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Variational methods and applications to water waves

By G. B. WrITHAM, F.R.S.
California Institute of Technology

This paper reviews various uses of variational methods in the theory of nonlinear dispersive
waves, with details presented for water waves. The appropriate variational principle for
water waves is discussed first, and used to derive the long-wave approximations of Boussinesq
and Korteweg & de Vries. The resonant near-linear interaction theory is presented briefly
in terms of the Lagrangian function of the variational principle. Then the author’s theory
of slowly varying wavetrains and its application to Stokes’s waves are reviewed. Luke’s per-
turbation theory for slowly varying wavetrains is also given. Finally, it is shown how more
general dispersive relations can be formulated by means of integro-differential equations;
an important application of this, developed with some success, is towards resolving long-
standing difficulties in understanding the breaking of water waves.

1. VARIATIONAL PRINCIPLE FOR WATER WAVES

Certain investigations in nonlinear wave theory can be given a general form if the
basic equations are governed by a variational principle

a”dedt =0. (1)

At the same time, the mathematical manipulations, which may be formidable other-
wise, become simple in terms of the ‘Lagrangian function’ L. There seems to be no
general method, other than experienced guesswork, for finding variational principles
for given systems of equations. However, they are known for many important
cases. Strangely enough, a suitable variational formulation for water waves does not
seem to be given in the literature and certainly is not widely known. Water waves
are the prime example considered in this paper, as being typical for dispersive waves,
so the first two sections present the appropriate variational principle and the ap-
proximations for long waves.

In fluid dynamics, it is known that Hamilton’s principle with L equal to kinetic
energy minus potential energy must apply since, as a last resort, the fluid may be
treated as a system of particles. However, the direct formulation of Hamilton’s
principle gives difficulty in the Eulerian description and various side conditions
have to be introduced by means of Lagrange multipliers (see, for example, Serrin
1959).

For irrotational water waves, at least, a more convenient variational principle,
free of side conditions, is (1) with

h(x,t)
L= [ g ver o ay, @)

where y is the vertical coordinate, x = (,,%,) is the horizontal coordinate, ¢(x,y, t)
is the velocity potential, y = h(x,?) is the equation of the free surface and g is the
acceleration of gravity. Variations of ¢ within the flow region lead to
Vig =0, (3)
[6]
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the variation of A gives the pressure condition

$i+3(VP)+gy =0 on y=h(x,i) (4)
and, with some integration by parts, the variation of ¢ at the upper surface leads
to the ‘natural’ boundary condition

I+ Pyl — Py, =0 on  y=h(x,t). (5)

This formulation was pointed out explicitly by Luke (1967). Bateman (1944)
writes down a form of which (2) is a special case, but he does not note that the free
surface conditions (the main difficulty in water waves) also follow from (2).

It should be noted that Hamilton’s principle would have

h(x,t)
L= f " aeer-gay (6)

variations of this function would give Laplace’s equation for the flow, but incorrect
boundary conditions at the surface. It is easily shown that

h h h
Li= = L[99 ymo— [0+ fuh= d)lyea [ 99+ 5 [ Dy [ py.

Apart from the divergence expression, the extra terms all concern conservation of
mass. When ¢ is a solution of the water wave equations, these extra terms vanish
and L, differs from — L by the divergence expression. For the theory described
in §4, the average value of L is used; since the divergence would average to zero,
the average values of L and — L, are the same.

2. LoNG WAVES
Boussinesq equations

Approximations for long waves may be derived by expanding ¢ in a power series
in y. The solution of Laplace’s equation subject to d¢/dy = 0 on the bottom y = 0

. $ =J(x,0)— 3V, 1) + O(4A), (7)
where A is a typical wavelength. Then the Lagrangian in (2) becomes
L = h(f,+5f2,) + 390* = 035V + [o, Vi oy — (V) + OB 29). (8)

The term in A2 is the dispersive correction to the usual shallow water theory. The
variational equations for (8) give two differential equations for the functions f(x,t)
and A(x, ?). In this form the equations are complicated and it is simpler to work with
the value of the potential at the surface, i.e.

F(x,t) = f—1h2VEf+ O(h*A%),

instead of f, the value on the bottom.
For, apart from a term

0 0
= (V) + o (W, V),
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which does not contribute in the variational principle since it can be integrated out,
L = hE+ 1F3) + g1 = JA(VF Y-+ O(5]0), ©)
The variational equations from this Lagrangian are

8F:  hy+(hF,), +V(EhPVF) = 0, (10)

h:  Fj+3F2 +gh—1A(V2F): = 0. (11)

The highest order derivatives give the dispersive correction to shallow water
theory. It is usually considered sufficient to have the linearized form for these cor-
rection terms; that is

h +1m3VAF =0
o+ (hFy), + 303 :} (12)

B+ 3F2% +gh = 0.

This additional approximation assumes that the amplitude parameter a/h, is small
in addition to A}/A% The fully linearized shallow water equations correspond to
alhy — 0, h3/A2 — 0 and may be written

hy+ho F

L)

=0, F,+gh=0.

