=(T0/p)l/2 and near-bed orbital velocity can be com-
puted using the turbulent boundary layer momentum equa-
tion for an unsteady flow; p is fluid density. The unsteady
boundary layer approximation to the Reynolds-averaged
horizontal momentum equation with an eddy viscosity clo-
sure has the form

du 1dp O ou
= LK) —
ar = poax o @Y,

where u is horizontal velocity in the wave boundary layer, p
is pressure, and K (z) is eddy viscosity. This can be coupled
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to an inviscid flow approximation for the velocity above the
boundary layer,

Ju, 1
_=__a_p )
ot p ox
to produce
du_Ouy Q ou
% _ < ou 3
ot ot +azK(Z) 0z ®

Alternatively, (3) can be written in terms of velocity differ-
ences as

J B OINCI
E(ua_u)_ aZ K(Z) aZ (uo u)

using the fact that du,/0z=0 in the wave boundary layer.

If the wave motion is assumed to be sinusoidal, then the
time dependence of the velocity field can be made explicit
by writing u,~u=Re(Ue'®), where 0=2m/T and T is wave
period [e.g., Smith, 1977]. In this case, (4) can be written as
an ordinary differential equation in terms of the complex
velocity U,

)

d’U  dK/dz dU i
> K dz K

The boundary conditions are (1) U=u, at z=z( and (2) U=0
for z90,,; z¢ is the hydrodynamic roughness parameter and
0, is wave boundary layer height. An expression for the
eddy viscosity K (z) must be specified before (5) can be
solved. If eddy viscosity is linear in z, e.g., K=Kux,,z, where
K is von Karman’s constant or if it is linear near the bed and
constant in the outer boundary layer, then (5) can be solved
analytically [e.g., Kajiura, 1968; Smith, 1977; Grant and
Madsen, 1979; Brevik, 1981; Myrhaug, 1982]. These
analytical solutions show that the velocity profile
approaches a logarithmic form in the limit as z gets small
and they can be differentiated to obtain explicit expressions
for shear velocity. Equation (5) can also be solved numeri-
cally using Thomas’ tridiagonal algorithm [e.g., Carnahan
et al., 1969] for an arbitrary choice of eddy viscosity.

U=0 )

Eddy Viscosity

Several choices for eddy viscosity are possible. Jonsson
[1963, 1966], Smith [1977], and Grant and Madsen [1979]
used the linear form K (z)=Kusx,z because it allowed an
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analytical solution and because it was expected to have the
proper form near the bed. It also has been shown to yield
velocity profiles in reasonable agreement with velocity
measurements made by Jonsson [1963; Jonsson and Carl-
sen, 1976] in a rough turbulent oscillatory flow. On the
other hand, a linearly increasing K is not physically reason-
able near the top of the wave boundary layer, where the
shear stress goes to zero in the absence of a superimposed
current, or to the current stress if a current exists. Long
[1981], following work on atmospheric boundary layers by
Businger and Arya [1974], proposed the alternative form
K (z):Ku*mze“"/l, where [ is a length scale. This expression
for eddy viscosity approaches the linear form for small
values of z, reaches a maximum at z=[, and then decays
with height for z>l. Long proposed that [ for high-
frequency, oscillating flows should have the form [=ux, /6.
Wave velocity profiles calculated using this eddy viscosity
also agree well with Jonsson’s [1963] measurements of
oscillatory velocity [Long, 1981]. Kajiura [1968], Brevik
[1981], and Myrhaug [1982] used segmented eddy viscosity
profiles, typically of the form K=Kusx,z for z<z* and
K=Kux,z* for z2z*, where z* is a matching height within
the wave boundary layer. Kajiura [1968] also included a
third segment to characterize the viscous sublayer for
smooth and transitionally rough turbulent flows, taking K=v
for z<3,, where 3, is viscous sublayer height.

All of these expressions for eddy viscosity are time-
independent, with the turbulent velocity scale represented
by maximum shear velocity. Use of a time-independent
eddy viscosity for high-frequency, oscillatory flow is
justified by Long [1981], provided that the timescale for
decay of the turbulent eddies is long relative to the period of
oscillation for the waves. Long [1981] obtained good
agreement between velocity profiles calculated using a
time-independent eddy viscosity and those measured by
Jonsson [1963], both at times of maximum and near-zero
orbital velocity (see Figure 2).

Trowbridge and Madsen [1984] gave further considera-
tion to the question of a time-independent versus time-
dependent form of eddy viscosity for turbulent wave boun-
dary layers. They proposed a relatively simple, time-

dependent expression for eddy viscosity that yields a velo-
city profile when u,=u,, (maximum velocity) for the first
harmonic

of velocity that compares well with the
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Figure 2. Comparison of computed profiles of wave velocity, shear stress, and phase for rough turbulent flow and
Jonsson’s [1963; Jonsson and Carlsen, 1976] measured profiles for ©=0.75s", u,,,=210 cm/s, and z,=0.077 cm.
Computed profiles are shown for the following three choices of eddy viscosity: Kp=Kus«ze ¥'; K,=Kusz; Kp=Kusz for
z<z* and Kp=Ku.z* for z>z*, where z*¥=Ku./60. (a) Velocity profiles at u,=0 and u,=u,,,. (b) Shear stress at u,=0
and u,=u,, . (c) Phase difference between u(z) and u,,, at maximum velocity.
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corresponding profile measured by Jonsson [1963; Jonsson
and Carlsen, 1976, test I]. In addition, their expression for
the third harmonic of velocity also provides reasonable
agreement with the third harmonic of the Jonsson [1963;
Jonsson and Carlsen, 1976, test 1] measurements. This
term cannot be computed with a time-independent form of
eddy viscosity [Trowbridge and Madsen, 1984]. While
Trowbridge and Madsen [1984] were able to calculate
higher harmonics of the velocity field in a wave boundary
layer, they also note that the magnitude of the third
harmonic of velocity is only a few percent of the fundamen-
tal harmonic, and the third harmonic of shear stress is 20-
25% of the first harmonic for small-amplitude waves
[Trowbridge and Madsen, 1984]. Given the number of
sources of uncertainty in estimates of boundary shear stress
of the same order, it is reasonable to begin with a time-
independent formulation.

