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Non-linear dispersive waves

By G. B. WraITHAM
California Institute of Technology

(Communicated by M. J. Lighthill, F.R.S.—Recetved 23 June 1964)

A general theory is developed for studying changes of a wave train governed by non-linear
partial differential equations. The technique is to average over the local oscillations in the
medium and so obtain differential equations for the variations in amplitude, wave number,
ete. It corresponds to the Krylov—Bogoliubov averaging technique for the ordinary dif-
ferential equations of non-linear vibrations. The equations obtained in this way are
hyperbolic and can be handled by the usual theory of quasi-linear hyperbolic systems,
involving the theory of characteristics and shock waves. In this case the ‘shocks’ are
abrupt changes in the amplitude, wave number, etc. They do not involve dissipation, but
it turns out that frequency plays the role corresponding to entropy in ordinary gas dynamic
shocks. It is not clear whether these shocks will really occur in practice. However, they have
a number of interesting properties and seem to be relevant to the discussion of so-called
collisionless shocks in plasma dynamics. The main applications envisaged are to water
waves and plasma dynamics, and the theory is developed using typical equations from
these areas.

If the original equations are linear, this theory predicts the usual description of dispersive
waves in terms of group velocity, so it may be considered as an extension of the group
velocity concept to non-linear problems. Mathematically, the theory may be considered
as an extension of some of the methods and ideas for the non-linear ordinary differential
equations of vibration theory to partial differential equations.

1. GENERAL DISCUSSION

There is a fairly complete theory of linear dispersive systems. In one-dimensional
problems, the equations have elementary solutions of the form

acos (kr—wt), = w(k), (1)

for arbitrary wave number « and amplitude a.. The general solution is then given
by the corresponding Fourier integrals of the form

Pz, t) = J: F (k) cos (kx — wt) dk, (2)

where F(k) is chosen to satisfy appropriate initial or boundary conditions. The
dependence of the phase velocity w/k on « leads to the ‘dispersion’ of the different
components. Here, the term ‘dispersive’ will be limited to those cases where w(x)
is a real function with 0" (k) % 0. If a ei®®=vD ig g solution and w(x) has an imaginary
part, the solution will exhibit damping or diffusion as well as dispersion. On the
other hand, if woc k as in the simple wave equation, the dispersion effects are
absent because the phase velocity is independent of «.

The equations of a linear dispersive system are often obtained by linearization
of governing equations which are originally non-linear. In contrast to the linear
case, there seems to be neither a precise classification nor a general method of
treatment for the corresponding non-linear equations. In this paper, typical
examples are considered and a general method of treating them is provided, but
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Non-linear dispersive waves 239

the classification is not attempted. The attitude is that any system is open for
consideration if upon linearization it leads to dispersive waves in the sense defined
above. The proposed treatment of such equations is an approximate one motivated
by the following considerations in the linear theory.

Although (2) is an exact solution it is nearly always a complicated function of
(x,t) which does not make the main features and important physical consequences
immediately obvious. It is usual, therefore, to look at the asymptotic expansion
of (2) for large « and . Indeed this is frequently sufficient for all the purposes at
hand. The asymptotic expansion may be obtained by the method of stationary
phase, or the saddle-point method, and is

¢~ F(k)A/{ﬂwEZZT)T] cos (kx — wt — 1 sgn "), (3)

where k(z,t) is the solution of v = o (k)t. ()
The derivation of this result, together with a good discussion of linear dispersive
waves, is given by Jeffreys & Jeffreys (1956), §17-08.

The solution (3) represents an oscillatory wave train, but in contrast to (1) it is
not a uniform wave train because £ depends upon = and ¢. However, when x and ¢
are large compared with a typical wavelength and period, respectively, equation (4)
shows that the change of k in a few wavelengths or periods is small. For example,

k. is given by b, o'(k) 1 i 1 .
i =i 6) (

X

provided w”(k) & 0. The equations of the problem always contain parameters
A, Ty With dimensions of length and time, and these become the typical orders of
the wavelength and period for a wave train. Then, the relative change in k in one
wavelength is O(A,/x) which is small for x > A,.

Apart from a phase change which is unimportant for this work, (3) can be written

¢ = acos (kx—wt),

where a, k, v = o(k) are slowly varying functions of  and ¢ in this sense. This
expression for ¢ is the elementary solution (1) with constant parameters o, k replaced
by slowly varying functions of x and ¢. In other words, the wave train is given locally
in both space and time by the elementary solution, but the amplitude and wave
number vary slowly over distances large compared with the wavelength and over
times large compared with the period. There are then two scales involved: the
smaller scale determined by the wavelength A, and period 7, of the oscillations,
during which @, k£ remain approximately constant, and the larger scale, given by
x and ¢ themselves, over which a, k change appreciably. In other problems, for
example a uniform wave train entering a medium whose properties vary slowly
with length scale L > A,, the larger scale would be the parameter L rather than
x itself.

The determination of the functions a(x, t), k(x, ) in (3) and (4) gives the physical
interpretation of the solution in terms of the ‘ group velocity’ w’(k). For, equation (3)
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shows that in order to follow waves of a certain wave number k, an observer must
move with the constant velocity w’(k). That is, each value of k propagates with the
corresponding group velocity ’(k). The expression for ¢ in (3) shows that energy
also propagates with the group velocity in a certain sense (see Jeffreys & Jeffreys, or
§ 3 below).

For non-linear problems, it is assumed that exact analytic solutions corresponding
to (2) are out of the question and the possibility of finding approximate solutions
corresponding to (3) and (4) is explored. In the initial value problem one might
argue that the disturbances will be small enough at large x and ¢ for a linearized
theory to apply. However, the non-uniform validity of linearized theories over
large distances is well known and is again found here; moreover, the initial value
problem merely motivates a general discussion of non-uniform wave trains which
leads to a number of basic concepts; it is intended to use the same ideas for problems
like the wave train entering a non-uniform medium mentioned above.