Equations (12) include the next order corrections in a/h, and AZ/A2.
An alternative form is obtained when the mean value of ¢ over the depth is
introduced in place of F'. The mean value % is given by

= [~ $H2VEf 1 OBt )

= F+1h*V2F + O(h42%),
and, in place of (12), we have
b+ (h ), = 0, } (13)
T+ 1T+ gh— PEVEF, = 0.
From the first of these, , = — hyV2Z plus smaller terms, so (13) can be written in
an equivalent form
Finally, if the mean horizontal velocity U; = %, is introduced, we may write
oh  o(hU;) ]
U; U; h " af;z 1o
0 ou, o 0 [
oy T
ot Ui, 0, ¥ g = O

and this seems to be the form usually quoted for Boussinesq’s equations. The La-
grangian corresponding to (14) is

L = WF+ 1F2) + dgh— Jhy 7.
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Korteweg & de Vries equation

Korteweg & de Vries (1895) obtained an equation for waves propagating in one
direction only. It may be obtained as the ‘simple wave ’ solution of the shallow water
equations corrected for the third-order dispersion term in (15). It may be verified

that
2

1
U= CO(%_Z%) +%00k077xm5
3 (16)
77t+60(1 +§;Z—O) 77x+%00h(2)77wzz =0,
n= k_ko’

is a solution of (15) with errors of second order in a/h, and k2/A2.

It is not clear how (16) could be obtained from the variational principle (9).
However, a variational principle can be found directly when (16) is written in the
form

¢xt +co(1+ wa:) wxx + ,61_00};% Xex = 0’}
(17)
%zz -Xx=0,
where 37/2h, = . Equations (17) follow from

o [t deopt +ogpd +does 06 + 20} dedt = 0. (18)

3. RESONANT INTERACTIONS

One way to tackle nonlinear waves is to use a perturbation theory for small
amplitude, based on the linearized theory as the lowest order approximation. The
naive expansion gives rise to secular terms growing linearly in £, owing to resonance
of higher order products of linear terms with the original terms in the linear theory.
This topic has been studied extensively by the contributors to this discussion and
most of the following papers will centre around this approach.

It seems worthwhile to note briefly how variational methods are used for reson-
ant interactions in order to contrast this approach with the one of slowly varying
waves described in the next section. A simple example will suffice for this purpose,
but it should be stressed from the start that the algebraic calculations increase
considerably in other examples. This one is unusually easy.

The simple exampleT is

U+ BuPu, + Uy, = 0.

To obtain a variational principle, we introduce u = ¢,, ¥ = ¢,,, and write the
equivalent pair
Dot + 303 Pawt+ Xow = 0,} (19)
¢xx_x =0.

1 This was proposed by Professor D. J. Benney as a simple model for discussions of resonant
interactions.
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The Lagrangian is L =3¢ bt buXat X"+ 142 (20)

Consider now a superposition of waves expressed as

¢ = E%Aa(t) etha? (¢ =+1,..., £ N),

where k_, = —k, and A_, = A% in order that ¢ be real. (The asterisk denotes com-
plex conjugates.) The Lagrangian L becomes, apart from a divergence term,
1 A a4, A4 .
L=2x% 2_{]5; ﬂﬁf+7kakﬂ attp exp{l(ka_l_kﬂ)x}

+31SEEEA, 4,4, Asexpfi(k,+hy+k,+k)a}. (1)

In the variational principle L is integrated over an arbitrary rectangle in the (x,?)
plane. Take a rectangle with —I < « < ! and consider

1
i =tim~| Lde (22)
l—o© 2l -1
Only the ‘resonant terms’ with

ky+k; =0, k,+ks+k,+k;=0,
contribute in the limit. The resonant duets are (k,, ks) = (k,, —k,) in either order,
where n = 1,2,...,N. In the quartets there are various possibilities. There will
always be (oo To, —

—k,, —k,) in some order,
and (ks Ky — Ky — k), m = m, in some order.

But special cases may be posed in the given initial modes; for example, wavenumbers
ko, by = ko+p, k_ = ky— p are supposed to be among the initial set in the resonance
problem considered by Dr Benjamin. Then the quartets

(ko> kos =k, —k_) and (=Ko, — ko, k., k_) resonate.