To examine smooth and transitionally rough turbulent
oscillatory flows, a characterization of the viscous sublayer
must be included in the profiles through use of an appropri-
ate form of eddy viscosity close to the bed. Kajiura [1968]
let K=v for z<d, for smooth turbulent flow. Reichardt
[1951] and van Driest [1956] derive expressions for the
velocity profile of a smooth turbulent unidirectional flow
that extend through both the viscous sublayer and the over-
lying turbulent logarithmic layer, with smooth transitions
between the two regions [see Schlichting, 1979]. Van Dri-
est [1956] divides the shear stress into a viscous stress and a
Reynolds stress and defines a modified mixing length for
the Reynolds stress, L=kz'[l1-exp(-z*/26)] that goes to
zero at small values of z"=u«z/v and to Kz at large values of
z*. An additional term of exp(—60z*/26R+) is added to L
for the case of transitionally rough turbulent flow.
Reichardt [1951] formulates the problem in terms of the
ratio of Reynolds stress to viscous stress, which is then used
to obtain an expression for velocity, u/u*=1<‘](1+lcz+) +
cl1-exp(=z*/11) - (z*/11)exp(=0.33z*)], that approaches
z¥ as z goes to zero and ¥ lln(z*4$) for zT>8;
c=x"[In(z§)+Ink]. Reichardt [1951] developed this
expression for smooth turbulent flow, in which case
7$=0.11 and ¢=7.8. However, his equation can also be con-
sidered to provide an interpolation of the velocity structure
for the transition layer between the viscous sublayer and the
overlying region of fully turbulent flow, much in the same
way as van Dreist’s, by appropriate choice of z§. Com-
parison of van Dreist’s formulation, including the term for
transitionally rough flow, and Reichardt’s expression over
roughness Reynolds numbers R«=uxky/v ranging from 1 to
1000 indicates that the two formulations yield nearly indis-
tinguishable velocity profiles over that range.

An objective of this investigation was to incorporate one
of these expressions into the eddy viscosity formulation to
provide a single eddy viscosity profile that will yield a velo-
city profile that varies smoothly through the full wave boun-
dary layer. Either of the Reichardt [1951] and van Driest
[1956] formulations can be expressed as an eddy viscosity.
I chose to use the Reichardt [1951] formulation because I
have used it previously to represent near-bed velocity struc-
ture for transitionally rough turbulent flow [Wiberg and
Smith, 1987] with good results and it can be readily incor-
porated into a general formulation for eddy viscosity, giving

1 1 1 c [ /116 + ~033 *}
e |76 1(0.337 7= 1)e V3 6
KV T e 116 ©
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where c=x"! [In(z§)+Ink]; fiz/)=1 for the linear eddy
viscosity, fz/)=l/z for K=Xuxl, and f(z/ly=e™?" for the
exponential form. At large values of z* the eddy viscosity
given by (6) approaches kuxzf(z/l), while at small values of
z* it approaches v, as expected.

Equations (5) and (6) can be used to generate velocity
and shear stress profiles for smooth, transitionally rough, or
rough turbulent oscillatory flows, given period, bottom
roughness length, and either maximum shear velocity us,
or maximum bottom orbital velocity u,,,; if u,,, is given, the
solution is obtained iteratively. The roughness parameter
7o is determined from a fit to Nikuradse’s [1932, 1933]
measurements of zg/k, as a function of R« [Smith, 1977]
(original data are given by Schlichting [1979, p. 620]).

Nondimensionalization of the Wave Boundary Layer
Equations

Solutions to (5) can be obtained in a more general form if
the equations are nondimensionalized. The appropriate
nondimensionalization is suggested by Figure 1b, in which
only the profile corresponding to the maximum near-bed
orbital velocity u,, is shown. If the velocity u(z) is nor-
malized by u,,,, then the slope of the velocity profile in the
wave boundary layer depends on the ratio of zy to §,.
Assuming 8,=us,/® to within a constant factor of order 1,
20/0,,=Wz¢/ux,. This suggests using the nondimensional

.vertical coordinate,

M

which has the form of an inverse Rossby number.
Transforming (5) into these nondimensional variables gives

y* * ok,
d*U" | dK/E dU”

E=z 0/ xy,,

dg? K dtf oK
2yr* * * ¥
_d 1]2 L /*d§ du _zU* 20 @
d§ K d¢ K

where U *=U/u,,, and K" is nondimensional eddy viscosity
K u)/u%m. Reichardt’s [1951] expression for eddy viscosity
(6) nondimensionalized in this way is

1 =Re {f ___.._1—
K* *L 1+kReEA(E)

_C [ -tResn16 _ —O.33§Re:|1
el +(0.33ERe—1)e JJ} )

where

Wl

Re =

(10)
wv
and the z* terms in (6) have been replaced by the equivalent
ERex; fE)=1 for the linear eddy viscosity and f(E)=e % for
the exponential form of K. K~ as given by (9) is a function
of £ and Re«. At large values of Re«, K approaches kEf(E),
while at small values of Rex, K * approaches Rex!. The
upper boundary condition for (8) is U =0 for &>1. The
boundary condition at the bottom is U “=1 at =0 for smooth
and transitionally rough turbulent flow; this condition is
applied at &=£y=z¢W/u+ for rough turbulent flow. When
solving these equations, the lower boundary condition is
evaluated at E=0 when the value of c=—k"[In€yRe ++Inx] in
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(9) is greater than -1 and at £=£; when c<-1; c=-1 at a
roughness Reynolds number Rs=u+k,N=z"k,/zq=110.