For the linear case various direct derivations of (3) and (4), without using the
exact solution (2), are well known (Rossby 1945; Landau & Lifshitz 1959; Whitham
1961), but it is necessary to find one that can be generalized to non-linear problems.
The key to the approach given here, and probably to any approach, is the fact that
the non-linear equations concerned do have elementary solutions corresponding
to (1). The solutions are no longer sinusoidal but are easily found from the property
that they represent uniform wave trains; i.e. the dependent variables are functions
of z— Ut alone, where U is the velocity of translation, i.e. the phase velocity.

For example, consider Gu—Pont V'($) = 0, (6)

which is the simplest equation of the appropriate type. (One may think of this as
the string equation with a non-linear restoring force derived from a potential
energy V(¢). But it should be noted that it does not apply strictly to the string
problem since other non-linear terms have been neglected in linearizing the deri-
vative terms. In physical variables the length and time parameters A, 7, referred
to above appear in the equation and have been eliminated by replacing the original
x and t by z/A, and ¢/7,.) The elementary steady profile wave is obtained by taking
¢ = O(X), X =x— Ut. Then,

(U2=1)Dxx+ V(D) =0,
HU2-1) D% + V(D) = A,}

where A4 is a constant of integration. In the linearized problem, V = {®2 and the
solution of (7) is

(7)

O = xcoskX, }
k*=(U2—1)71, a?=24;

we have an example of (1) with w = Uk = ./(k?+1). The solution of (7) for other
functions V(¢) is the appropriate extension to the non-linear case. The solution of
(7) can be written explicitly as

1 2 d(D .
X = \/{T(U _1)}f7{j4—:7(6ﬁ’

if V(®) is a cubic or quartic in @, for example, this reduces to elliptic functions.

(8)
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In general it is found that the non-linear equations considered always have a
solution of this type with

¢=0X;UA4), X=a— Ut,}

9
and % = F(®; U, A,), ®)

where the A; are constants of integration, the number depending upon the order of
the original equation. The solution is oscillatory with @ oscillating between a pair
of zeros of the function F. The amplitude, wave number, frequency, etc., can all be
determined in terms of the parameters U, 4,.

In direct analogy with the linear theory discussed above, it is assumed that more
general solutions of the non-linear equations will be given locally by (9) with the
constant parameters U, A4, replaced by slowly varying functions of x and ¢. The
problem is, then, to provide a method for the determination of these functions.

Similar problems occur in vibration theory where time is the only independent
variable and the equations are ordinary differential equations. ‘Two time’ problems
arise there and have been much discussed (see, for example, Bogoliubov & Mitro-
polsky 1961; Minorsky 1962). Typical instances are the slow damping of a vibrating
system or the theory of ‘adiabatic invariants’ for a vibrating system in which an
external parameter is slowly varied. In the wave problems, we have an infinite
number of vibrating systems and we are studying the slow transfer of energy, etc.,
between them, rather than the loss of energy, etc., from the system. In vibration
theory, various methods yielding various degrees of detail have been developed for
these two-time problems. The one that asks least detail, and so is a natural first
choice for the more difficult problems of partial differential equations, is the Krylov—
Bogoliubov averaging technique. The equations are averaged over the smaller time
scale in order to obtain equations involving the large-scale quantities (amplitude,
frequency, etc.) alone. It is shown in this paper that a similar technique can be
developed for the partial differential equations of dispersive waves. It turns out
also that the function

W(U, A,) = fﬁ(I)X do = 3§ JF(®; U, 4,)}d0, (10)

defined from the solution (9) plays an important role and this is similar to the
adiabatic invariants, § p dg, for ordinary Hamiltonian systems.

The averaged equations are derived from conservation equations, such as the
energy equation, and they constitute a first-order system of differential equations
for the slowly varying functions U(x,t), 4,(x,t). The details are given in the next
section. In all the cases considered, the averaged equations are hyperbolic showing
that changesin U, 4, propagate. The propagation velocities provide a generalization
of group velocity to non-linear problems. For linear systems, it will be shown that
the group velocity corresponds to a double characteristic of the averaged equations;
as noted earlier, this characteristic carries both changes in energy and wave number.
In non-linear systems, the propagation velocities depend on the amplitude, and the
double characteristic splits into two separate characteristics with different velocities;
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the velocities become equal only in the limit as the amplitude tends to zero. This
means that the solutions of the non-linear equations will have very different
properties from the linear case even when the non-linear terms are small.

In a linear dispersive system, the energy in each element of wave number space
remains constant in time, and, consequently, wave number and energy propagate
together. In a non-linear system, there is continual energy transfer between
different wave numbers. The splitting of the double characteristic velocity into two
separate propagation velocities must be associated with this difference.

It is particularly interesting that the equations for U and A4, are hyperbolic and
homogeneous in the derivatives even when the original equations for ¢ are not.t
The relationship between the mathematics of hyperbolic equations (particularly
homogeneous ones) and the physical idea of waves is so strong that people have
wondered whether some formulation for deep water waves, for example, could be
obtained which would involve hyperbolic equations. This theory gives a possible
answer: the detailed ‘microscopic’ structure of ¢ is not necessarily governed by
hyperbolic equations, but the equations for the ‘macroscopic’ variables such as
amplitude, wave number, etc., are hyperbolic and it is the propagation of these
important physical quantities thatis described by the usual theory of characteristics.
After all, the Boltzmann equation for a gas is not hyperbolic either and sound waves
only appear from appropriate averaged equations. Indeed, the present work is in
much the same spirit as the derivation of continuum fluid mechanics from kinetic
theory. The Maxwell distribution describes a uniform state in terms of density p,
temperature 7', mean velocity u. This is a solution for constant values of p, T, u,
but it is used to derive continuum equations for p, 7', u when they are slowly varying
functions relative to the mean free path and the collision time. The Maxwell distri-
bution corresponds to (9) and p, 7', u correspond to U, A4,.

One of the main features of non-linear hyperbolic equations is the possibility of
shock waves. In the general sense used here, shocks are propagating discontinuities
in the dependent variables. For the averaged equations, this means discontinuities
in U, 4; and, therefore, in amplitude, wave number, etc. The most intriguing result,
which arises naturally in the treatment of these shock waves, is that the frequency
plays a role analogous to entropy even though there is no dissipation of energy in
the system. Among other things, the frequency always increases as waves cross a
shock. This concept is perhaps relevant to the discussion of so-called collisionless
shocks in plasma physics. In very general terms, the point of view of this paper is
similar to that of Camac, Kantrowitz, Litvak, Patrick & Petschek (1961) in their
search for a collisionless shock. However, they try to develop a theory of effective
dissipation in a random wave field with collisions between waves replacing collisions
between particles.