The Lagrangian L becomes
L= Zz—kn (AnT —Anw) —Sk2 A, A%
+3X (4,452 +6 XX 4,45 A, A% +3{A3A% A* + AFPA A} (23)
m+n

The variational principle is reduced to

t,
8| Ldat=o.

t

In the linear theory, only the quadratic terms are retained in L and variation with
% s
respect to 4% gives a4, " -
k, d& — ™
The solution is 4,, = a, e~ with w, satisfying the linear dispersion relation

w, =—k. (25)
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With the full expression (23), variation with respect to 4% , for example, gives

ii“di; = (k3 —34, A% — 6% A, A%} A, +3A434%, (26)
where ¥’ denotes summation over all modes except the one with k£ = k.. The
second term in the coefficient of A, is the change in frequency due to the non-
linear effects of a single mode; the third term is the change in frequency due to
nonlinear coupling with the other modes. The term 343 4* gives the change in 4,
due to the special resonance between kg, k. and k_. If A, and 4_ are small compared
with 4,, 4, can be assumed to be unaffected by 4, and 4_ to first order, so that

Ay = ageiot,  wy = —k3+ 3kyad

and a, is taken to be real without loss of generality.
Then (26), and the same equation with k., 4 replaced by k_, A_, have approxi-
mate solutions

A, =a,e"iort, A_=a_eio-f
+ =0y } (27)

0, = — k5, + 6k, af + 3ko(af — p?) +1 J{9KF (205 — p?)}.

This is the kind of ‘instability’ discovered by Dr Benjamin for deep water waves.
The ‘resonance’ of the frequencies, w, +®* = 2w,, which can be seen directly from
the exponents of the exponentials in (26), should be specially noted.

In more general examples, the complications mentioned earlier arise because
the resonance may not appear until two orders beyond linear theory. This whole
question, and the use of diagram techniques to manage these complications, is
discussed in the paper by Dr Hasselmann.

4. AVERAGING FOR SLOWLY VARYING NONLINEAR WAVETRAINS

The interaction approach is limited to nearly linear problems. With the idea that
true nonlinear concepts may be missed in this approach, an attempt was made to
find some fully nonlinear solutions in addition to the periodic uniform wavetrains
which were known to exist in typical problems. Some simplifying feature other than
linearization was sought and the obvious possibility seemed to be slowly varying
wavetrains, with solutions close to the exact solutions for the uniform wavetrains.
A general theory was developed (see Whitham 1965a,b) and the main steps will
be reviewed in this section. A simple way of comparing the ‘interaction approach’
and the ‘slowly varying approach’ is to think of the elementary discussion of beats.
For a linear dispersive problem, a solution with two neighbouring modes may be

writben either as @, cos (k2 — w,t) + a, cos (kyx — w,t)

or as @ cos (kx — wt —¢),
where a® = a2+ a+ 2a,a, cos {§(ky— ky)x — $(wy— 0y) 8},
_ (28
tane = 1 “2tan {3y — y) — 3wy — wy) B}, )

ay+ Go
k=3(ki+ky), o=3%w+0,).
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In a nonlinear analogue we may discuss either changes in a,, k;, @, k, corresponding

to the interaction of modes or the changes in the slowly varying functions a, &, .
In developing the theory of a slowly varying nonlinear wavetrain, the mathe-

matical manipulations became impossible except for the easiest cases, until it was

realized that all relevant expressions could be determined in terms of a Lagrangian

function. But then the whole derivation could be given from the variational principle.
Take the case of water waves with

h(x,t)
L= fo {d+5(V2P) + gy} dy.

There exist uniform wavetrains in which
¢ =pix; —yt+00,y), 0=xk,2;,—wt, h=H®O), (29)
where «;, », $;, v are constant parameters. The terms proportional to x; and ¢
must be included in ¢ for complete generality. The solution is normalized so that
the change of the phase ¢ in one period is 277 and so that @ is the periodic part of ¢;
these conditions may be written
[0] =27, [®]=0, (30)
where [ ] denotes the change in one period. Then, «; is the wavenumber,  is the
frequency, f; is the mean horizontal velocity. There are two further parameters,
which may be taken to be the mean height b and the amplitude of the waves a.
Thus the solution depends on two triads (k, v, @) and (B, y, b). Two relations beiween
these parameters are provided by the normalization conditions (30), but it is crucial
to leave them independent at this stage.

For the full theory of water waves, this uniform solution is not known explicitly.
For the long wave approximations in § 2, the uniform wavetrain solution is known in
terms of elliptic functions. It is also known more generally in the Stokes approxima-
tion for small amplitude waves; this would be going back tothe near-linear case, but
the general point of view is valuable.

A slowly varying wavetrain is close to this uniform solution and may be approxi-
mated by the same expressions with (k, w, @), (B, ¥, b) slowly varying functions of
space and time in the sense that the relative change of each of them in one wave-
length or one period is small. Then, an average Lagrangian % is derived as

2m
P, 0,a:,7,b) = él;fo Lao

1 2 (H
o), fo {— v +0®y) + 5(B;+ k; ©p)?+ 107 + gy} dy db.  (31)

It is then argued that the ‘averaged equations’ for the slowly varying functions
(x,w,a), (B, 7, b) can be obtained from the ‘averaged variational principle’,

5JJ$(K, w,0;B,v,b)dxdt = 0, (32)
. 00 00
with Ki—a—xi, w=—z, o
_W W

ﬂi_axi’ ot
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as the appropriate generalization of 0 = k; x;— wt, ¥ = f, x;—t in the uniform
solution. This variational principle is intuitively correct but is not expressed as a
formal perturbation procedure. It was not clear how to apply a formal procedure to
higher orders in a variational approach. But Luke (1966) has established how a de-
tailed formal procedure on the differential equation leads to the same results in
a special case; the main steps are reviewed in §5.