Under rough turbulent flow conditions (Rx > 70—-100) the
viscous sublayer is negligibly thin relative to the size of the
physical roughness elements, K * becomes independent of
Res, and the solution to (8) requires only that &; be
specified. In this case the ratio of the bed roughness param-
eter to physical bed roughness length zy/k is a constant
approximately equal to 1/30 [Nikuradse , 1933], so the pro-
duct EgRes=z3=R+zy/ks takes the value R+/30. This places a
lower limit on Re« for rough flow at a given &g of Re«=~3/,
assuming fully rough conditions for R«>100. In contrast,
smooth flow occurs when Rx+<3-S5. In this limit, zo=v/ux
or zo/ks = (9R+)"' [Nikuradse, 1932], giving Re:,
R+z¢/ks=0.11 or Ey= (9Re.)"!. Thus the solution depends
only on Rex for smooth turbulent flow. For transitional con-
ditions the flow depends on both Re« and &,. These asymp-
totic dependencies are analogous to the results of Kajiura
[1968] and Jonsson [1966], showing that the single
independent parameter for smooth flows is Re, and for
rough flows is a,/k;.

The existence of a meaningful solution to (8) places
some additional constraints on the range of possible values
of the independent parameters &, and Rex. For example,
there must be adequate separation in value between z( and
o, (see Figure 1). As this ratio approaches 1, the solution
breaks down. Velocity profile structure and the relationship
between U, /g, and &y (~z¢/0,,) support a maximum value
of &, of roughly 0.03. This implies that for fully rough
flows &, must be comparable to or greater than k,. The
upper limit £y=0.03 can be related to a criterion in terms of
ay/kg.  For rough flow, a,/k; Uy /(0302 o)
(30Equsp/iym)!. The computed value of wwy,/u,, for

Table 1. Oscillatory Boundary Layer Measurements
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£0=0.03 is 0.14 (wave friction factor f,=0.04), which
corresponds to a,/k,=8. A value of a,/k.=10 has been cited
as a lower limit of a,/k; for theoretical rough-flow friction
factors which are based on a linear eddy viscosity near the
bed [Jonsson, 1963], so the two limits are consistent. A
further constraint occurs at small values of wave Reynolds
number because of the laminar-turbulent flow transition.
This transition occurs at Re,,::105—106 [Jensen et al., 1989;
Figure 8] or Res of the order of 1000. This provides an
approximate lower limit on the wave Reynolds number for
turbulent oscillatory boundary layer flow.

Comparison of Measured and Computed Profiles
of Velocity and Shear Stress

The most widely cited oscillatory flow measurements are
those made in a rough oscillatory boundary layer by Jons-
son [1963; Jonsson and Carlson, 1976]. The relevant flow
parameters for this case are u,,,=210 cm/s, ©®=0.75 s7!, and
ks=2.3 cm (case Jons 1; see Table 1). Measured velocity
profiles for u,=0 and u,=u,,, are indicated by the symbols in
Figure 2a; the profile shown for u,=u,,, is an average of the
measured velocity profiles at wu,=tu,,. The curves
represent profiles calculated using (5) and (6) at the same
phases for three different forms of time-independent edzc}?'
viscosity (identified in the legend): Kg=Kux,ze "
K;=Xus,z; and Kp=Kux,z for z<z*, Kp=Kus,z* for z>z%*,
where z*=xl=Ku+/(6w), following Trowbridge and Madsen
[1984]; a time-dependent form of Kf is also plotted in Fig-
ure 2 and is discussed in the next section. Of the time-
independent forms of eddy viscosity the exponential (Kg)
and the two-part (Kp) forms of K provide the closest agree-

Case * T Upms |7 kg, & Re.t Re, (s o),  Flow i (us,/uyn),
s cm/s  cm/s cm x10™*  x10° x10°  Measured Model§
Jens 1 9.72 7.3 0.77 14. 0.081 0.075 0.106 L 0.110
Jens 2 9.72 152 1.1 6.8 0.16 0.33 0.072 L 0.081
Jens 3 9.72 23.0 1.4 4.2 0.13 0.75 0.061 L 0.067
Jens 4 9.72 34.0 1.7 2.8 0.39 1.6 0.050 L 0.062
Jens 5 9.72 45.0 2.3 1.6 0.72 2.9 0.051 L/S 0.057
Jens 6 9.72 60.0 3.2 0.80 1.4 5.0 0.053 L/S 0.053
Jens 7 9.72 68.0 3.5 0.67 1.7 6.5 0.052 L/S 0.052
Jens 8 9.72 102.0 4.8 0.36 3.1 16. 0.047 S 0.048
Jens 9 9.72 155.0 6.4 0.20 5.6 34, 0.041 S 0.044
Jens 10 9.72  200.0 7.7 0.14 8.1 60. 0.039 S 0.042
Jens 12 9.72 102.0 5.8 0.084 3.1 4.57 16. 0.057 T 0.061
Jens13 9.72 2000 11. 0.084 1.7 16.4 60. 0.055 T/R 0.057
Jens 14  8.12 87.0 6.0 0.260 11. 4.1 9.0 0.069 R 0.075
Jens15 8.12 2100 14. 0.370 6.8 22. 52. 0.067 R 0.069
Jons 1 8.39 210.0 21. 2.3 25. 52. 53. 0.095 R 0.090

Abbreviations are defined as follows: T, wave period; u,,,, maximum near-bottom orbital velocity; u.,,, maximum
shear velocity; k,, physical bottom roughness length; &, nondimensional bottom roughness parameter; Re., Reynolds

number; Re,, wave Reynolds number.

* Jens is Jensen et al. [1989]; Jons is Jonsson [1963]. Numbers indicate experiment number.

T Viscosity is 0.0114 cm?/s for the Jensen et al. [1989]

(based on values provided by Jonsson and Carlson [1976]).

cases and 0.010 cm?/s for the Jonsson [1963] experiment

1+ L is laminar flow, S is smooth turbulent flow, R is rough turbulent flow, and L/S is laminar-smooth transitionally

turbulent flow.

