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Abstract

Several numerical methods are employed to solve the linear shallow-water equations describing the propagation of
Poincaré waves within a one-dimensional finite domain. An analytical solution to the problem, set off by a discontinuous
steplike elevation, is known and allows for assessing the accuracy and robustness of each method and in particular their
ability to capture the traveling discontinuities without generating spurious oscillations. The following methods are imple-
mented: the method of characteristics, the Galerkin finite-element method (FEM) and the discontinuous Galerkin FEM
with two different ways of computing the numerical fluxes.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Motion in the ocean spans a very wide range of timescales. While the large-scale circulation is
characterized by velocities on the order of up to one meter per second and timescales that can be as large
as hundreds of years, the fast-propagating inertia–gravity waves exhibit phase velocities on the order of
hundreds of meters per second and much smaller timescales. Internal gravity waves propagate with veloc-
ities on the order of one meter per second or less. The vast disparity of ocean processes timescales poses a
challenge in numerical ocean modeling. If an explicit time step is used, it is limited by the so-called
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Courant–Friedrichs–Lewy (CFL) condition, which states that the time step should not be larger than the
travel time of the fastest physical process over the smallest space increment. In free surface ocean models
that allow for the existence of external inertia–gravity (Poincaré) waves, the upper bound on the time step
is far smaller than more practical time steps that would permit time integration over thousands of years on
today’s computers. The first attempt at circumventing this problem by replacing the free surface by a rigid
lid—thereby eliminating external inertia–gravity waves—has been widely dismissed. Among the rationales
for such a design are that a rigid lid distorts the properties of large-scale barotropic Rossby waves, does
not permit tidal modeling and complicates inclusion of fresh water flux surface boundary condition (Kill-
worth et al., 1991; Dukowicz and Smith, 1994; Deleersnijder and Campin, 1995; Hallberg, 1997; Higdon
and de Szoeke, 1997).

A common alternative no longer relies on the rigid-lid approximation. The ocean surface is free and
remains a prognostic variable but the governing equations are split into subsystems that model the fast
and slow motions separately. These subsystems are generally referred to as the barotropic and baroclinic
systems, respectively, or the external and internal modes, respectively. Fast motions are approximately
independent of the vertical coordinate z so that the external mode is two-dimensional and is well repre-
sented by the shallow-water equations that model the motion of fluid layers of constant density. Slow
motions are fully three-dimensional, however, but the restriction on the time step is dictated by the internal
dynamics, of which timescales are several orders of magnitude larger than that of the external mode. The
latter can be solved explicitely with small time steps or implicitely with larger time steps. Choosing an
implicit treatment eliminates the constraint imposed by the CFL condition but leads to large systems to
be solved at each time step. This choice can be made for tidal and tsunami calculations provided that a
reduced time step be used. If an explicit approach is considered for the barotropic mode, the number
of small barotropic time steps for each large baroclinic time step is roughly the ratio of barotropic iner-
tia–gravity wave speed to baroclinic internal gravity wave speed (Killworth et al., 1991). Details on mode
splitting implementations can be found in Blumberg and Mellor (1987), Hallberg (1997), Higdon and de
Szoeke (1997) and Higdon (2002).

Large-scale oceanic motions roughly obey the geostrophic equilibrium. When imbalances occur, the
geostrophic balance is restored by means of Poincaré waves. In strongly stratified seas, internal inertia–gravity
waves are generated when displacement of density surfaces occurs. Those waves respond to the same physical
mechanism as external Poincaré waves (Gill, 1982). In models allowing for the existence of inertia–gravity
waves, it is of paramount importance to represent those waves accurately. In that respect, the coupled issues
of time and space discretization ought to be focused on. Time stepping is not the subject of this paper (see e.g.,
Beckers and Deleersnijder, 1993) as we concentrate on spatial discretization. A one-dimensional benchmark
for the propagation of Poincaré waves is proposed. This problem bears many similarities with the classical
geostrophic adjustment initially studied by Rossby and further investigated by Gill (1976) for the linear part
and Kuo and Polvani (1996) for its nonlinear counterpart. In this paper, the linearized shallow-water equa-
tions, in which homogeneity is assumed in the y-direction, are solved in a domain of finite length with an initial
discontinuous elevation field. The design difference with adjustment problems lies in the finiteness of the
domain in the x-direction. Whereas in adjustment problems, an infinite domain in the x-direction is consid-
ered, we study the case of Poincaré waves propagation in a finite domain. In so doing, no end state is ever
reached and, in the absence of friction, wave propagation goes on forever within the domain. The persistence
of the discontinuities is the prominent feature of the time-dependent solution presented by Gill (1976). It also
appears in the solution to our benchmark, thereby posing a challenge for classical numerical methods to solve
the problem. A numerical method will be appraised based upon its ability to capture the traveling discontinu-
ity without generating spurious oscillations. The following methods are considered in this paper: the method
of characteristics, the Galerkin finite-element method (FEM) and the discontinuous Galerkin FEM with two
different ways of computing the numerical fluxes.

2. A one-dimensional benchmark

The linearized governing equations for a single, inviscid, homogeneous shallow layer of fluid on an f-plane
are the shallow-water equations, given by
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where u and v are the vertically averaged horizontal velocity components in the x- and y-directions, respec-
tively. The reference layer thickness is constant and denoted by h while g represents the free surface elevation.
The Coriolis parameter f is taken to be constant under the f-plane approximation. Finally, g is the gravita-
tional acceleration.