The variational principle (32), with restraints (33), yields

%, =0, % =0, (34)
2 2 2 2

Since only the derivatives of 6§ and ¥ are involved, it is more convenient to add the

consistency relations . O
Ok _ 9% _ o =0
; y , curlk ,

N | (36)
Lk A S =

& o, 0, curlP O,J
rather than substitute (33). The functional relations (34) give exactly the nor-
malization conditions (30). The dispersion relation [0] = 27 is &, = 0.

4-1. Adiabatic invariants

The problem of slowly varying wavetrains is analogous to that of slowly varying
oscillations in classical mechanics. The elementary problem usually quoted is to
find the variations in the amplitude of a simple pendulum when the string is pulled
slowly over the support. In general it concerns the behaviour of a Hamiltonian
system when an external parameter varies slowly with time. The theory is usually
developed from Hamilton’s equations with much use of canonical transformations.
The corresponding transformations do not exist in the case of more independent
variables (Riissman 1961), so similar methods cannot be found in the waves problem.
On the other hand, the averaged Lagrangian method can be applied to the mechanics
problem, at least in simple cases.

Consider a mechanical system with Lagrangian L (g,¢, A) where A(f) denotes an
external parameter. Suppose there are periodic solutions ¢ = ¢(f), 0 = v, for
A = constant, with an energy integral

g(oLjog)— L = E.
These correspond to the uniform wavetrains; here (E, w) are parameters corre-
sponding to (a, x, w), ete. Now calculate the average Lagrangian

2
L0, BN =§17;f0 Ldo

1 (27oL .
=5, 190"

w
=§7—T§pdq—E, (37)

where p = 0L/dq is calculated as a function p(g, A, E) from the energy equation.
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The variational equations are

Fr=0, dZ, Jdt=0.
If the action integral, 517_7 pdg,

isdenoted by I(A, £), they reduce to

1 ol

o= I = const.

These are the classical results and

1

is the ‘adiabatic invariant’.

In the waves problem, then, the first equation in (35) may be interpreted as the
balance between the changes in a timelike adiabatic variable %, and the changes
in spacelike adiabatic variables %, , as the energy is transferred slowly to different
parts of the wavetrain. In simple cases, the averaged Lagrangian follows closely the
form in (37) (see (57) below). Also the function W in an early version (Whitham
1965 ) is an analogue of 1.

4.2. Linear theory

While developed specifically for nonlinear waves, this theory provides a new

general treatment of linear dispersive waves. First, the water waves example is

considered, then the general situation is discussed.
In the linearized theory of one-dimensional water waves, (29) becomes

H =hy+b+acosd,
__awcoshky .

=-— —sinf
k sinh kh, ’

where A, is the undisturbed depth. It is expected that (£, y, b) will not be required
in a linear theory, but they will be carried along in calculating % to keep the com-
parison with the nonlinear case. The averaged Lagrangian . is calculated by sub-
stitution in (31) and we have
w?
— (1LB2__ 10p2 1 102 S —
L = A= o b) +dgh o+ g (1)
As expected, changes in mean velocity # and mean height b uncouple from the wave
motion and we may take b = # = y = 0 to obtain the usual linear theory. Then
w2
— 19q2 — —
<z =ige (1 gk tanh Kko) )

Quite generally, for a linear system the Lagrangian L is quadratic in the perturba-
tions so that it will always turn out that

Z = G(w,k)a? (38)
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Since %, = 0, we have G(w,x) =0, (39)

and it is clear that the function G will always give the dispersion relation.
The other variational equation is

08, 0%,
o ow; 0, (40)
. 0G0 O(Ga?)
W — K; — . 1
which becomes o P 0 (41)

7

While this is like an energy equation, it corresponds rather to an equation for the

adiabatic invariants discussed above. The companion equations to be solved with

(41) are P
K; 0w

—_— —_ = = = 0' 4:2

5 +3xi 0, curlk =0, G(v,xk) ; (42)

o can be treated as a function of x and we have

0K, oKy
wTOmg =0 (43)
where Cj(x) = —G,/G, (44)

is the linear group velocity. From (43) and (44), it is clear that (41) can be trans-
formed into

0 0
— 2\ (C. 2) = 4
PR a) + 2 (O () 03) = 0 (45)
for any function F(x). In particular #(x) = 1 transforms (41) to
oa?  9(C;a?)
- = 0. 4
o o, O (46)

This may be treated as the ‘energy equation’, but the physical energy is, in general,
another choice of F(«), see §4-5.
Equations (43) and (46) can be solved by integration along characteristics

dx/dt = G; (47)

& remains constant along characteristics and, once « is found, the changes of a

are determined from (E 1 @ . us)
dt =~ 20x;