§ Model calculations use equations (5) and (6) with the exponential form of eddy viscosity Kg.
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Figure 3. Comparison of computed profiles of wave velocity and shear stress for smooth turbulent flow with the Jen-
sen et al. [1989] measured profiles for case Jens 8 in Table 1 at u,=0 and u,=u,,,; T7=9.7 s, u,,,=102 cm/s.

ment with measured velocity; Ky results in modestly better
agreement than Kp.

Shear stress profiles estimated by Jonsson and Carlson
[1976, test 1] from the velocity data using the momentum
integral method are compared to calculated stress profiles in
Figure 2b. The exponential and two-part forms of eddy
viscosity  provide the best agreement  between
measurement-derived and computed profiles of shear stress,
although none of the calculated profiles closely follows the
measurements between z=2 and 14 cm for u,=0. Maximum
shear velocity was best estimated by the linear and two-part
forms of K (K; and Kp). Measured and calculated phase
difference ¢ between u,, and velocity at each level when
Uy=U,, is shown in Figure 2c. Again, Kz and Kp provide
the best agreement, but both deviate from the measurements
near the bed.

Jensen et al. [1989; Jensen, 1989] measured velocity and
shear stress in laminar, transitionally turbulent, and smooth,
transitionally rough, and rough turbulent oscillatory boun-
dary layers. These measurements were made in a water
tunnel using a laser-Doppler anemometer (LDA) and hot
film probe for a range of Reynolds numbers [Jensen et al.,
1989]; flow parameters for these measurements are listed in
Table 1. Tabulated profiles of mean velocity, Reynolds
stress, and turbulence intensity measured at 15° phase
increments over a half wave cycle are available for cases
Jens 8, 10, 12, and 13 (Table 1) in the work of Jensen
[1989]. Time series of mean and rms values of bottom
shear stress, measured directly by hot film, were also pro-
vided (J. Fredsee, personal communication, 1992) for the
laminar (Jens 1-5, Table 1) and smooth turbulent (Jens 7-
10, Table 1) cases.

Measured velocity and shear stress profiles for a smooth
turbulent flow (Re,=1.6x10°) with 7=9.72 s and u,=102
cm/s (case Jens 8, Table 1) are shown by the symbols in
Figures 3a and 3b, respectively, for u,=0 (6=0) and u,=u,,,
(6=90°; profiles at 30° phase increments are shown in Fig-
ure 5). The curves are the velocity profiles calculated from
(5) and (6) for the same wave conditions. The agreement
between the measured and predicted velocity profiles is
good for the exponential Ky and two-part Kz forms of eddy
viscosity, except near the top of the boundary layer when
u,=0. The overestimate of velocity in this case may be a
result of using a time-independent eddy viscosity and the
laminar flow conditions present near the bed at this phase

(see discussion below). Channel-flow measurements of
velocity profiles in smooth turbulent flows indicate that the
top of the transition zone between the viscous sublayer and
the region of logarithmically varying velocity occurs at a
distance of roughly z*=30 [Schlichting, 1979; Newu and
Rodi, 1986]. This corresponds to z=0.07 cm for the case
shown in Figure 3 (Jens 8, Table 1) and appears to provide a
reasonable estimate of the lower extent of the region of log-
arithmically varying flow.

The exponential and two-part eddy viscosities also yield
reasonably good agreement between computed shear stress
and measured Reynolds stress (Figure 3b); computed values
represent the sum of the Reynolds and viscous stresses and
thus deviate from the measured stresses close to the bottom.
As in the rough flow case (Figure 2b), the linear eddy
viscosity K; gives nonzero values of shear stress much
higher into the boundary layer than are indicated by the
data. Maximum boundary shear stress for this case was
closely estimated by the model using K (Table 1).

The Jensen et al. [1989] data also provide measured
profiles of velocity and shear stress for a case of transition-
ally rough turbulent flow with the same period and max-
imum orbital velocity as Jens 8 (Figure 3) but with a larger
bottom roughness parameter (Jens 12, Table 1). For the
transitionally rough flow measurements the bottom of the
water tunnel was covered with sand paper having a mean
grain size of 0.035 cm. Jensen et al. [1989] estimate the
physical roughness length k, for this case to be 0.084 cm
based on measured velocity profiles. The roughness Rey-
nolds number Rs computed from the measurements is 43,
well within the range of transitionally rough turbulent flow
conditions. The measured and calculated velocity and shear
stress profiles are shown in Figures 4a and 4b. The agree-
ment is similar to that shown in Figure 3 for a smooth flow,
except that the measured and computed values are closer at
u,=0 with a time-independent X for this transitionally rough
flow; both velocity and shear stress profiles computed using
KE closely track the measurements.

Hino et al. [1983] measured velocity and turbulence
structure in a smooth, transitionally turbulent oscillatory
wind tunnel flow. The flow copditions for their measure-
ments were 7=3.18 s and Re=Ud/N=2.25x10*, where U is
the amplitude of the cross-sectional mean velocity varia-
tion; wind tunnel height =10 cm, and v=0.15 cm?/s. Plots
of measured profiles of Hino et al. [1983] indicate that u,,=
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Figure 4. Comparison of profiles of wave velocity and shear stress measured by Jensen et al. [1989] for a case of
transitionally rough turbulent flow (Jens 12, Table 1) with profiles computed using (5); T7=9.7 s, u,,,=102 cm/s.