Linearization implies getting rid of advective terms and assuming that the free surface elevation be much
smaller than the constant reference depth (i.e., g� h). The disposal of advective terms is legitimate as long as
the Rossby number is much smaller than 1, in which case inertial terms are not dominant. We decide to focus
on a set of linear equations, mainly for the sake of simplicity and because we will be able to interpret the
results in the best way.

Within the frame of this work, we will further assume homogeneity in the y-direction so that all derivatives
with respect to y vanish. The domain is thus infinite in the y-direction, which reduces the problem to a one-
dimensional case. The domain remains finite in the x-direction. It should be noted that the problem we pro-
pose to solve does not consist of an adjustment problem as in Gill (1976) in which the domain is infinite—or
large enough so that it can be deemed so numerically, as explained in Kuo and Polvani (1996). In that respect,
we do not focus on the final state, which does not exist for finite domains. Instead, we study the wave prop-
agation phenomenon. Reducing the system (1) to the unique x-direction yields
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where x 2 [�L/2,L/2] and t P 0. The boundary conditions are u(x = ± L/2, t) = 0, which merely consists of
boundary impermeability. We study the time evolution of an initially motionless fluid layer with a disconti-
nuity in the elevation field. Thus, at t = 0
uðx; 0Þ ¼ vðx; 0Þ ¼ 0;

gðx; 0Þ ¼ g0sign ðxÞ ¼
�g0 if � L=2 6 x < 0;

g0 if 0 < x 6 L=2.

�

Nondimensionalization of (2) is obtained by introducing the following characteristic scales: f�1, L, g0, Lh�1fg0,
for the time, the space, the elevation and the velocities, respectively. Using the same symbols, the nondimen-
sional equations become
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We have defined a ¼
ffiffiffiffi
gh
p

fL , which is the ratio of the Rossby radius of deformation to the length scale, or a non-
dimensional Rossby radius of deformation. Note that (3)–(5) is now defined for t P 0 and x 2 [�1/2,1/2].
Boundary and initial conditions are adapted accordingly.
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2.1. Analytical solution

As a first step, we present the analytical solution to (3)–(5). Differentiation of (3) and (5) with respect to t

and x, respectively, gives rise to
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Elimination of the mixed derivative and substitution of � ov
ot by u from (4) leads to a single equation for the

zonal velocity u:
o2u
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. ð6Þ
Eq. (6) can be analytically solved using the separation of variables method. This is shown in details in Appen-
dix A. Solution to (3)–(5) is
uðx; tÞ ¼
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where coefficients Hn amount to H n ¼ 4ð�1Þn
kn

. In Fig. 1, we show the solution (7) for the elevation at different
times and compare it with Gill’s analytical solution to the adjustment problem (Gill, 1976). Solutions were
computed with a ¼

ffiffiffiffiffi
10
p

=10. Left panels of Fig. 1 show the solution within the left part of the finite domain
(x < 0). Right panels show the solution within the right part of the infinite domain (x > 0). Thus, the panels
separation is the axis x = 0. In both situations, the front moves at a speed equal to a, to the left and to the
right, for the left and right panels, respectively. As long as the front does not hit the boundary of the finite
domain, both solutions are the same (although antisymmetric). After reflection at the boundary, Poincaré
waves evolve within the finite domain. For the adjustment problem, the front keeps moving to the right, trail-
ing a wake of Poincaré waves behind it.

2.2. A hyperbolic problem

Because (3)–(5) is a system of first-order hyperbolic equations, there exist three real characteristics. We can
write the system in compact form:
A
ou
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where A, B, u and d are defined to obtain the following expression:
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In order to reduce (3)–(5) to a system of three ordinary differential equations (ODEs), we now compute the
eigenvalues and eigenvectors of the generalized problem:
ZT
i � ðB� kiAÞ ¼ 0;

detðB� kiAÞ ¼ 0



Fig. 1. Exact solution for the elevation g. Left panels show solutions for the finite domain (x < 0) and right panels show solutions for the
adjustment problem (x > 0), as provided by Gill (1976). The axis x = 0 separates left and right panels. Left panels are 0.5-unit long and
right panels are 3-unit long. The ticks on the y-axis are one unit of elevation apart, the middle one being 0. From top to bottom, solutions
are shown at t = 1, t = 5, t = 10, t = 100 and t = 1000. The parameter a is

ffiffiffiffiffi
10
p

=10.
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for which we have
k1 ¼ 0; z1 ¼ ½0 0 1�T;

k2 ¼ a; z2 ¼ ½a 1 0�T;

k3 ¼ �a; z3 ¼ ½a � 1 0�T.
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For each eigenvector zi, an ODE is obtained by computing the following expression:
Fig. 2
respec
zT
i �

d

dt
u ¼ zT

i � d.
The system of ODEs then is
d
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8>>>>>><
>>>>>>:

ð8Þ
The foregoing procedure has allowed for transforming the system of partial differential Eqs. (3)–(5) into the
system of ODEs (8) in the characteristic variables v, ag + u and ag � u. Each ordinary differential equation is
written on a characteristic curve (x(t), t) defined by dx

dt ¼ ki, where k1 = 0, k2 = a and k = �a, for the first, sec-
ond and third ODE. Because the position is dependent on time, only time integration needs be performed to
compute the characteristic variables, as long as we remain located on the associated characteristic curve.