Equation (48) shows the decrease in amplitude due to divergence of the group. Thus
the group velocity is a double characteristic velocity for the system and determines
the propagation of changes in k and a. It should also be noted that an ‘energy
velocity’ may be defined as energy flux divided by energy density. According to
(45) this is also C for a linear system. Conceptually, however, the characteristic
velocity is different from the energy velocity, and it turns out that the two are not
the same for a nonlinear system.
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4-3. Type of the equations for a nonlinear system
In the nonlinear theory %, = 0 does not give a relation independent of @, and
v = o(k,a),

even in a simple case in which the other variables 8, v, b do not arise. Thus, the
equations for k, a are no longer uncoupled and constitute a system of differential
equations to be studied. The first important question is whether the equations are
elliptic or hyperbolic. This can be decided by standard methods. As a simple first
step beyond linear theory one can suppose, for a one-dimensional case, that

© = 0y(Kk) + wy(k) a?

to bring in the nonlinear effects, but assume that the ‘energy equation’

o
o  ox

still holds with Co(k) = wy(k).

(Co(k)a?) = 0

When this is coupled with g-;-<+ % (o + ®,a%) = 0,

the characteristic velocities are easily found to be
0 = Cy(k) £ a/(w,Cg) + O(a?). (49)

The equations are hyperbolic when w,Cg > 0 and elliptic when w, C§ < 0.

In the hyperbolic case, the double characteristic velocity of linear theory splits
into two separate velocities and provides a generalization of the group velocity to
nonlinear problems.

When the elliptic case is found the indication is that the original uniform wave
train is unstable in a certain sense. For, small sinusoidal disturbances in « and
a will be given by solutions of the form

einz—0n, (50)

where C is the value calculated from (49) for the unperturbed values of « and a.
When C is complex, corresponding to the elliptic case, the modulations given by
(50) grow exponentially; in this sense the wave train is unstable. If this simple
argument is applied to Stokes waves in deep water, the elliptic case is found since

o = y(gK) (1 + bK2a) + O(a). (51)

Hence, w,0; < 0, the velocities in (49) are imaginary, and Stokes waves in deep
water are unstable. At first this result seemed surprising and probably wrong!
And it was put aside until a complete discussion of water waves could be given.
However, when Lighthill (1965) looked at this whole theory, he came across this
result for the Stokes waves and immediately saw it must be correct! He then studied
elliptic cases in detail since they had largely been ignored up to that point.

The complete investigation for the Stokes waves in water of arbitrary depth
has now been carried through (Whitham 1966). In addition to the nonlinearity
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introduced in the dispersion relation, there is a coupling of the wave motion with
changes in the mean height b and velocity g; for deep water, this can be ignored and
the above result is correct. For finite depth this coupling produces effects to counter-
act the growth of modulations, and for shallow water the equations change type and
the wavetrains are stable.

For arbitrary depth, the average Lagrangian is found to be

_(o=pp g, 1 <Dy
gk tanh «(hy+ b) 2gtanh kh,

1
L =1p2—7y) (h0+b)+~;-gb2+§{1— B2+,

where B = 1ga?,
9 tanh*xh,— 10 tanh?«h,+ 9

Dy = 8 tanh3«h,
The averaged equations are
0 ) GoB\ _
ot \w, B
ob B
at (/”’% o) =
ok 0 2D, B,
3~t+%(w0+ E-l——-—b’i" Kp) =
op 0 B,
% + % ( b+ —- ook E)
where w3 = gktanhkhy, Cp = wj(k), ¢o= wy/Ky,
By = Cy—1c¢,.

It is found that the equations are elliptic if kh, > 1-36 and hyperbolic if kh, < 1-36.
Further details may be seen in the paper cited.

The theory has been applied to the Korteweg—de Vries and Boussinesq equations
(without any approximation to small amplitude) and to a similar problem in plasma
waves. For these and for further general discussion, reference may be made to the
earlier papers (Whitham 1965a, b).

4-4. Relation with Benjamin’s theory of instability

A slowly varying wavetrain which is nearly linear can be written in the form
¢ = lael’+ la*e10,

where @, 0,, 0, are slowly varying functions. It is assumed that the amplitude is
small enough for the wavetrain to keep the sinusoidal form, but the phase function 6
will still have the nonlinear dependence on the amplitude given by the nonlinear
dispersion relation. If we consider the special case in which these slowly varying
functions are close to constant values, we may write

a=ay+a, 0=0y+0;, 0,=rKx—w(kyam)t,

where a,, k, are constants and @,, 0, represent small perturbations in the

2 Vol. 299. 4.
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amplitude and the phase. Assuming that 0, is bounded (unlike 6,), we may expand
the solution to first order in @, and 6, as

¢ = ta,e'%+La, e+ 1i0, ayel + conjugate.

The small perturbations a, and 0, will satisfy the linearized approximation of the
averaged equations. These have constant coefficients depending upon («,,a,) and
admit solutions in the form

a, = B_(t)el**+ B_(t) e~irx,
0, = O_(t) el +O_(t) e~irz,

the functions B, etc., are exponentially growing or oscillatory depending upon
whether the equations are elliptic or hyperbolic. Finally, then, ¢ may be expressed as

¢ = Ajeic®+ 4 elot@ 4 4 _elko-m= 4 conjugate.