300 cm/s, giving Reuzugm/(mv)z3.0x105, within the lam-
inar to turbulent transition range indicated by the Jensen et
al. [1989] data (see Figure 8). The Hino et al. [1983]
measurements of Reynolds stress and estimates of tur-
bulence production indicate that the boundary layer is lam-
inar at the beginning of the accelerating phase. The onset of
turbulence occurs rapidly near the end of the accelerating
phase and decreases gradually in the second half of the
decelerating stage. Similar variations of wall shear stress
with phase were observed by Jensen et al. [1989] for a case
in which Re,,:2.9><105 (Jens 5, Table 1); the data indicate
that the onset of turbulence in this case was delayed until
the beginning of the decelerating phase. The present model
assumes fully turbulent flow and cannot represent the velo-
city structure during the onset of turbulence in an oscilla-
tory boundary layer. Thus use of the model to compute the
velocity field through a wave cycle is restricted to cases in
which the boundary layer is fully turbulent over most of the
wave cycle. On the basis of the measurements of Jensen et
al. [1989], the onset of turbulence occurs within the first
quarter of each half wave cycle (0<45°) for cases with
Re,,>1><106. For these cases the model is valid over most of
the wave cycle. The data and model results suggest that the
model can be used to describe velocity profiles and shear
velocity at peak flow conditions (u,=u,,,) for Re,>5x10°.

Time-Independent Versus Time-Dependent Eddy
Viscosity

Time series of normalized mean (ensemble averaged)
bottom shear stress, Top/Tg,,, over a half wave cycle meas-
ured by Jensen et al. [1989] using a hot film probe are
shown by the symbols in Figure 5 for smooth turbulent
flows ranging in Re, from 1.6x10° to 6x10° (Jens 8, 9, 10;
Table 1). The solid curves in Figure 5 give the temporal
variation of normalized bottom shear stress computed using
(5) and (6) and the time-independent, exponential form of K
(Kg); computed and measured maximum shear velocities
are given in Table 1. Near peak values, the measured and
computed variation in boundary shear stress with phase
agree reasonably well. At times of lower shear stress, how-
ever, there are marked differences between measured and
computed boundary shear stress. During the accelerating
part of the cycle, measured bottom shear stress exhibits a
relatively abrupt change from lower, less variable mean

bottom stresses to higher, more variable mean bottom
stresses. The phase at which the shear stress makes this
transition decreases with increasing Re,. This suggests that
even at Reynolds numbers as high as 6x10°, the flow is not
fully turbulent at the beginning of the accelerating phase.
As discussed by Jensen et al. [1989] and Hino et al. [1983],
the favorable pressure gradient during the accelerating
phase inhibits turbulence production at small values of u.
During deceleration, Figure 5 indicates that the measured
bottom shear stress drops off somewhat more quickly than
the values calculated with a time-independent eddy viscos-

ity.

1.0 Jens-8
x 8T
56
5 i — K
S 4t L E \
= Kg (1) -,
2 Jensen et al. data ,\\ﬁ
00 50 100 150
101 Jens-9
g .8
S 6
< — K
o4 E
K ()
2 Jensen et al. data N
0 0 50 100 150
101 Jens-10
x 87
£
S 6
Y - KE ®
e 4
- KE
2 Jensen et al. data
0 100 150

0 50
) phase (degrees)

Figure 5. Boundary shear stress T, normalized by the maximum
bottom shear stress Ty, as a function of phase over a half wave
cycle for the smooth flow cases (a) Jens 8, (b) Jens 9, and (c) Jens
10 (Table 1) of Jensen et al. [1989]. The dots are the values of
shear stress measured using a hot film sensor. The solid curves
show the computed variation of Ty/Ty,, using the time-
independent, exponential form of eddy viscosity Kg. The dashed
curves show the computed variation of Ty/Ty,,, using the time-
dependent eddy viscosity Kx(t) (see (6)).
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Figure 6. Comparison of velocity profiles for (left) accelerating and (right) maximum and decelerating phases com-
puted using a time-dependent and time-independent form of the exponential eddy viscosity Ky for the smooth flow
case Jens 8 of Jensen et al. [1989]. The open circles are the measured values, the solid line profiles are computed
from (5) with steady form of K, and the dashed line profiles are computed with a time-dependent K.

Changes in hydraulic characteristics of the boundary
layer over a wave cycle cannot be captured with a time-
independent eddy viscosity because the velocity profile
structure is set by the hydraulic conditions at maximum
orbital velocity. This characterization optimizes the model
for times of large shear stress, consistent with many of the
applications of these models, but could be expected to
overestimate turbulent mixing at times when the instantane-
ous shear stress is a minimum. To investigate the effects of
time-independent versus time-varying formulations for
eddy viscosity, the eddy viscosity given in (6) was
modified, following the approach used by Trowbridge and
Madsen [1984] for a rough turbulent wave boundary layer.

Trowbridge and Madsen [1984] suggest that the time-
dependent variation of the turbulent eddy viscosity can be
approximated using a truncated Fourier series, resulting in

K(z,t)=K ((z) [0(1+0.4c0s2 wt)] (11)

[Trowbridge and Madsen , 1984], retaining only the first two
terms of the series. Ko(z) is the time-independent eddy
viscosity; the bracketed term effectively modifies the shear

velocity in K to produce a time-dependent turbulent velo-
city scale. The value of the constant o in (11) depends on
the form of the turbulent velocity scale ux used in (11).
Trowbridge and Madsen [1984] use a two-part form of K
with average shear velocity, ux, as the velocity scale, in
which case 0=0.763. The velocity scale for K used in the
calculations presented herein is ux,. In this case, o is
adjusted to 0.714 so that the maximum value of the brack-
eted term is 1 and the instantaneous value of ux cannot
exceed Uxy,.