3. Analysis of some numerical methods

From our standpoint, the main interest of this problem lies in its ability to be a benchmark for numerical
methods. Therefore, we may compare the accuracy and robustness between several numerical techniques to
solve (3)–(5). The difficulty in solving these equations lies in the presence of the discontinuity. Any numerical
scheme ought to be assessed based upon its ability to capture this discontinuity without generating spurious
oscillations. In this section, we present the following methods: the method of characteristics, the Galerkin
finite-element method (FEM), the discontinuous Galerkin FEM and the discontinuous Riemann–Galerkin
FEM. All numerical experiments were conducted with f = 10�4 s�1, g = 10 m s�2, h = 100 m, L = 106 m,
g0 = 1 m, leading to a ¼

ffiffiffiffiffi
10
p

=10.

3.1. Method of characteristics

Classical finite difference schemes may now be employed to solve (8), for which we are constrained to use a
time step and a spatial increment satisfying Dx

Dt ¼ a, as suggested in Fig. 2. For the sake of clarity, let us define
the characteristic variables w G ag + u and q G ag � u. A forward Euler stencil applied to (8) yields
. Time integration must be performed along characteristics. Indices k and n identify space and time discretization points,
tively.
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where all information at time step n has been taken along appropriate characteristics.
The essence of the method of characteristics resides in its ability to carry the information along character-

istics, which allows to focus solely on time integration. Therefore, we expect the method to be able to capture
the traveling discontinuity at any time step provided that the time integration be sufficiently accurate. This
issue is illustrated in Fig. 3, where the forward Euler and the second-order Runge–Kutta stencils have been
used with Dt = 0.01. The solution for the elevation g is compared with the exact solution at dimensionless time
t = 200. Notice how the approximate solution obtained with the first-order Euler scheme captures the discon-
tinuity at the right location but is highly inaccurate overall. The second-order Runge–Kutta method performs
much better, with an L2-norm that is more than 20 times smaller. To assess the extra computational cost
incurred by the use of the second-order Runge–Kutta method, a run with 400,000 time steps (Dt = 0.001)
has been carried out with both methods. The forward Euler integration yields the solution after 54 s while
the second-order Runge–Kutta integration does so after 83 s. Hence, there is roughly a 50% extra computa-
tional cost in using the latter method. It should be borne in mind that, however efficient the method of char-
acteristics may be for this benchmark, a major drawback lies in the fact that such an approach cannot be
straightforwardly extended to two-dimensional computations.

3.2. Continuous Galerkin

The continuous Galerkin method is the simplest of the considered methods to implement in two and three
dimensions. A variational formulation can be derived by first time-discretizing (3)–(5). Each resulting equation
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unge–Kutta method (bottom) with a time step of Dt = 0.01. The solid line represents the exact solution. The circles represent the

imate solution at grid points.
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is then mutliplied by a test function (symbolized by a hat) and integrated over the entire domain X = [�1/2,
1/2]. If a so-called h-scheme is employed for time discretization, the variational formulation consists in finding
unþ1 ¼ ðunþ1; vnþ1; gnþ1Þ 2 U ¼ ðU;V;EÞ such that
Z
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ð10Þ
where an+h = han+1 + (1 � h)an and h is an adjustable parameter that allows for choosing between time
schemes. The so-called Crank–Nicolson scheme is obtained with h = 0.5. Note that un, vn and gn denote the
functions evaluated at the previous time step and live in the same functional spaces as the unknowns. That
is to say, a finite-element problem is solved at each time step. We may also consider using the following alter-
native scheme that likens the classical forward–backward scheme, in which case a variational formulation
consists in finding unþ1 2 U such that
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where gn+1 is first computed from the continuity equation and used in the subsequent calculation of
(un+1,vn+1). The Coriolis term is treated semi-implicitely in both formulations so as to not artificially generate
nor dissipate energy, which complies with the fact that no work is done by the Coriolis force. In formulations
(10) and (11), un+1 and û ¼ ðû; v̂; ĝÞ belong to suitable infinite-dimensional function spaces. Each variable an+1

is approximated as follows
anþ1 ’ anþ1
h ¼

XN

j¼1

Anþ1
j /jðxÞ;
where Anþ1
j are the nodal values and /j are the polynomial basis functions. The approximation

unþ1
h ¼ ðunþ1

h ; vnþ1
h ; gnþ1

h Þ 2 Uc
h ¼ ðUc

h;V
c
h;E

c
hÞ, which are finite-dimensional subspaces of ðU;V;EÞ. Note that

the superscript c stands for continuous. Following the notation by Hughes et al. (2000), the test functions û are
similarly approximated by ûh ¼ ðûh; v̂h; ĝhÞ 2cUc

h ¼ ð bUc
h;
cVc

h;
bEc

hÞ, which are finite-dimensional subspaces ofcU ¼ ð bU;cV; bEÞ. Linear approximations are used for the test functions and for all variables for the sake of sim-
plicity and for an easier interpretation. Hence, unþ1

h and ûh are continuous across X, and piecewise linear over
each element Xe. We bear in mind, however, that pressure modes may appear in two and three dimensions when
the same interpolant order is used for the velocity and the elevation. Experiments with quadratic elements for
the velocity and linear elements for the elevation, as well as linear elements for the velocity and constant
elements for the elevation, have been conducted. The conclusions are the same as those presented hereafter.