This approach can now be identified with the resonant interaction approach of
Benjamin (see §3). Notice that the fwo side band modulations introduced in Ben-
jamin’s analysis are equivalent to the coupled modulations of amplitude and phase
in the averaging approach. The perturbations a, and 6, are slowly varying functions
provided pz < k,. Benjamin’s approach is free of this restriction, but, on the other
hand, applies only to near-linear problems.

4:5. Conservation equations and shocks

When the averaged equations are hyperbolic, certain solutions will ‘break’ in the
sense that an initially continuous solution becomes multivalued. This is analogous
to the appearance of shock waves in gas dynamics. However, in this treatment of
water waves, it could correspond simply to the superposition of two parts of the
wavetrain and not require discontinuities. The prediction of this occurrence from
an initial form close to a single periodic wavetrain is itself interesting. Of course,
after this occurrence the averaged equations developed here no longer apply. An
extended theory with the possibility of more than one principal mode would be
necessary. It is possible that such a theory could be developed and the interaction
treatment for nearly linear modes would help in this connexion.

Another intriguing possibility is that a discontinuity in the averaged equations—
a ‘shock’—is the required solution in some cases. The argument would be that the
averaged equations break down, because the assumption of a slowly varying
wavetrain is no longer valid. However, just as in gas dynamics, the solution may be
saved without appeal to the original detailed equations by fitting in discontinuities
which satisfy the appropriate conservation equations. Mathematically this is the
appeal to ‘weak solutions’.

The jump conditions are taken from conservation equations. But in these non-
linear problems, it seems to be an essential feature that there are always more
conservation equations than the number of required shock conditions. For example,
from the usual differential equations of inviscid gas dynamics one can obtain the
equation for conservation of entropy

(PS)+V . (pus) = 0,
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in addition to conservation of mass, momentum and energy. But the corresponding
jump condition should not be applied across a discontinuity, since it is known by
physical arguments that the entropy is not conserved across a shock. A similar
situation arises here.

The equations in (35) and (36) are already in conservation form. Other important
ones may beobtained from the variational principle (32) by use of Noether’s theorem.
Since % is invariant with respect to an arbitrary translation in time, it follows that

0 0

this is the energy equation. Similarly, since .% is invariant with respect to a transla-
tion in space, it follows that

O ;L4 By Ly~ L8,) = 0 (53)

0
~aZet Bt + 5

this is the momentum equation. The invariance of & with respect to arbitrary
constant changes in 6 and ¥ reproduces the variational equations (35). For water
waves it turns out that the second equation in (35) corresponds to conservation of
mass.
For any conservation equation in the form
oP  0Q; 0

ot ow;

the corresponding jump condition across a moving discontinuity surface with unit
normal n; and normal speed V is

(@] = VP,

where [] denotes the magnitude of the discontinuity. However, a choice of the
conservation equations has to be made and only the corresponding jump conditions
are applicable. This choice must be made from additional information which is not
contained in the averaged equations. Since the original differential equations still
apply, we choose those conservation equations which are the averaged form of
corresponding conservation equations in the original equations. For water waves
the choice is then: (i) conservation of energy (52), (ii) conservation of momentum
(53), (iii) conservation of mass which is the second one in (35), and (iv) the second
set in (36), which result from elimination of ¥ and seem to have no general physical
significance. (The details of this choice can be found in Whitham (1965b).)

The conservation equations which must be omitted, because they can only be
found in the averaged form for slowly varying wavetrains, are

oKk; Ow
e -+ o, 0, curlk =0, (54)
0L 0%,
&)_ Ky — X 55\
and 5 T, 0 (55)

(2



20 G. B. Whitham (Discussion Meeting)

The set (54) comes from the existence of a phase function 6, but it may be inter-
preted more forcefully as the conservation of waves both in space and time. When
curl k¥ = 0, the line integral around a closed circuit is zero, i.e.

3€K.ds =0;

in the wave pattern at any instant there are the same number of waves (e.g. wave

crests) entering the contour as leaving. Similarly, from the first equation in (54),
g x® kydz; = 0@ — @O,
dt

)

so that the number of waves in the interval changes at a rate given by the net flux
of waves into the interval. But these integrated forms are precisely the ones that
cannot be used across a discontinuity; they cannot be established directly but only
from (54) which is valid for continuous parts of the solution.

The quantities £, &, in (55) are similar to adiabatic invariants in classical
mechanics (see §4-1). Equation (55) represents a balance between the changes of
spacelike adiabatic invariants %, and a timelike adiabatic invariant %,. But
this refers to slow changes and is not valid across a discontinuity in the system (a
quantum jump!).