Computed time series of bottom shear stress using the
time-dependent eddy viscosity described above are indi-
cated by the dashed curves in Figure 5 for the smooth tur-
bulent flow cases, Jens 8, 9, and 10 (Table 1); in these cal-
culations the bottom roughness is also time-varying, com-
puted from the instantaneous shear velocity. Use of a time-
dependent K accounts for more of the observed variation
than does the time-independent form. At small values of
instantaneous shear stress the calculations yield a variation
of T with time similar to that for a laminar flow because z*
in (6) is small and hence K approaches v through most of
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Figure 7. Comparison of computed shear stress profiles using time-dependent and time-independent forms of K for
the smooth flow test Jens 8 (Table 1) of Jensen et al. [1989]. The open circles are measured values, the solid line
profiles are computed using a steady form of K, and the dashed line profiles are computed using a time-varying form

of Kz.
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the boundary layer. However, the model does not attempt
to represent the dynamics of the transition from laminar to
turbulent flow and thus cannot predict the relatively abrupt
increase in bottom shear stress observed in the data when
the transition occurs during the accelerating phases. The
model with a time-dependent eddy viscosity does a better
job at representing the observed decrease of T with time
during the decelerating stage and is probably more
reflective of the real processes controlling the variation of
To with time at these phases.

Profiles of velocity and shear stress computed using
time-dependent and time-independent forms of Kj
(exponential form) are shown for case Jens 8 in Figures 6
and 7, respectively. In Figure 6, velocity profiles for
accelerating and decelerating portions of a half wave cycle
are shown. The time-varying K provides a better represen-
tation of the velocity profile at u,=0 (6=0). It also more
closely follows the measured velocity profiles near the bed
at all phases. However, the time-independent form follows
the data more closely in the outer part of the boundary
layer, except at 6=0. The flow is fully turbulent for 6>45°,
but residual turbulence is present in the boundary layer at
all phases [Jensen et al., 1989]. In Figure 7 the computed
shear stress profiles are compared to measured Reynolds
stress profiles at the same six phases of accelerating and
decelerating flow; the computed stresses are the sum of the
Reynolds and viscous stresses and thus do not follow the
measured Reynolds stresses at the wall. The agreement in
the near-wall region is somewhat better when the time-
dependent eddy viscosity is used, but the agreement in the
outer boundary layer is as good or better for the time-
independent K.

Velocity and shear stress profiles at u,=0 and u,=u,,
computed with the time-dependent eddy viscosity for
Jonsson’s [1963] rough flow measurements and the Jensen
et al. [1989] transitionally rough flow case, Jens 12, are
shown in Figures 2 and 4, respectively. Profiles computed
with a time-independent K agree at least as well with the
measurements in both cases as those computed with a
time-varying K. Examination of the full set of velocity
profiles for the transitionally rough cases of Jensen et al.
[1989] (Jens 12 and 13, Table 1) indicates a tendency, par-
ticularly at low orbital velocities, for the profiles to follow
the time-dependent calculations in the lowest centimeter or
so of the boundary layer and the time-independent calcula-
tions in the rest of the boundary layer. This is consistent
with the strong local effects and small response time of tur-
bulence near a wall compared to the outer regions of a
boundary layer. In all cases the differences between
profiles of velocity and shear stress computed with time-
independent and time-varying forms of K become negligi-
ble at phases when orbital velocity is near its maximum
value.

These results suggest that if detail at all phases is impor-
tant, particularly for near-bed velocity and shear stress,
employing a time-dependent eddy viscosity may be advis-
able. Accurate calculations of velocity and shear stress at
initial accelerating phases for smooth turbulent flows
require a more complex model that can account for the
onset of turbulence under reversing pressure gradients [e.g.,
Spalart and Baldwin, 1989]. However, if one is primarily
interested in the shear stress and velocity distribution at
maximum velocity, then the additional effort involved in
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carrying out computations with a time-dependent form is
probably not warranted, particularly given the degree of
uncertainty that usually accompanies estimates of other
parameters in the problem, especially bottom roughness.

Comparison of Measured and Computed
Maximum Bottom Shear Stress

Solutions to the nondimensional form of the boundary
layer equation for oscillatory flow (8) provide values for the
ratio of maximum shear velocity to maximum orbital velo-
city us,/u,, as a function of the independent nondimen-
sional parameters &g and Re«. Because the maximum value
of bed shear stress or shear velocity us, is not simultaneous
with maximum orbital velocity at the top of the wave boun-
dary layer u,,, the phase difference ¢ between these must
be taken into account when computing ux,,/u,,,. The result-
ing relationship is similar to Jonsson’s [1966] wave friction
factor diagram but is expressed in terms of the intrinsic non-
dimensional parameters of the governing equation, i.e.,
maximum shear velocity and the bottom roughness parame-
ter z rather than maximum orbital velocity and the physical
bed roughness length k;. The latter distinction is unimpor-
tant for hydraulically rough flow but is of consequence for
smooth and transitionally rough flows in which z also
depends on viscous sublayer thickness. The relationships
between shear velocity and orbital velocity derived herein
are complementary to Jonsson’s wave friction factor
diagram and can be particularly useful for calculations in
which bottom shear stress or shear velocity rather than orbi-
tal velocity is known, as in threshold sediment transport cal-
culations.

Wave friction factor f,, is defined by f,,=2(uxp/i,,)> and
typically is expressed as a function of the ratio of wave
orbital amplitude to physical bottom roughness length
(a,/kg) and wave Reynolds number Re,=u,,a,/v. These are
related to the parameters &, and Re s as follows:

A  Uom 1 Uom 20

ky ok Eo g kg

(12a)

U, ® (U, )2

R€0= =R8*[ J
v Uy,

Thus values of &y and Re« can be transformed to equivalent
values of a,/k; and Re,, given ux,/u,, and zy/k,; the latter
is a function of roughness Reynolds number Ri=u«k,/V
[e.g., Smith, 1977]. The product EgRe+ is equal to the pro-
duct R«zo/k,;. For any value of the product &yRe«, only one
value of R: with its accompanying value of zy/k, will
satisfy this equality, except for smooth turbulent flows, in
which case EgRe« is always equal to 0.11, so that R« and
zo/ks cannot be uniquely determined. The unsteady boun-
dary layer equations cannot be posed directly in terms of the
independent variable u, and k, because eddy viscosity
depends on u« as does z for smooth and transitionally
rough flows.