In Fig. 4, we show the elevation field obtained at time t = 2 using the forward–backward scheme. Spurious
oscillations pollute the 100-element and the 400-element approximations. Experiments with finer meshes have
been carried out and no improvement is brought about by the use of smaller element sizes. Nevertheless, if we
set off the time integration with a smoother initial condition, the use of smaller elements eliminates spurious
oscillations. In that respect, a hyperbolic tangent profile has been chosen for the initial elevation field, that is,
gðx; 0Þ ¼ tanhðRxÞ; ð12Þ
where R, the steepness parameter, controls how steep the transition is between �1 and 1. The larger R, the
closer this initial condition will be to the sign function. The foregoing experiments have been repeated with
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Fig. 4. The Galerkin finite-element approximations at dimensionless time t = 2 with 100 elements (top) and 400 elements (bottom) when
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the hyperbolic tangent initial condition (12), with a steepness parameter R = 100, and results are shown in
Fig. 5. Note that in the case of a hyperbolic tangent initial elevation field, coefficients Hn that appear in
the exact solution (7) must be numerically evaluated.
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Fig. 5. The Galerkin finite-element approximations at dimensionless time t = 2 with 100 elements (top) and 400 elements (bottom) when a
hyperbolic tangent profile is used for the initial elevation field (R = 100). The time step is 0.001. The solid line is the exact solution.



110 L. White et al. / Ocean Modelling 15 (2006) 101–123
The assessment of the finite-element scheme is not trivial because it includes both time and space discret-
izations. We do not wish to go into details regarding time discretization techniques in this paper and for the
convergence analysis only the forward–backward (FB) scheme has been explored. A comparison between
approximate and exact solutions at dimensionless time t = 1 was performed on gradually refined uniform
meshes. It is reported in Section 3.5.

3.3. Discontinuous Galerkin

The discontinuous Galerkin method (DGM) provides an appealing approach to address problems having
discontinuities. Another advantage of the DGM is that it is inherently locally conservative while continuous
Galerkin methods are locally conservative provided that subsequent postprocessing be carried out (Hughes
et al., 2000). A broad review may be found in Cockburn et al. (2000). In the DGM, the solution is a piece-
wise-continuous function relative to a mesh (Flaherty et al., 2002). As such, it is not required that the sought
solution assume the same value at each physical mesh node because two computational nodes belong to the
same physical node (in a one-dimensional mesh—see Fig. 6). This property provides more flexibility in repre-
senting steep gradients and discontinuities. A steplike initial condition for the elevation field will be exactly
represented, which is not the case with continuous methods.

In continuous finite-element methods, two neighboring elements share a common computational node.
This common node allows information to be conveyed from one element to its neighbor. In discontinuous
methods, all the nodes lie in their respective element so that, a priori, there is no transfer of information
between neighboring elements. One has to keep that in mind when deriving the weak formulation. In that
respect, the weak formulation (11) will be altered in such a way that neighboring elements are able to exchange
information between them. As for the continuous case, a variational formulation is obtained from the time-
discretized equations. For the forward–backward scheme, the problem consists in finding un+1 in U such that
Fig. 6.
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û

� �
dxþ

XNe

e¼1
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ĝ

� �
dxþ

XNe

e¼1
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One-dimensional mesh for the discontinuous Galerkin method: there are two computational nodes (i.e., two nodal values, U�i and
each physical node, Xi.
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where Ne is the number of elements. An approximation unþ1
h ¼ ðunþ1
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d
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d
hÞ, which are finite-dimensional subspaces of U. The d superscript stands for discontinuous.
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hÞ, which are finite-
dimensional subspaces of cU. As for the Galerkin method, a linear approximation is used for the test functions
and all variables. However, because the discontinuous Galerkin method is employed here, the finite-dimen-
sional subspaces Ud

h and cUd
h allow discontinuities across elements:
Ud
h ¼cUd

h ¼ fv 2 L2ðXÞ j vjXe 2 P 1ðXeÞg3
;

where P1(Xe) is the set of linear polynomials on element Xe. Note that the following relationships hold for finite-
dimensional subspaces of the Galerkin and discontinuous Galerkin methods: Uc

h � Ud
h � U andcUc

h �cUd
h �cU. The role of S1 and S2 in the first and third equations is to weakly enforce continuity of gn+1

and un+1, respectively. The vertical bars indicate that expressions must be evaluated along the boundary of
element Xe, that is at the extremities of element Xe for one-dimensional problems. The function aðûÞ is defined
as
aðûÞ ¼: k� 1