The theory is developed first by using the non-linear wave equation (6) as an
illustration, since it is the simplest equation of the appropriate type. Then the same

1 The example in (6) is hyperbolic, but examples of non-hyperbolic equations are discussed
later. Even for (6), the point can be made that the averaged equations are homogeneous in
the derivatives. This is a great simplification and leads to the more important propagation
speeds.
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methods are applied to more interesting cases arising in water waves and plasma
dynamics.

The discussion is restricted to one-dimensional waves, but it seems clear that the
same approach could be used for more dimensions; a further comment is made in § 6.

2. CONSERVATION EQUATIONS AND AVERAGING
Various conservation equations of the form

oP 0Q

E +8x 0 (11)

can be deduced from the governing equations. For example, the conservation
equations

S QBB V) (~ 4 = O, (12)
2 (—¢ ¢>+—"’—<l¢2+l¢2—V<¢>>—o (13)
¢ x L 3.% 27t 27 x _

can be deduced from equation (6). These conservation equations are averaged as
follows to give the equations for the slowly varying functions U, 4,. Define the
averaged value of any quantity as

z+E

F(a,t) = o). éF( ,t)da’
Then (Z)-2 (%)%

the first of these being trivial and the second proved by

(@) 1 MaQ('t)dx— [Q@+E,1) - Qx—E,1)]

ox 25 x— ga ! g
o1 (ot 0@

Equation (11) is averaged in this way to give

P ol _

Yo 14
8t+6x (14)

If the wave train is approximately uniform in the distance 2, the mean quantities
P and @ may be calculated from the uniform solution (9), holding U and 4, constant.
Moreover, if the interval x—§& < &’ < x+ & includes a large number of waves these
mean values will be functions of U, A4, alone: P(U, 4;), @(U, 4;) say. The exact
equation (14) is then replaced by the approximate equation

P(U,Ai)+—£—cQ_(U, 4;)=0. (15)

SR

16 Vol. 283. A.
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If A, is the length scale for the wave length and L is the length scale for changes in
Uand 4;,i.e. U,/U and 4,,/A, are O(L~1) then we choose

L> &> A,

and the relative errors in replacing P by P are O(A,/£) and O(£/L). As noted in § 1,
L is x itself in the initial value problem. Since the uniform wave train is periodic
with wavelength A = A(U, 4,), the mean values P, Q can be calculated over one
wavelength, i.e.

P(U,4) = Hmp(xgt) dz’
L AQ"@X U,A)\dX
“ifo (O(X; U, 4)}dX, (16)

where 2{¢} denotes the functional dependence of P on ¢ and the uniform solution (9)
has been substituted for ¢.

The choice of conservation equations as the equations to average is a natural one
for physical reasons: important physical quantities such as energy, momentum,
etc., satisfy conservation equations. We now see that it is natural from a mathe-
matical point of view. Both terms in (14) are of the same order O(A,/L). If an
undifferentiated term R, say, were also present, a detailed solution more accurate
than (9) would be needed to calculate R to order Ay/L.

A crucial test of the soundness of the whole method is whether the number of
independent conservation equations is equal to the number of variables U, 4, in
the wave train solution (9). This turns out to be the case in all the examples con-
sidered and indeed some of the conservation equations were not at all obvious but
were found only because of faith in this method ! It is also easy to give cases where
more conservation equations can be found than required, but, when averaged, only
the requisite number prove to be independent. The proof of this equivalence between
the number of conservation laws and the number of ‘integration constants’ U, 4,
in (9) lies presumably in the transformation properties of the system. It is well
known, for example, that conservation equations can be deduced from the invarience
properties of a Lagrangian system (Noether 1918 or the review in Courant & Hilbert
1953, §12-8). Equations (12) and (13) can be derived from the invariance of the

ian densit
Lagrangian density L = 12— 12— V()

with respect to translations of « and ¢. This kind of argument would, perhaps, lead
to the proposed theorem.

Another remarkable result of a similar nature is that, in all the examples con-
sidered, the mean values P(U, 4,), Q(U, 4,) for all the conservation equations of
the system can be expressed in terms of a single function W (U, 4,) and its derivatives
oW|oU, oW [0A,. The function W is defined from (9) by

W(U, 4;) = 3§®qu>

_ 9(; JIF(©; U, 4,))d0, (17)
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where the integration is over one complete cycle of ®. This is reminiscent of and was
suggested by the adiabatic invariantst §§ pdg for Hamiltonian systems. The pro-
perties are also similar: for a Hamiltonian system with period 7, energy, E, and
I(B) = fﬁ pdg, it may be proved that 7 = dI/dE. For the wave problems it will be
shown that frequency, wavelength, as well as the other important physical
quantities, are given by the derivatives of W.

In the actual use of the set of averaged equations (15) in non-linear problems,
the introduction of this function W is crucial because the averaged quantities P,
are complicated functions whose properties and relations to each other are not
obvious otherwise. But again a deeper formulation leading logically to the intro-
duction of this function has not yet been found. Some general Lagrangian—
Hamiltonian approach is indicated.

[Note added in proof, 27 October 1964. Further progress has been made in this

direction and will be described in a subsequent paper.]

3. LINEAR EXAMPLE ¢,,— ¢, +¢ = 0

The uniform wave train is
¢ = acos (kx—wt), o= (k®+1),

and a, k are a pair of basic parameters (equivalent to U and A). The conservation
equations are

0

o QISR+ 100 o () = O, (1)
o (= 0u )+ (91492 —19%) = 0 (19)
ot x Tt o 271 27z 2 _ Y

r_lhe mean v alueS are
2 142 1 2 2 2 1h2 — 1,2
¢5 + _¢ ,A(Q) + k ) a & 2= ,

— $u P = Ghwa.