For comparison with previous work, asymptotic relation-
ships between wus,/u,,, &, and Rex computed using the
nondimensional boundary layer equation (8) for smooth and
rough turbulent flow conditions have been converted into
curves of f,, as a function of Re, and a,/k;, respectively,
using (12a) and (12b). The results for smooth turbulent

(12b)
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Figure 8. Comparison of computed and measured maximum boundary shear stress for smooth and rough turbulent
flow. (a) Wave friction factor f,=2(ttx,/i,,)* as a function of Re,=u2/(wv) for smooth wave boundary layer flow.
Computed curves are shown for exponential K and two-part Kp eddy viscosities; the theoretical relationship for a
laminar oscillatory boundary layer is also given. Measured values for laminar and smooth turbulent cases (Jens 1-10,
Table 1) from Jensen et al. [1989] are shown for comparison. (b) Wave friction factor as a function of a,/k; for rough
oscillatory flow. Computed curves are shown for a linear eddy viscosity K} in addition to the two forms of K shown
in Figure 10a. Measured rough flow values from Jensen et al. [1989] (Jens 13-15, Table 1) and Jonsson [1963] and
Jonsson’s [1966] semiempirical friction factor curve for rough flow are indicated for comparison. (c) Phase differ-
ence ¢ between u(z) and u,,, in degrees, for smooth turbulent flow. (d) Same as Figure 8c, but for rough turbulent

flow.

flow are shown in Figures 8a and 8c. The symbols indicate
the laminar, transitionally turbulent, and smooth turbulent
flow measurements of Jensen et al. [1989], Jens 1 through
10 in Table 1. For comparison, computed curves of f,, as a
function of the Reynolds number Re, are plotted for the
exponential Ky and two-part Kp forms of eddy viscosity;
the difference between the curves for these two eddy
viscosities is negligible. The analytical solution for a lam-
inar oscillatory boundary layer is also shown. The data
show that wave boundary layer flow at peak velocity
(u,=u,,) is turbulent for Re,,>5><105. The agreement
between the measured and computed friction factors is gen-
erally good for the smooth turbulent cases, although both
computed curves appear to overpredict the measured bot-
tom shear stresses at the highest values of Re,. The average
discrepancy in f,, for the smooth turbulent cases is 0.008 for
Kg and 0.011 for Kz. The results for the phase difference
between maximum bottom shear stress and maximum orbi-
tal velocity are similar. The phase difference changes
markedly as the boundary layer becomes turbulent, with ¢
dropping to about 10°. Here the two-part eddy viscosity
better reproduces the measured phase lags for the smooth
turbulent cases than does the exponential form. Phase lags
for the exponential eddy viscosity are smaller when the
time-varying form Kg(¢) is used, averaging about 10° for
the smooth and rough turbulent flow cases.

The results for rough flow conditions are shown in Fig-
ures 8b and 8d. The symbols indicate the rough turbulent
flow measurements of Jensen et al. [1989] and Jonsson
[1963], cases Jens 13 through 15 and Jons 1 in Table 1. For
comparison, computed curves of friction factor as a func-
tion of a,/k, are plotted for the exponential K, linear K,

and two-part Kp forms of eddy viscosity. Jonsson’s [1966]
approximate expression for wave friction factor under
rough flow conditions, (4\/}3 o+ log(4 \/E )
—0.08+log(a,/k;) is also shown. The Jensen et al. [1989]
data appear to be best represented by the K curve, whereas
the Jonsson [1963] value is more closely predicted by either
K; or Kp. The average discrepancy in f,, is 0.008 for K,
0.013 for K;, and 0.013 for Kp. The differences between
these computed curves are relatively minor for values of
a,/ks>100. The computed curves and Jonsson’s [1963]
approximate expression deviate more at lower values of
a,/ks. However, both the present analysis and Jonsson’s
[1963, 1966] analyses indicate that the computed values of
f,» are questionable at values of a,/k;<10 because assump-
tions regarding separation of length scales in the formula-
tion of (5) are violated. The computed phase differences for
the rough flow cases are similar for Kz and Kp and are
somewhat lower for K;. The data fall between the two
computed trends.

In converting from zg to kg, it has been assumed that bed
roughness can be expressed in terms of equivalent bed
roughness so that, for example, k,=30z for rough flow, fol-
lowing Nikuradse [1933]. For planar beds of relatively
well-sorted sediment, this is reasonable, and in this case the
shear stress related to us, or f,, is the shear stress acting on
the bed, e.g., the shear stress available to transport ‘sedi-
ment. The problem is more difficult when ripples or other
larger-scale roughness elements are present on the bed as is
often the case under waves.

Two problems arise when applying this analysis to rip-
pled beds. The first has to do with the proper parameteriza-
tion of ripple roughness and the relationship between z and
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k. A reasonable estimate of z for wave-generated ripples
is provided by (zo),ipp,esznz/)», where 7 is ripple height and
A is ripple length [Grant and Madsen, 1982; Wiberg and
Nelson, 1992]. When ripple roughness is large, the magni-
tude of z( can approach the value of §,, and ripple height
can exceed d,, although this occurs more commonly in
laboratory flumes than on the continental shelf [Wiberg and
Harris, 1994]. As noted previously, wave boundary layer
height must be significantly larger than zy for the theory
presented here to apply. The other difficulty is that the
shear stress given by f,, or ux,/u,, is not the shear stress
acting on the bed surface when the dominant roughness
scale is the ripple roughness. Some correction for bed form
drag [e.g. Einstein, 1950; Smith and McLean, 1977] must
be included in the calculations when relating bed shear
stress (skin friction) to the boundary shear stress computed
using a ripple roughness for k; [see Wiberg and Nelson,
1992].
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Figure 9. (a) Contour plot of u«,/u,, as a function of &, and Re.
Curves for smooth turbulent flow and the approximate lower bound
of fully rough turbulent flow (R«=100) are indicated. (b) Contour
plot of us,/u,, as a function of Re, and a,/k,. Curves for R« of 5
and 100 are given, corresponding approximately to the upper and
lower bounds of smooth and fully rough turbulent flow, respec-
tively. The contour interval in both plots is 0.005.
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The relationship between us,, /Uy, &g, and Re s computed
using (8) over the full parameter range, including transition-
ally rough flow, defines a surface. A contour plot of the sur-
face, giving ux,/i,y, as a function of Rex and &g is shown in
Figure 9a. Numbers near the right ends of the contours give
the values of wux,/u,, for alternate contours; the contour
interval is 0.005. Resx values of roughly 1000 or less
correspond to flows in which laminar or transitionally tur-
bulent conditions, which the model cannot accurately
represent, extend to peak flow phases. Curves of equal
roughness Reynolds number R« form a set of parallel lines
on this plot. Lines indicating smooth turbulent flow condi-
tions and R:=100, approximately the lower bound of fully
rough turbulent flow, are indicated on Figure 9. In the fully
rough turbulent flow region, above Rx=100, the contours of
Um/Uom are horizontal lines independent of Rex.