2
signðn̂Þ

� �
û;
where n̂ is the outward-pointing normal at each element boundary oX. The interelement jump in the nodal
values at a given physical node is defined as ½unðX iÞ� ¼ U�i � Uþi . The parameter k 2 [�1/2,1/2] is tunable
in the sense that it allows for the interelement jump to be weighted. For example, the jump [un] evaluated
at the physical node Xi in Fig. 6 is weighted by (k � 1/2) on computational node i� and by (k + 1/2) on com-
putational node i+, given that the signs of the normal n̂ at nodes i� and i+, are +1 and �1, respectively. A
centered scheme is obtained by choosing k = 0, in which case no preference is given to any of the nodes i�

or i+. For transport problems, it is common to give more weight to node i+ (or node i�) if the advective flux
is known to travel from left to right (respectively from right to left). As in Hanert et al. (2004), an alternative
formulation can be derived by integrating the spatial derivatives by parts. In so doing, (13) expands to
XNe

e¼1

Z
Xe

unþ1 � un

Dt
û� 1

2
ðvnþ1 þ vnÞû� a2gnþ1 oû

ox

� �
dx

þ a2
XNv

i¼1

fhgnþ1ðX iÞi½ûðX iÞ� þ ½gnþ1ðX iÞ�hûðX iÞig þ a2
XNv

i¼1

½aðûðX iÞÞ�½gnþ1ðX iÞ� ¼ 0;

XNe

e¼1

Z
Xe

vnþ1 � vn

Dt
v̂þ 1

2
ðunþ1 þ unÞv̂

� �
dx ¼ 0;

XNe

e¼1

Z
Xe

gnþ1 � gn

Dt
ĝ� un oĝ

ox

� �
dx

þ
XNv

i¼1

fhunðX iÞi½ĝðX iÞ� þ ½unðX iÞ�hĝðX iÞig þ
XNv

i¼1

½aðĝðX iÞÞ�½unðX iÞ� ¼ 0;

ð14Þ
where Nv is the number of physical nodes and hf(Xi)i denotes the average of f at Xi, that is
hf ðX iÞi ¼
1

2
ðf ðX�i Þ þ f ðXþi ÞÞ.
By combining all the terms involved in the summations, the foregoing formulation reduces to
XNe

e¼1

Z
Xe

unþ1 � un

Dt
û� 1

2
ðvnþ1 þ vnÞû� a2gnþ1 oû

ox

� �
dxþ a2

XNv

i¼1

hgnþ1ðX iÞik½ûðX iÞ� ¼ 0;

XNe

e¼1

Z
Xe

vnþ1 � vn

Dt
v̂þ 1

2
ðunþ1 þ unÞv̂

� �
dx ¼ 0;

XNe

e¼1

Z
Xe

gnþ1 � gn

Dt
ĝ� un oĝ

ox

� �
dxþ

XNv

i¼1

hunðX iÞik½ĝðX iÞ� ¼ 0;

ð15Þ
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where hf(Xi)ik is the weighted average of f at Xi, defined as
Fig. 7.
t = 2 w
hf ðX iÞik ¼
1

2
þ k

� �
f ðX�i Þ þ

1

2
� k

� �
f ðXþi Þ.
In Appendix B, we show how formulations (14) and (15) are derived.
The discontinuous finite-element formulation (13) has been used to solve our benchmark problem with 100

and 400 elements. Results are shown in Fig. 7 where approximate and exact solutions are compared at t = 2. A
centered scheme is employed here (k = 0). Severe oscillations pollute the solutions. The classical forward–
backward time scheme is employed for better stability properties when boundary terms S1 and S2 are
involved. In Fig. 8, the top panel reproduces the 400-element solution with k = 0 while the bottom panel
shows the solution obtained with k = 0.001. Hence, Fig. 8 permits to compare a centered and a slightly off-
centered scheme. The aim of these numerical experiments is twofold. Firstly, we wish to verify whether weakly
enforcing continuity on uh and gh ensures stability of the formulation (13). Secondly, we would like to lower
the level of arbitrariness associated with the weak enforcement of continuity by appraising the sensitivity of
the parameter k. Looking at Fig. 8, we see that both choices for k—the centered and the slightly off-centered
schemes—do no prevent spurious oscillations. Moreover, the off-centered scheme makes it even worse,
suggesting the importance of symmetry in the problem. Other experiments have been performed to test higher
values (as well as negative values) of k, only to further conclude that k = 0.0 gives rise to the least severe oscil-
lations. In Fig. 9, we show how the solution behaves when the hyperbolic tangent (12) is used as initial
condition (with R = 100). The same experiment as with the continuous Galerkin method has been conducted
here. Fig. 9 is to be compared with Fig. 5 showing the solution obtained with the continuous Galerkin method.
The latter clearly outperforms the DGM. The presence of spurious oscillations for all values of k suggests that
the wrong field is upwinded. The following question thus arises: What variables should we weakly enforce the
continuity of?
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Discontinuous Galerkin finite-element approximation with 100 elements (top) and 400 elements (bottom) at dimensionless time
ith a steplike initial condition. The time step is 0.001. Continuity is weakly enforced using k = 0.0.
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Fig. 8. Discontinuous Galerkin finite-element approximation with 400 elements at dimensionless time t = 2 with a steplike initial
condition. The time step is 0.001. Continuity is weakly enforced using k = 0.0 (top) and k = 0.001 (bottom).
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Fig. 9. The discontinuous Galerkin finite-element approximations at dimensionless time t = 20 with 100 elements (top) and 400 elements
(bottom) when a hyperbolic tangent profile is used for the initial elevation field (R = 100). The time step is 0.001 and continuity is weakly
enforced with k = 0. The solid line is the exact solution.
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3.4. Discontinuous Riemann–Galerkin