BOf

Hence the slowly varying functions a(x, t), k(x,t) satisfy

o0 @+ (koa?) = 0,

ot
ﬁ 1 2 3 17,2~2) —
gy (3kwa )+—a} (3k%a?) = 0.
These reduce to oyt Ck) b, = 0, (20)
a,+CO(k)a,+ 3aC' (k) k, = 0, (21)
dw k
Where O(k) = E == W)

T This is of course a standard topic in many books of dynamics, but the writer found the
point of view in Landau & Lifshitz (1960) particularly relevant to the present method.

16-2
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is the group velocity. The characteristic velocities of the equation for ¢ are + 1, the
phase speed U > 1, the group speed C < 1and UC = 1. It should be noted that (20)
and (21) are non-linear even though the original equation for ¢ is linear.

A curve dx/dt = C(k) is a double characteristic for the pair of equations (20),

(21) and ks da

a~£ =V, ?d—t = —%Ol(k) kxa on

dz
=7 = . 22
o =C) (22)
Thus % is constant on a characteristic dx/df = C(k) or, in other words, k£ remains
constant for an observer moving with velocity C(k). Moreover, if Az is the distance
between two neighbouring characteristics,

a da

2 a2Az) =
(a*Az) Qadt

2
G Ax+a?AC

= {2@% +a2C' (k) kx} Az + O(Ax)?

=0,

from (22). Since a? is proportional to the energy density, the total energy between
two neighbouring characteristics remains constant. In this sense energy propagates
with the group velocity.

If the initial disturbance is limited to a finite interval around x = 0, then, for
sufficiently large x and ¢,

zft = C(k);
de  a _ay(k)
hence TS T a = pat

These agree with the asymptotic results (4) and (3) obtained from the exact solution.
The expression of ay(k) in terms of ¥ (k) and w(k) has been discussed in previous
papers (Whitham 1961; Broer 1950).

It may be noted that (20) can also be written as

ko, =0, (23)

which is a statement of the conservation of waves, k& being the density of waves and
o the flux of waves. This is often assumed and made the basis for the derivation of
the group velocity. Here it has been deduced from the averaged form of the
equations governing the system. To some extent conservation of waves is tacitly
assumed in the whole idea of the averaging technique, but the fact that it is
obtained only as a consequence of the other basic conservation equations is
important in the discussion of shocks in §6.

In this problem there are an infinite number of possible conservation equations
because any derivative of ¢ satisfies the same equation as ¢ and, hence, (18) and
(19) also hold with ¢ replaced by ¢,, ¢, or any higher derivative of ¢. However, when
averaged, there are only two independent equations for ¢ and & and these are (20)
and (21). The existence of an infinite set of conservation equations is clearly a
feature common to all linear systems.
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4. NON-LINEAR EXAMPLE ¢,,— ¢ .+ V'(¢) = 0
The uniform wave train is ¢ = ®(X) where

LU2-1) D% + V(D) =

The conservation equations are (12) and (13), and the mean values of the quantities
appearing in them are calculated essentially from the function W(U, 4) of (17). In
this case, it is convenient to take

W(U,A4) = (Uz—l)ffcpxdcp

— JEe- 1)}39 J{A—V(@)}do
= J(U2—1)G(4), say. (24)

In the uniform solution, ® oscillates between simple zeros ®@,(4), ®,(4) of
A — V(®), and the integral may be written

o,
A) = 2 f JA—V(0)}do.
@,
For the linear case, which is also the approximation for small amplitude,
V=302 @ =-—,024), ®,=,24) and G(4)=274. (25)

The wavelength A is calculated in terms of W as follows:

A= ax = § G = vew 0§ o Ty

= oW|[oA.
Then the mean values of the various quantities 2{¢} are calculated from
1 [2
7 - f (0}ax

F[0}d0
(DX

where k = 1/A. Therefore
IS = (U4 ) § 0xdo

U2+1
= %—Km W,

(S

and, similarly U
— K
V@) = A=WW, ~fido=pa V.

The averaged equations for the various examples fit a certain canonical form, which
may be obtained in this case by judicious use of the identities

U

To=1o3

W, «W;=1
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The choice is
i +383+V(9) = c(UWy + AW, — W),
W =«Wy; or «kUUW,+A4AW,—W)—
195 +362 - V($) = UW, -

and the averaged forms of (12) and (13) are

gt{K(UWU+AW4—W)}-i—a—i{KU(UW@--}—AVIQ—W)——UA} =0, (26)
(KWU) (K‘UWU A) =0, (27)
where k=1/W,. (28)

Equation (26) may be expanded as

U{B%(KWU)+6%(KUWU—A)}+A{ (kW) + (KUWQ1 U)}— {Z’t‘ (U)}

and from (27) and (28) this reduces to

8/<6

S+ (U) = 0. (29)

Since «U is the frequency, the equation for conservation of waves is again obtained
as a consequence of the basic conservation equations. Equations (27) and (29) may

then be simplified to
DW, oU _ )

I W 0,
DW, 0A (30)
DWyg 04 _
Dt W ox o,
D 0 0
where _—Et = a—l- U%

It turns out that (30) is a hyperbolic system, so the characteristic form is im-
portant. After substitution for W from (24) and some manipulation, the charac-

teristic form is found to be
dUu _ Q@
i ()44 = 3

o 4o _ 1 UJ(-66'[67)
=2dt T U+ J(—GG”/G’Z) )

on the characteristic curves

(32)

For functions V(¢) with appropriate properties corresponding to stability of the
system, @” < 0, and @ — 0 in the limit of small amplitudes (for which 4 — 0).
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5. NON-LINEAR GENERALIZATION OF GROUP VELOCITY

For a linear system the characteristic velocities for the two averaged equations
coincide and are equal to the group velocity. For a non-linear system, as the above
example shows, the characteristic velocities are in general unequal. These charac-
teristic velocities are considered to be the non-linear generalization of the group
velocities. They are the velocities of propagation of changes in a wave train.