Equations (54) and (55) are on a similar footing from this point of view to the
entropy in gas shocks. One naturally asks about the sign of the jump at a discon-
tinuity. In a simple case (discussed in Whitham 1965a), it could be shown that as
the waves cross a discontinuity the frequency, relative to the moving surface, is
always increased. This seems to be the right way round for ‘irreversibility’ and
might be expected to hold generally; a general proof has not yet been found. The
result acquires special interest when it is remembered that the original equations
are reversible! It may have relevance to the theory of smooth bores with waves
behind them, and to the possibility of collisionless shocks in plasmas.

This idea was raised tentatively in earlier papers. Since then, Zabusky & Kruskal
(1965) have performed numerical computations on the Korteweg—de Vries equation
in which, effectively, two groups of waves follow one another. In that case the waves
are found to pass through each other when the second group overtakes the first.
It is clear from the outset, of course, that if it can exist at all, this kind of shock
requires special conditions. In linear theory two wavetrains can always be super-
posed to give a new solution; so highly nonlinear waves are needed. Again it seems
clear that two groups with very different velocities will go straight through each
other with complicated interactions; so very small relative velocity is needed.
Some relevant evidence bearing on this last point is the work of Benney &
Luke (1964). They study the collision of two cnoidal waves (‘cnoidal waves’ are
the uniform wavetrain solutions of the Korteweg—de Vries equation). Their theory
determines the nonlinear interaction between the two, and the interaction terms
tend to infinity as the strengths and directions of the two waves approach each
other.
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5. FULL PERTURBATION EXPANSION
Luke (1966) considers a nonlinear Klein—-Gordon equation
Uy — U+ V' (u) = 0, (56)
where V() is any nonlinear potential energy which yields oscillatory solutions. The

Lagrangian is
2
L = jui—3ui—V(w),

and the average Lagrangian is easily found to be
L(w,k, ) = {2(0?—k2)}E %r§ JE—-V(u)du—E (57)

(which is an interesting comparison with (37)).
Luke introduces a perturbation expansion

u(z,t) = UG, X,T)+eU,(0, X,T)+
X=ex, T=c¢t, 0=ec10X,T).

Thisis a generalization of the geometrical optics expansion for linear problems which
would have all the U, (0, X, T')oc ei. It is also a generalization of various methods of
Krylov-Bogoliubov, and particularly the work of Kuzmak (1959), from ordinary
differential equations to partial differential equations. For ¢ = 0, u(x,t) = U(f) is
the uniform wavetrain. This expansion is substituted in (56) and the coefficients
of powers of ¢ are equated to zero. The first two orders give

(@2 —K2) Upy+ V'(U) = 0, (58)
(@2 =) Usgy+ V"(U) Uy = 20Uy 1+ 2k Upy + 0 Up + kx U, (59)
where w = — 0, = -0,k = 0, = Ox. Equation (58) is the equation for a uniform

wavetrain, and may be considered as an ordinary differential equation in the vari-
able 6 even though U, w, k are also functions of (X, 7); the dependence on (X, T
gives the slow variation. A first integral of (58) is

H*—2) U3+ V(U) = BE(X,T). (60)
At this stage w (X, T), (X, T), E(X,T) are undetermined.

Turn attention now to (59). As an ordinary differential equation in 6, the right-
hand side is known and the left-hand side is linear in U;. Moreover, a solution of the
homogeneous equation is U; = Uj, since the left-hand side is then the derivative of
(58). In principle, (59) can be solved by the substitution U; = fU,. Here it is sufficient
to note that (59) can be recast as

(w?—

)80(U10U6 U,Upg) = (0U3) p+ (kU3

The right-hand side is periodic in 6. Hence U, is bounded in 6 only if the integral
of the right-hand side over one period vanishes. The condition is

O r2ae+ 2 [T er2do = o
ar), 7Y ex ), otv =0
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It may be verified that this may be rewritten from (57) and (60) as

0, 0%, _

F/ ) dal (61)

Thus, the ‘orthogonality condition’, to avoid secular terms in solving (59), gives
the result of the averaged variational principle.

The discussion of higher order terms is an intricate one with introduction of a
further orthogonality condition. The details are given by Luke (1966).

6. INTEGRAL EQUATIONS FOR MORE GENERAL DISPERSION

Linear partial differential equations in (x, £), with constant coefficients, can only
give polynomial dispersion functions; the correspondence is

2 ——iw 2 ik
ot T oz )
Water waves have w?* = gk tanh kh,, (62)

but this is through the dependence on an extra coordinate y, which in this sense is
not part of the («,t) space in which the wave propagation occurs. One method of
obtaining more general dispersion in an (z,£) problem is to consider, for example,

2o[” Ka-gnEnae=o, (63)

where K(x) is a suitably chosen kernel. Solutions
N = elkz—ol)
satisfy (63) provided that
c=2= K(x—§)e—ike—ddE, (64)

K —o

This means that any phase velocity ¢(«) can be obtained by choosing K (z) to be the
Fourier transform of ¢(«);

K(z) = 517—7 f :o c(k) eix®dk. (65)
For the polynomial cases, K(z) is a sum of ¢ functions. In the example
c(k) = ¢yt cok?,  K(x) = cyd(x) —cy6”(2), (66)
(63) becomes the linearized Korteweg—de Vries equation

N+ CoNe— Co Mg = O-

An equation combining the general dispersion of the integral with typical non-
linearity would be

wram+ [ Ke-8nde0dg =o. (o7
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The Korteweg—de Vries equation follows when (66) is used. An interesting extension
is to consider other kernels and, in particular, for water waves to take

g b 1 ® ik
c(k) = (Eta,nhlcho) , K,= o7 I c(x) e@dk. (68)
The Korteweg—de Vries case takes the first two terms in the long wave expansion

Khy < 1.