To answer the previous question, a closer look at the way information is propagating is advisable. Since
information is carried along characteristic curves by characteristic variables, a better approach would be to
enforce continuity of those very variables that transport information. In addition, we know the direction of
propagation of those variables so that weighting can adequately be adapted. This approach is commonly
referred to as a Riemann solver (Roe, 1981; Schwanenberger and Kongeter, 2000; Cockburn and Shu,
2001; Remacle et al., submitted for publication). A variational formulation similar to (13) may be derived.
The difference will lie in the way continuity is enforced. The problem consists in finding uh in U such that
XNe

e¼1

Z
Xe

unþ1 � un

Dt
û� 1

2
ðvnþ1 þ vnÞûþ a2 ognþ1

ox
û

� �
dx

þ
XNe

e¼1

jaðûÞ½aun þ a2gnþ1�joXe
þ
XNe

e¼1

jbðûÞ½aun � a2gnþ1�joXe
¼ 0 8û 2 bU;

XNe

e¼1

Z
Xe

vnþ1 � vn

Dt
v̂� 1

2
ðunþ1 þ unÞv̂

� �
dx ¼ 0 8v̂ 2 cV;

XNe

e¼1

Z
Xe

gnþ1 � gn

Dt
ĝþ oun

ox
ĝ

� �
dx

þ
XNe

e¼1

jaðĝÞ½agn þ un�joXe
þ
XNe

e¼1

jbðĝÞ½agn � un�joXe
¼ 0 8ĝ 2 bE;

ð16Þ
where functions aðûÞ and bðûÞ are defined as follows:
aðûÞ ¼: 1

2

1

2
� k sign ðn̂Þ

� �
û;

bðûÞ ¼: 1

2

1

2
þ k sign ðn̂Þ

� �
û;
where we usually take k = 1/2. Again, an alternative formulation can be obtained by integrating the spatial
derivatives by parts and combining the sums, as we have achieved for the previous DG formulation. It can
be shown that (16) is equivalent to
XNe

e¼1

Z
Xe

unþ1 � un

Dt
û� 1

2
ðvnþ1 þ vnÞû� a2gnþ1 oû

ox

� �
dx

þ 1

2
a
XNv

i¼1

½ûðX iÞ�fðagnþ1ðX�i Þ þ unðX�i ÞÞ þ ðagnþ1ðXþi Þ � unðXþi ÞÞg

þ ð1� 2kÞ
XNv

i¼1

½a2gnþ1ðX iÞ�hûðX iÞi ¼ 0;

XNe

e¼1

Z
Xe

vnþ1 � vn

Dt
v̂þ 1

2
ðunþ1 þ unÞv̂

� �
dx ¼ 0;

XNe

e¼1

Z
Xe

gnþ1 � gn

Dt
ĝ� un oĝ

ox

� �
dx

þ 1

2

XNv

i¼1

½ĝðX iÞ�fðagnðX�i Þ þ unðX�i ÞÞ � ðagnðXþi Þ � unðXþi ÞÞg

þ ð1� 2kÞ
XNv

i¼1

½unðX iÞ�hĝðX iÞi ¼ 0.

ð17Þ
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Setting k = 1/2 further reduces the foregoing formulation and we obtain
XNe

e¼1

ntXe

unþ1 � un

Dt
û� 1

2
ðvnþ1 þ vnÞû� a2gnþ1 oû

ox

� �
dx

þ 1

2
a
XNv

i¼1

½ûðX iÞ�fðagnþ1ðX�i Þ þ unðX�i ÞÞ þ ðagnþ1ðXþi Þ � unðXþi ÞÞg ¼ 0;

XNe

e¼1

Z
Xe

vnþ1 � vn

Dt
v̂þ 1

2
ðunþ1 þ unÞv̂

� �
dx ¼ 0;

XNe

e¼1

Z
Xe

gnþ1 � gn

Dt
ĝ� un oĝ

ox

� �
dx

þ 1

2

XNv

i¼1

½ĝðX iÞ�fðagnðX�i Þ þ unðX�i ÞÞ � ðagnðXþi Þ � unðXþi ÞÞg ¼ 0.

ð18Þ
Formulation (18) is elegant. In the first equation, the summation involves an average of characteristic vari-
ables at each physical node Xi. In particular, the average is computed by taking the characteristic variables
ag + u and ag � u at nodes X�i and Xþi , which merely reflects the way information propagates. A similar com-
ment can be made on the third equation where jumps of characteristic variables make up the summation.