Another possible generalization would be to define the group velocity as the
velocity of energy flow, i.e. ratio of energy flux to energy density. For the above
example, the ratio would be (see (26))

UAW, _ e
T UWy+ AW, —W — (U*-1)AG + G~
For the linearized limit of small amplitude, G = 274 (see (25)), and the three
velocities in (32) and (33) coincide in the group velocity C = 1/U. However, in the
non-linear case, the three velocities are not equal, and the characteristic velocities
(32) are the basic ones from a mathematical point of view.

The result that the characteristic velocities of the averaged equations are not
equal in the non-linear theory has important consequences in the solutions. The
solutions may be of a completely different nature from the linear case. Consider,
for example, a wave train which is initially uniform with 4 = 4, U = U, outside
some finite region. Then after some interaction period the disturbance will separate
into two simple waves.}

One simple wave is on the characteristics C,. of (32) and the Riemann invariant

from (31) is U A e
ﬂ_{_ (__G d4 = 0;
v, U*—1" | 4, el

the values of U and 4 are constant along the C, characteristics in this simple wave.
The other simple wave is on the characteristics C_ and the Riemann invariant has
the other sign. Between the two simple waves, U and 4 take again their undisturbed
values U, and 4,. The wave number « and the amplitude a can be calculated in
terms of U and 4 so the same qualitative statements apply to « and a.

In contrast, the corresponding equations for the linear system, (20) and (21),
have only one family of characteristics and there will be no such separation. More-
over, in the simple waves of the non-linear theory the amplitude remains constant
along the characteristics, whereas it decays like £% in the linear theory.

A wave packet with no waves outside the disturbed region, i.e. 4, = 0, would not
show this separation because the linear theory holds in the limit 4 - 0. However,
there would be non-linear distortion in the wave packet.

U (33)

6. SHOCK WAVES
The dependence of the characteristic velocities on the amplitude leads to multi-
valued solutions in exact analogy with the breaking of waves in gas dynamics. In
gas dynamics multivalued solutions are meaningless and correspond to a breakdown

1 The terminology and results are taken over from the corresponding problem in gas
dynamics (see Courant & Friedrichs 1948).
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in the inviscid equations. But the solution can be saved without recourse to the
more realistic viscous equations by fitting in discontinuous shock waves. We
can follow the same steps here: argue that the multivalued solution corresponds to
a breakdown of the approximate equations (26), (27), but avoid recourse to the
original equation (6) and complete the solution of (26) and (27) by fitting in dis-
continuities in U and 4 according to appropriate jump conditions. The jump
conditions will be derived below. We must first note that in the present case a
multivalued solution may well correspond to a perfectly genuine overlap with two
parts of the wave train superimposed and this may be what really occurs. Certainly,
in linear theory, if two wave trains moving at different speeds meet, they just pass
through each other. However, if the non-linear effects can be strong enough and the
speeds differ only slightly so that the interaction takes place at a slow rate over a
long time (this being the case for shock formation out of a continuous solution), it
is just conceivable that the interaction is confined to a narrow region between the
wave trains. In analogy with gas dynamics we call such a region a shock and treat
the changes of U and A4 across it as discontinuities in the solution of the averaged
equations (26) and (27). A more detailed analysis would require more accurate
approximations to the original equation (6).

It is suggested, then, that discontinuous shocks of this type may possibly occur
in non-linear wave trains if the changes are relatively small, but that large changes
would lead to overlap and superposition of different parts of the wave train. This is
frankly speculative. Some support for this view comes from recent work by D.J.
Benney & J.C. Luke (1963, private communication) on non-linear water waves.
They consider the two-dimensional problem of the oblique interaction between two
cnoidal wave trains incident at angle y, say, If y is not too small, the waves pass
through each other and the non-linear interaction can be handled by perturbation
methods. However, as y - 0, the perturbations become infinite and the method
breaks down. The present theory, suitably extended to two dimensions and curved
wave trains, would predict ‘shocks’ with a discontinuous change in the direction
of the wave crests. It may be that the wave systems interpenetrate and overlap,
as found by Benney & Luke, if the change in direction is large, but be separated by
a relatively narrow shock of the type discussed here when the angle is small. This
could perhaps be tested experimentally.

These shocks also seem to have some bearing on the following question which has
arisen in water waves and plasmas: Can a shock-like change of state occur in a
reversible system which has absolutely no dissipation? In water waves, the problem
is the existence of a bore-like increase in depth without appeal to turbulent dissipa-
tion or friction. In a plasma it is the possibility of an increase in density over a
distance small compared with the mean free path, so that one can not appeal to
the mechanism of dissipation in collisions. The shocks proposed here have no
dissipation and (as will be shown) an increase of frequency plays the role of a kind of
irreversibility.

For all these reasons, it seemed worth while to include a brief discussion of these
peculiar shocks even though some alternative solution—overlap or dissipation—
may always appear in practice.
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There is a standard mathematical theory for the treatment of shock waves for
a system of conservation equations (see, for example, Courant—Hilbert 1962, § V. 9).
For each conservation equation

ox

there is a corresponding shock condition

l9] = VL1, (34)

connecting the discontinuities [f], [¢] in f, g and the shock velocity V. Thisjump
condition expresses conservation of the quantity with density f and flux g across the
shock wave. There is, however, a question of uniqueness that is crucial. A physical
system in » unknowns usually has at least (n+ 1) conservation laws and only =
shock conditions must be chosen. Mathematically, any choice of » conditions leads
to a satisfactory ‘weak solution’, but only one choice corresponds to the real
physical situation. The correct choice is decided from which of the n quantities are
actually conserved across the shock. For example, in the prototype of gas dynamics,
the equations of mass, momentum and energy may be written as

g . dpu) _
%p-# ox =0,
W) 2 (o p) =0, (35)

ot

4 1 p\, 0 Y 10)
2 L~ 3
3t(2p Ty p)+8x(2p Ty =1p

But there is an additional conservation equation that can be deduced from these:

(pS) (puS) =0, (36)

where the entropy S(p,p) = Inp/p?. Mathematically, the shock condition (34)
corresponding to any three of these four equations may be chosen. Physically,
we know that mass, momentum and energy are conserved across the shock but
entropy is not. Hence shock conditions are chosen corresponding to the three
equations in (35). It is then shown that

[puS] + V[pS].