The corresponding contour plot of u«,/u,, in terms of
the alternate parameter set, Re, and a,/kg, is given in Figure
9b. In this case, values of Re, of roughly 5x10° and less
correspond to cases in which transitionally turbulent condi-
tions extend to peak flow phases. Curves of R« equal to 5
and 100, approximately the upper and lower bounds for
fully smooth and rough turbulent flow, respectively, are
indicated on the plot. The contours in Figure 9b are similar
to those in Figure 9a but have a somewhat more variable
structure owing to the form of the zy/k; relationship with
R+, which enters into the transformation from & to a,/k;.

Values of wus,/u,, can also be presented in two-
dimensional plots of ux,/u,, as a function of &g at constant
values of Re« (Figure 10a) and as a function of Rex at con-
stant values of &y (Figure 10b). The latter is comparable to
Jonsson’s [1966] friction factor diagram. Given wave
period, fluid viscosity, the bottom roughness parameter, and
maximum shear velocity, these plots can be used to deter-
mine the corresponding value of maximum near-bed wave
orbital velocity. Note that ux,/u,, varies slowly compared
to Rex and &g, except under laminar flow conditions. For
values of Re«>5000, curves of us,/u,, versus &g nearly lie
on top of each other in Figure 10a, defining the rough flow
relationship which, as noted previously, is independent of
Re«. At lower values of Re«, only a portion of the curves in
Figure 10a follow the rough flow limit, consistent with the
conditions for rough flow noted in a previous section.
Rough flow is seen in Figure 10b as the region in which the
curves parallel the Rex axis. Smooth flow in both figures is
indicated by a dotted curve. The stippled region of Figure
10b indicates the general range of conditions in which the
boundary layer would be expected to be laminar or
transitionally turbulent. The theoretical laminar flow rela-
tionship, U, /Upm=(2 Rex)™!, is indicated by the dashed
curve in Figure 10b. Between the smooth flow curve and
the Rx=100 curve is the region of transitionally rough tur-
bulent flow.

Conclusions

Solutions to the unsteady boundary layer equation (5)
give profiles of velocity and shear stress in the wave boun-
dary layer through a wave cycle. The eddy viscosity formu-
lation used in this analysis, which employs Reichardt’s
[1951] interpolating profile for the region of flow between
the viscous sublayer and the overlying logarithmic flow
layer, allows velocity and shear stress to be computed for
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any roughness Reynolds number, including smooth and
transitionally rough flows. Comparison between calculated
and measured velocity and shear stress profiles for the Jons-
son [1963] and Jensen et al. [1989] oscillatory boundary
layer experiments indicate that both the exponential and
two-part forms of eddy viscosity considered herein provide
a reasonable characterization of turbulent mixing in an
oscillatory boundary layer; the agreement is significantly
poorer for a linear eddy viscosity. Use of a time-
independent eddy viscosity, with maximum shear velocity
as the velocity scale, yields profiles of velocity in good
agreement with measured smooth, transitionally rough, and
rough flow profiles at maximum velocity and generally
throughout a wave period, particularly in the outer part of
the boundary layer. Profiles of velocity and shear stress
computed using a time-varying eddy viscosity generally
give better agreement with measured values near the bed.
Maximum boundary shear stress is well predicted with
either a time-independent or time-varying form of eddy
viscosity.

Computed ratios of maximum shear velocity to max-
imum orbital velocity compare favorably with available
smooth and rough flow measurements from Jonsson [1963]
and Jensen et al. [1989] and Jonsson’s [1966] wave friction
factor relationship for rough flow. The calculated relation-
ship between maximum shear velocity and maximum orbi-
tal velocity in an oscillatory boundary layer is a function of
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two nondimensional variables. The two independent vari-
ables can be expressed in terms of "outer" flow parameters,
u,m and kg, or "inner" flow parameters, us, and zo. The
dimensionless variables £y=z(®/ux,, and Re«=ux,d,/V arise
naturally when the unsteady boundary layer equation is
nondimensionalized. Commonly used forms of the eddy
viscosity can also be readily nondimensionalized in terms of
these parameters. The inner flow parameters, &, and Rex,
can be related to the corresponding outer flow variables,
a,/ks and Re,=u,,a,/v, which are often convenient and are
commonly used but cannot be substituted directly into the
governing equation. The parameters &y and Re« are directly
related to roughness Reynolds number so that criteria for
smooth, transitionally rough, and rough flow can be readily
defined (Figure 9).

Use of these results is relatively straightforward for
moderately well-sorted, planar beds. Natural flows are
commonly complicated by the presence of ripples on the
bed. At best, this necessitates some consideration of bed
form drag when estimating bed shear stress (skin friction).
At worst, large values of bed form roughness relative to
wave boundary layer thickness can create a situation in
which the ripples are not fully submerged in the wave boun-
dary layer and the assumptions underlying the unsteady
boundary layer formulation employed herein are violated
[Wiberg and Harris, 1994].
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