Now, to understand the seemingly complicated formulation (16), let us evaluate the expressions that weakly
enforce continuity of the characteristic variables. We focus on the first equation and assume û ¼ /�i , that is the
shape function associated with computational node i�. We further assume that the shape function is evaluated
at node X�i . The outward-pointing normal is +1 so that the functions a and b take on the following
expressions
að/�i Þ ¼
1

2
ð1=2� kÞ;

bð/�i Þ ¼
1

2
ð1=2þ kÞ
and the expression associated with node i� is
1

2
ð1=2� kÞ½aun þ a2gnþ1� þ 1

2
ð1=2þ kÞ½aun � a2gnþ1�.
If we take k = 1/2, the latter expression simply becomes 1
2
½aun � a2gnþ1�. Concretely, this is what has to be

added to row i� of the linear system. The same reasoning applied to node i+ (i.e., shape function /þi ) gives
rise to 1

2
½aun þ a2gnþ1�. One can see that in both expressions, a linear combination of one of the characteristic

variables is involved. The jump of a(u � ag) is associated with node i� while the jump of a(u + ag) is associated
with node i+. This pattern consistently translates the way information is conveyed. So as to compare with the
previous discontinuous method, the same experiment has been performed (a 400-element mesh and a solution
analyzed at t = 2) with the Riemann–Galerkin formulation (16). Results are shown in Fig. 10, where the supe-
riority of the Riemann–Galerkin formulation is manifest when compared with Fig. 7. Let us emphasize that
the quality of the approximate solution suffers from numerical dissipation when long time integration is per-
formed, a trend already observed by Kuo and Polvani (1996) with their shock-capturing numerical methods.
This effect is illustrated in Fig. 11 where the approximate solution is unable to capture higher-frequency
features that make up the exact solution. Higher-order time discretization schemes should be able to tackle
this problem, though, and it is indispensable to investigate the effect of such techniques on the accuracy.

3.5. Comparison between methods

Before comparing methods, it is of interest to assess the convergence rate of each of them by computing the
L2-norm of the error on gradually refined meshes. The time step used in the following experiments is very
small in order for the time discretization error to be negligible in contrast to the space discretization error.
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Fig. 10. Discontinuous Riemann–Galerkin finite-element approximation with 100 elements (top) and 400 elements (bottom) at
dimensionless time t = 2 with a steplike initial condition. The time step is 0.001.
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Fig. 11. Discontinuous Riemann–Galerkin finite-element approximation with 300 elements at dimensionless time t = 200 with a steplike
initial condition. The time step is 0.002.
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A time step of Dt = 10�5 is used and the error at time t = 1 is computed. Meshes containing 25, 50, 100, 200
and 400 elements are used. The results of the convergence analysis are reported in Fig. 12. The hyperbolic
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Fig. 12. L2-norm (kekX) of the error in the elevation g on gradually refined meshes for the three FEM with the hyperbolic tangent initial
condition (R = 10) at t = 1. Notice the second-order rate of convergence obtained with the Galerkin and discontinuous Riemann–
Galerkin methods while the discontinuous Galerkin method yields a first-order rate. The dotted lines represent least-square
approximations to experimental errors. The error is plotted versus the number of elements.
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tangent initial condition may be used to compare the three methods for different values of the steepness
parameter. Results are shown on the top graph of Fig. 13 where we can observe that for smooth initial con-
ditions, the Galerkin method performs the best while for sharp initial conditions, the discontinuous Riemann–
Galerkin method yields the best approximation. It should be pointed out, though, that the errors remain close
to one another and that none of the methods could be immediately ruled out based upon this quantitative
analysis. Moreover, the gap between the errors obtained for sharp initial conditions does not increase when
using higher-resolution meshes. The bottom graph of Fig. 13 shows the L2-norm of the error computed on
the restricted domain Xr = [�0.25,0.25] that does not contain any of the discontinuities, as can be seen in
Fig. 4. In so doing, the error for the discontinuous Riemann–Galerkin method remains very close to 10�4

while it increases up to 10�2 for the two other methods. This behavior is caused by the spreading of spurious
oscillations toward the inner part of the domain, where the solution should remain smooth. These oscillations
do not exist for the discontinuous Riemann–Galerkin method, thereby leading to an error that is two orders of
magnitude smaller for sharp initial conditions. A last comment may be made regarding the use of the L2-norm.
The latter may be misleading in the sense that, by examining the top graph of Fig. 13, we are tempted to con-
clude that all methods are equivalent for sharp initial conditions. This is untrue and the problem is that the
error is closely concentrated around the discontinuities for the discontinuous Riemann–Galerkin method (and
reaches about 10�2) while it remains as low as 10�4 away from the discontinuities. By contrast, as we can
observe on the bottom graph of Fig. 13, the error reaches 10�2 away from the discontinuities for the Galerkin
and discontinuous Galerkin methods.

In Fig. 14, the Galerkin and the discontinuous Riemann–Galerkin FEM are compared when solving the
same problem with different mesh resolutions, starting at 0.1 and increasing it to 0.02 and 0.005. For the
discontinuous Riemann–Galerkin method, using a coarse mesh does not produce spurious oscillations, even
though high-frequency features are filtered out due to numerical dissipation. The same experiment has been
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Fig. 13. The top graph shows the L2-norm of the error in the elevation g on a mesh containing 100 uniform elements for increasing
steepness parameter R with the hyperbolic tangent initial condition at t = 2. The bottom graph differs from the top graph in the calculation
of the error: the error is computed on the restricted domain Xr = [�0.25,0.25] that does not contain any of the discontinuities. The same
symbols are used for both graphs. The bottom graph shows that for the Galerkin and discontinuous Galerkin methods, oscillations spread
out to reach the inner region while the latter remains devoid of spurious oscillations for the discontinuous Riemann–Galerkin method.
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carried out with the continuous Galerkin FEM, only to conclude that oscillations that characterize the method
amplify when the resolution decreases. They do, however, remain finite. Note that no stabilization whatsoever
has been used for the continuous Galerkin method so that care must be taken when comparing the latter with
the Riemann–Galerkin method where characteristic variables are upwinded. As a final note, it must be
stressed that such high resolutions as those previously employed are never used in large-scale ocean models.
This is why the last experiment, carried out on low-resolution meshes, was presented. Namely to highlight the
usability of the discontinuous Riemann–Galerkin method on low-resolution meshes. Nevertheless, it must be