The differential equations (35) imply (36) but the jump conditions for (35) do not
imply the jump condition for (36). In fact the condition that the shock be formed
by the breaking of a continuous solution, i.e. that its velocity is supersonic relative
to the flow ahead and subsonic relative to the low behind, leads to the result that
the entropy always increases across the shock in accord with the second law of
thermodynamics.

In the present case with two variables, U and A4, there are two conservation
equations (26) and (27) corresponding to (35), and an extra one (29) can be deduced
from them, corresponding to (36). In a shock wave, the averaging breaks down
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because of the rapid changes but the original equation still holds and the detailed
conservation equations (12) and (13) still hold across the shock. Therefore the shock
conditions corresponding to (26) and (27) should be chosen. But (29) was a conse-
quence of the averaging and it could only be deduced from the averaged conserva-
tion equations. Hence, it should not be chosen for one of the shock conditions. Thus,
provided the original equation ¢;—¢,,+ V(¢) = 0 still holds through the shock,
the correct jump conditions for the averaged equations (26), (27) and (29) are

(KU UWy+ AW, — W)—UA] = VIk(UWy+ AW, — W)~ W], (37)
[KUW, —A] = V[kW] (38)
and [«U] + V[k]. (39)

It may then be shown from (37) and (38) and from the condition that the shock
must be formed by the breaking of a continuous solution that the frequency of the
waves relative to the shock always increase as the waves cross the shock. In this example,
the shock is backwards facing and the waves overtake the shock from behind and
waves appear ahead at a higher frequency. For a linear system, of course, these
shocks are not required and it is verified that the jump in frequency reduces to zero
in that case. Otherwise the jump in frequency is positive and tends to zero as the
third power of the shock strength [A]. Thus, it is seen that the frequency plays a role
analagous to entropy flux in gas dynamics. There is an irreversibility—the dis-
continuous increase in the frequency of waves—even though the original equation
for ¢ is conservative and reversible.

After substitution for x and W into (37) and (38), we have

U @ 1 @G
[TJT_T@]=V[WTW+A]’

Uz G U ¢
[ﬁ:i @“A] = V[U_—_TG_]
These may be solved to express U, and V in terms of 4,, A,, U; where subscripts 1
and 2 refer to values ahead and behind the shock, respectively.

7. Tae KORTEWEG-DE VRIES EQUATION FOR WATER WAVES

In this and the two succeeding sections, the corresponding results for other
examples are quoted briefly in order to show the generality of the ideas and to give
further support to them. The consequences of the equations will be explored fully
in a later paper.

Korteweg & de Vries (1895) studied water waves in the case of relatively long
waves and derived the equation

N+ N(gho) (L+3(1/ho)) 1+ § (90) B e = O,
for the elevation 7 of the water surface above the undisturbed depth A,. This
equation holds when a/h,, h3/A% are comparable small quantities, where a is a typical
amplitude and A is a typical wavelength. The equation may be transformed into

the form
N+ 600y + Ny = 0. (40)
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The uniform wave train, discussed by Korteweg & de Vries, is obtained by sub-
stituting # = 9(X), X = x— Ut. This leads to
Nxxx = Unx—6mx,

which can be integrated twice to give

Nxx =B+ Un—377

ik = —A+By+ iU —p’, (41)
where 4, B are constants of integration. The solution can then be expressed in
terms of the Jacobian elliptic function cn 6, and Korteweg & de Vries described the
the waves as ‘cnoidal waves’.

For the treatment of a slowly varying wave train given locally by (41), three

conservation equations are required since the solution involves three parameters
U, A, B. The following conservation equations can be derived from (40):

O 0
51t ap BN +700) = 0,

9 0
g Q1) + 5 0P+ — d717) = 0, (42)

0 2
o 1= 22) + 5 G 4 30+ 3050+ 7070) = 0.

These do not have the simplicity of form one expects in physical conservation
equations because (40) is only an approximation to the full equations of water waves.
In fact, equations (42) are essentially the corresponding approximations to the
equations for conservation of mass, momentum and energy.

The calculation of the average values of the quantities appearing in (42) from the
solution (41), is again simplified by introduction of an auxiliary function. It is
convenient to define

W(4,B, U>=—§nxdn
=~«/2ff;«/(—A+Bﬂ+%Uv2~ﬂ3)d77- (43)

Then, the wave number is given by
1 1
== = 44
K==Wy (44)
and the averaged equations corresponding to (42) become

0 0
875 (KWB)—F%(KUI/VB—B) = 0,
0 0
a—t(KWU)-f-a(KUI/VU—A) = O,

0

+ %{KU(AM+B%+ UW,;—W)—3B2— AU} = 0.
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As before, the equation for conservation of waves,

ok 0

follows from (45). Then the equations may be simplified to

DWy 98U _
Dt Ao —
DW, . 0B
DT (#7)
DWy 94 _
Dt 40w~ )
D 0 0
where ﬁ=5i+ U%.

In spite of the simple appearance of equations (47), it is a complicated calculation
to find the characteristic velocities. In this calculation the zeros (2, £,7) of the cubic

7 —43Un*—By+ A4,

appearing in (43), are used as variables in place of (4, B, U). Then,

W= —2%f; Ja—n) =p —dy (@>F>7), (48)

and equations (47) can be written in terms of W,, W;, W,. After considerable mani-
pulation it may be shown that

%(ﬂ+v)+2%(y—°‘)%:/%(ﬂ_7) 2 prm=0

with two similar equations obtained by cyclic permutation. Hence, £+ = constant
on the characteristic

dz (y—a) (@=p)(B-7)
U+2W, W, W, .
The three characteristic velocities may be evaluated as

40K _ da(1—s?) K (1-s?) K

U-x—m U—p—a-soyr Y4 em (49)
X = ﬂ 2 _2=f =
where a=—5=, s ==y U=2a+pf+7),
and K(s?), E(s?) are the complete elliptic integrals of the first and second kind.
The wave number is at
= W_l =
K 4 7 2K’
and the mean height is given by
20 K—F
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Therefore, sis a function of a/x? and the propagation velocities in (49) are of the form
U+f(a/x?).