While the Korteweg—de Vries equation gives solitary waves and cnoidal wave-
trains, it is inadequate to give the waves of greatest height with the Stokes 120°
angle at the crest. Moreover, the alternative breaking into bores, described by the
simpler shallow water equations, is lost because it seems certain that the 7,
term will always prevent breaking (although a proof does not seem to have been
given). Both are high frequency effects which are lost by the long wave expansion
khy < 1. Equation (67) is not limited in this way.

Uniform wavetrains are obtained with 9 = 9(X), X = x— Ut, and (67) is

W-an)y = [~ KE-Yr@©a (69)
This can be integrated once to the form
A+Up—jorp= | KX - g, (70)

where 4 is an integration constant. For the choice K, in (68), the explicit solution
of (70) cannot be given, but it can be shown that a limiting form occurs when
U = an and the crest becomes cusped with a vertical tangent. The cusp instead
of the Stokes 120° angle is attributed to the remaining inadequacies of the non-
linear terms. However, a wave of greatest height is predicted so the desired quali-
tative effect is in.

The kernel in (68) normalized to ¢ = 1, k, = 1, has the properties

Kg(x) = Kg(_x)>
K (x) ~ 2mz)t as x—>0,

K () ~ (in2x)te iz as x> oo,
f * K @)de=1.

If a model kernel Ky(x) = tme-trlal ¢(k) = !

1+ (2k/m)?
is tried, the integrals in (67) and (70) can be eliminated by applying the operator

32
(s tm).

since (71) is the Green function for this operator. Further details can then be
worked out. With a = 3¢,/2h,, corresponding to the Korteweg—de Vries equation
(see (16)), the solitary wave of maximum height has

Nmax. _ 8
hy 9’

(71)
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and, amazingly (since it is fortuitous) this case has a finite angle of 110° at the
crest ! The finite angle instead of a cusp is because K () is regular at z = 0, whereas
K (%) has a singularity there. Thus the angle result should not be taken seriously.
However, the result for the maximum height may be taken more seriously since it
depends upon the whole profile. The result compares reasonably well with
McCowan’s value of 0-78 obtained by a sort of Pohlhausen method.

As regards breaking into a bore, (67) also looks hopeful. There is no longer a
higher derivative to prevent breaking. The integral could be more analogous to the

example
P N+ (Co+ o) e+ = 0

which breaks if the initial slope 7, is ever negative and

72| > Ble.
Some first results in this direction have been found by Mr R. L. Seliger and will be
published later.
If this type of integro-differential equation proves worthy of much further study,
it can be derived from a variational principle and all the theory of slowly varying
wavetrains, etc., would follow. The equation (67) is first written with ay = ¢, as

Vet Vlent | Klo-0) (€002 =0,

This equation follows from the variational principle

o[ [pasar—o

with L=yt e+ Ka-DyEna
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APPENDIX: VARIATIONAL PRINCIPLE FOR ROSSBY WAVES
The question of a suitable variational principle for Rossby waves was raised in
the discussion. This question was investigated after the meeting by Mr R. L.
Seliger and the author with results as follows. The simple formulation for Rossby
waves in the ‘#-plane’ approximation is
Du/Dt—fy)v = —p,,
Do/Di+fly)u = —p,, (A1)
Uy +0, = 0,
Variational principles are most conveniently obtained in terms of potentials. In
this case we introduce generalized potentials ¢, a, § with the representation
U = ¢x+“ﬂw—“: (A2)

v=¢,+af,—fp, (A3)
—p = ¢+ afi+ Ko+ af— )+ (B, +af, —fF)%. (Ad4)
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This is an extension of the Clebsch transformation (Lamb’s Hydrodynamics,
p. 248) to include the Coriolis terms. From (A 1) it is easily shown that the equations
to be satisfied by ¢, «, £ are

Da/Dt+fv = 0,
Dp/Dt—u = 0, (A5)
Uy +0, =0,

where u, v stand for the expressions given in (A 2), (A 3). The variational principle
is again in terms of the expression for the pressure. The set (A 5) follows from the
variational principle

5 f f (ot B+ o2)) dedy s = o, (A6)

where % and v are again expressed by (A2) and (A 3). The general theory can now
be applied to Rossby waves using the Lagrangian in (A 6). Applications and a more
detailed discussion of the use of the ‘Clebsch potentials’ for rotational flows will
appear later.
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