The limit a/k2 - 0 should reproduce the results for the linear equation

N+ Nz = 0. (50)
It is easily shown that the velocities (49) reduce in this limit to
—32mk)2, —3(2mk)3, O. (51)

Thus the first two reduce correctly to the group velocity for (50). The appearance
of the third velocity can be seen directly in the linear theory. The uniform solution
of (50) is 7 = b+ asin{2mkx — (2mk)3 £},
and the averaged equations of the linear problems give 9b/9¢ = 0 in accordance with
the zero velocity in (51); of course, the addition of a constant mean value to the
solution is usually neglected as trivial in linear theory.

The shock conditions for the propagation of discontinuous jumps in 4,B,U
(or equivalently a, k, 7) are obtained in the standard way from (45):

[«UWg—B] = V[«Wg],
[KU(AW, + BWy+ UWyy— W) — 3B2— AU = V[k(AW, + BWy+ Uy — W)].

In the special case of no waves ahead of the shock, the amplitude is taken to be zero
and the wave number ahead, which is arbitrary, drops out of these conditions.

Conservation of waves, equation (46), is not used across such a shock and there
will be a jump in relative frequency across the shock. This is assuming that the
original equation (40) and the conservation laws (42) still hold inside the shock,
only the averaging breaks down. An alternative is to assume that the original
equations are invalid, and, for example, that there is loss of energy into some
process neglected in the original formulation of the equations. Then it may be
appropriate to choose conservation of waves across the shock, i.e.

(kU] = Vi« (53)

and drop one of the conditions in (52). This would correspond to the discussion of
bores given by Benjamin & Lighthill (1954). They assume steady flow throughout
with U = V and allow an arbitrary loss of energy into turbulent motion at the bore.
They originally hoped to find steady smooth transitions in level without any loss
of mass, momentum and energy. From the point of view of the approach given here
it was equivalent to looking for shocks satisfying all four relations in (52) and (53).
This is over determined, of course; one of the relations must be dropped since the
system is only third order. They dropped energy conservation, but one could also
drop (53). In practice, weak bores certainly look to be steady flows so that the
smooth transition is probably linked with loss of both momentum and energy by
frictional forces.
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8. THr BOUSSINESQ EQUATIONS FOR WATER WAVES

Before the work of Korteweg & de Vries, Boussinesq (1877) had derived the
equations b+ why, + Ty, = 0,
| (54

W+ Wy + gh + VA = 0,

where A is the depth, « is the velocity, v = 4h,, where &, is the initial undisturbed
depth, and g is the acceleration of gravity. Again these hold when a/h, and A3/A*
are comparable small quantities. When 1 > a/h, > h%/A?, the third derivative term
can be neglected and the equations reduce to those of the familiar ‘shallow water
theory’. Roughly speaking, equations (54) describe waves moving in the positive
and negative z directions with speed ,/(gh). The Korteweg—de Vries equation is the
further approximation (with one approximate integration) to study waves moving
with velocity 4/(gh) in the positive direction only.

The uniform wave train involves four parameters, and four conservation equations
can be derived from (54). The conservation equations are

+ (uh), = 0
uy+ (Fu? + gh +vhy), = 0,
)o = 0
0.

I

(hu—vh, b)), + (hu®+ 1gh®+ vhhy+ $vh3
(eu+ gh + 30) + (Ho+ g+ vully), =

x >

The first, third and fourth of these equations are conservation of mass, momentum

and energy, respectively. The second one has, apparently, no such general physical

interpretation. A fourth one is required by this approach and is, indeed, found.
The uniform wave train is found by substituting

w=uX), h=hnX), X=z-"Ut,

in (54), but the constants of integration are most conveniently introduced to fit (55).
For the uniform solution, equations (55) integrate to

hu—hU = C,
tu+gh+vU%hyx—Uu =B ] (56)
hu?+Lgh? +vU% hhx x + %) — U(hu+vUR%) = A
and 1hud + gh®u + vU2uhh 5 x — U(3hu? 4 Lgh? + v Uh%) = AU +BO,[

where A, B, C are constants of integration. Elimination of  and % x x leads to
LU, = $C?h+ UC — A+ (B+ U h—4gh. (57)

In this case the average values of the quantities appearing in (55) are calculated
in terms of

W(4,B,C,U) = —VU2§thh

__ ¢(VU2)§ J{C2/h+2(UC— A)+ (2B + U?) h—gh?} dh. (58)
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The averaged equations (55) are found to be

0 N
( kWg)+ P («UWp—C) =0,
0
(KWC) a (KUWC ) 0;
W)+ 2 (U — 4) = 0, (59)
gz{K(AW:A + BWyy+ Wyt UWyy— W)}
+%{KU(AWA+BWB+OWC+ UWy—W)—AU—-BC} = 0.
where k= 1/W,.
As in the previous case, the equation for the conservation of waves
K+ (kU)p =0
is deduced, and the set can be simplified to
Dw, oUu
D M ="
DWy oC
Dt Mg =
DWC_W iﬁi_o ' (60)
Dt Ao
DWW,
Dt " =

The shock conditions are deduced from (59) by replacing each 0Q/dx by [Q] and
each oP/ot by — VIP].

The consequences of these equations have not yet been investigated further. It
is noted that the general ideas go through in a consistent way and that the averaged
equations (59) and (60) follow the standard pattern laid down by the previous two
examples.

9. AN EXAMPLE FROM PLASMA DYNAMICS

Dispersive waves occur in various problems of plasma dynamics, governed by
various mathematical formulations. Theoretical interest has centred particularly
around collisionless plasmas because of the novelty of the effects. A relatively simple
formulation is obtained by neglecting, in addition, the spread of the electron velocity
distribution about the mean electron velocity and the spread of the ion velocity
distribution about the mean ion velocity; in this sense the plasma is ‘cold’. The
equations will not be derived here since the object in this paper is to show the
generality of the mathematical treatment rather than to discuss the applications.
The equations have been derived by Davis, Liist & Schliiter (1958) and Adlam &
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Allen (1958). For propagation across a magnetic field the equations may be

reduced to
Pyt upy+pu, = 0,

w+uu,+vH = 0,

vtuv,+H—ul =0, (61)
Ifl'l'Ex =0,
H,—pv=0.

These are in non-dimensional form. The total density of particles is p, the electron
velocity is {u, v(m;/m,)?, 0}, the ion velocity is {u, —v(m,/m,)3, 0}, the magnetic and
electric fields are (0,0, H) and {—vH(m,—m,)/(m; m,):, B, 0}, where m,, m; are the
electron and ion masses. There is no net mass motion in the y direction, but there is
a net transfer of charge, i.e. a current, measured by v. The first equation in (61) is
conservation of mass; the second and third are momentum equations including the
Lorenz forces but pressure terms are absent because the plasma is cold; the last two
equations are Maxwell’s equations with current density pv and with the displace-
ment current neglected.

In a first attempt to apply the theory to the system (61), five parameters appeared
in the uniform wave train but only four conservation equations were found. This
inconsistency led to the realization that (61) is not a purely dispersive system in the
sense used in this paper. A characteristic equation, namely

0 (H—v, 0 (H—uv,
al S e () =0

can be derived from (61). This shows that (H —v,)/p is constant along particle paths.
If the flow started from uniform conditions at ¢ = 0 or at infinity, this quantity will
be constant throughout. By suitable scaling, this constant can be taken equal to
unity, the set of equations (61) reduces to the fourth-order system:

P+ upg+pu, = 0,
wy+wu,+vH = 0,

(62)
H,—pv =0,
H = p + U(I?’
and the electric field is given by E = pu—n, (63)

There are now only four parameters in the uniform solution and four conservation
equations for the system (62) are found to be

pt+( )x 0’
u+ (Fu? ~v2+H)x 0, (64)
(pw)+ (pu?+3H?), = 0,
(3pu? + §pv2+ §H?),+ (3pu® + zpuv2+EH)z 0.

The first, third and fourth of these are conservation of mass, momentum and energy
but the second one is somewhat unexpected as was the corresponding one in (55).
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In the solution for the uniform wave train all the variables are functions of
X = x— Ut, and it is convenient to introduce the three parameters 4, B, C, required
in addition to U as the constants of integration of the first three equations in (64).

Then
p(u— U)=270,

u?+ 30+ H—Uu = B,
pul+LtH?—Upu = A,
spud+ tpuv? + EH — U($pu+ $pv2+ $H?) = UA+ BC.

(65)

Substituting v = Hy/p from (62) and eliminating p and u, we obtain a single equation
for H:

e 02{(2B+ U2 2H) C? }
X=

A—U0—1H%F (66)

From this expression, the function W is defined as
W(4,B,C,U) = —&%df[
= —36 N@2B+U?—2H —C-3A—-UC—-1H?? dH. (67)

The conservation equations (64) are then averaged, evaluating the mean quantities
in terms of W. The resulting equations are identical with (59), the only difference
between the averaged problems is the difference in the choice of W. This coincidence
is explained in the next section.

The shocks are of special interest in this particular problem in view of the con-
siderable discussion as to whether any kind of shock transition is possible at all in a
collisionless plasma. IHere the shock would be a discontinuous change in the
functions 4, B, C, U (hence in mean density, amplitude, etc.) without any loss of
the conserved quantities in (64) and (65). It would be essentially unsteady—
previous attempts have concentrated on steady solutions—since the relative
frequency of the waves increases across the shock and the waves behind the shock
are moving away from the discontinuity, i.e. the phase velocity U is not equal to
the shock velocity V. As remarked earlier in § 7, the case with no wave train ahead
of the shock is included. From (59), the shock conditions are

[kUWy—C] = V[kWy],
[«UWy—B] = V[kWy],
[KUWyy — A] = V[xW,],
(kU (AW, + BWy+ CWy+ UW — W)— AU — BC]
= V[k(AW,+ BWy+CWy+ UWy — W)].

The analysis of these will be complicated and has not yet been carried out. A final
judgement on their relevance to the collisionless shock problem can not be given
until that has been done.

17 Vol. 283. A.
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10. SYSTEMS OF CONSERVATION EQUATIONS
The symmetric form of the averaged equations (26), (27), (45) and (59), and
especially the appearance of the same set (59) for two apparently widely different
problems, can be explained as follows. In each case we obtain eventually =+ 1
conservation laws for n quantities, the extra one being the conservation of waves
(29). Such systems have special properties.
Let the n dependent variables be u,, ..., u, and let the n+ 1 conservation laws

be written of; g,
PCACH WAy ) =
8t+3x 0 (z=1,...,n)
of [ o9 _

a;lld —a—i+~é—x~-—0,

where f;, g, f, ¢, are functions of the w,. Since the last equation can be derived from
an appropriate combination of the first n, there exist factors a,(u,, ..., u,) such that
df = a;df;, dg = a;dyg;.
Let F = a,f;—f, G = a;9;,—g, then
or oG or oG
and fiz’&“‘;’ gi“@? fzai%—F’ g=ai507i—g'

Therefore, the system of conservation equations can be written

0 [oF 0 (0G .
"a‘i(é‘d;)+592(55i):0 (G=1....n)
0 oF 0 G

and ﬁ(alﬁ_F)+gx (a,LaT%—G> = 0.

If we solve the relations
F=Fa,,..,a,), G=0a,,..,a,)

as a,=W({F,ay...,a,), a;=TV(Ga,,..,a,)
respectively, the above equation may be written

0 0

8_t K+ —a—.’lj W = O,

o[ oW 0 ov
I+ 2 (0 ) = =2,...
ot (K 8%) t o (w 8%) 0 (2=2,..m),

0 ow ow 0 ov oV
ale (e, =)l (G| o
h K_(QT)‘ZQI‘: AR
wnere = oF = 3(1,1’ = ag> = aal.

The equations found in the previous sections are all special cases in which a,, = U
and G = UF plus a quadratic expression in a,, ..., a,_;. Then w = Uk and the other
expressions simplify. Moreover, it becomes clear why the two fourth-order problems
of §§8 and 9 must lead to essentially the same set of final equations.
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