Fig. 14. Comparison of the Galerkin and the discontinuous Riemann–Galerkin FEM at time t = 20 for a time step of 0.001. Left and right
panels are the solutions for the Galerkin and the discontinuous Riemann–Galerkin method, respectively. The first, second and third rows
show results for meshes containing 10 (h = 0.1), 50 (h = 0.02) and 200 (h = 0.005) elements. The bottom graph is the exact solution.
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stressed that the use of discontinuous methods implies increasing the number of unknowns compared with
continuous methods on meshes having the same resolution.
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Finally, another way of comparing the three finite-element methods is to determine the CFL condition for
each of them. A von Neumann stability analysis allows to find—after quite tedious and lengthy computa-
tions—the maximum Courant number C = aDt/Dx that guarantees numerical stability. For the continuous
Galerkin method, we have C 6 2

ffiffiffi
3
p

=3 ’ 1:15. For the discontinuous Galerkin method—that involves the
determinant of a 6-by-6 matrix—we have C 6 0.5. Finally, the discontinuous Riemann–Galerkin method
yields the following condition: C 6 0.2564. The latter was determined numerically while the first two were
determined analytically.
4. Conclusions

A benchmark for the propagation of Poincaré waves within a one-dimensional finite domain has been pro-
posed and a comparison between four numerical methods to resolve it has been accomplished. The use of a
steplike—and thus discontinuous—initial elevation field makes it challenging for numerical techniques to cap-
ture the traveling discontinuity without spawning spurious oscillations. Because the equations describing the
physics of the problem are hyperbolic, the method of characteristics is a suitable way of solving for the wave
propagation. If a sufficiently accurate time scheme is employed, this technique is able to solve the benchmark
very satisfyingly.

More commonly used numerical methods were then presented. In the considerations that follow, we bear
in mind that the issue of time discretization must be thoroughly investigated as well. As we already said it,
this was not the subject of this work. The classical continuous Galerkin FEM has difficulties capturing steep
gradients, let alone discontinuities. This was revealed by the experiment carried out with the hyperbolic tan-
gent initial elevation field. Increasing the number of elements is not really a solution by itself, for an infinite
number is necessary to resolve the discontinuity. In that respect, the discontinuous Galerkin (DG) method is
appealing for its ability to exactly represent discontinuities. However, this may constitute an asset as much as
a drawback in the sense that one has to carefully choose the variable of which continuity is weakly enforced.
That statement is illustrated by comparing the classical DG method and the so-called discontinuous
Riemann–Galerkin (DRG) method. In the former, we enforce continuity of the variables whose spatial
derivatives appear in the formulation. Usual DG schemes where upwind weighting is naively applied to
the primitive variables (velocity and elevation) appear to poorly perform for all values of k. It is then man-
datory to impose the continuity of suitable combinations of the primitive variables. It is well known that
enforcing the weak continuity of the so-called Riemann variables would perform quite better. Such an
approach is known as the DG method with a Riemann solver and its numerical performances have been
well documented in the literature (Roe, 1981; Schwanenberger and Kongeter, 2000; Cockburn and Shu,
2001; Flaherty et al., 2002; Remacle et al., submitted for publication). In the one-dimensional framework,
this established method is presented as the DG formulation expressed in terms of Riemann variables. The
main contribution of this benchmark is to show that the one-dimensional counterpart of the DGM with
a Riemann solver is the optimal technique. However, as it is quite impossible to extend the method of char-
acteristics to 2D and 3D cases, the definition of Riemann variables in higher dimensions is not obvious and
the classical approach consists in considering a simplified version of the one-dimensional Riemann problem
along the normal direction of each segment. Therefore, our conclusion is that the natural 2D or 3D exten-
sion of the DRG technique already exists and this paper only shows that its 1D counterpart leads to a very
intuitive and physical scheme.

The continuous Galerkin and the discontinuous Galerkin methods can be both easily extended in higher
dimensions without too much effort and the extensions of our results can be immediately derived. This bench-
mark appears to be very illustrative of the numerical behavior of wave propagation problems that model the
barotropic systems of ocean models.
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Appendix A. Analytical solution

The solution to (6) on [0,1], subject to an arbitrary initial condition on the elevation, say g0(x), is developed
herein. Using the method of separation of variables, we define u(x, t) to be
uðx; tÞ ¼ F ðxÞT ðtÞ;

so that replacing u by that product into (6) yields
T 00F þ TF ¼ a2TF 00
or
T 00

T
¼ a2 F 00

F
� 1 ¼ C;
where C is a constant expressing the fact that both sides of the first equality must not depend upon neither x

nor t. The solution to the time-dependent part, T(t), must be of the form
T ðtÞ ¼ A sinðxtÞ

to account for the initial condition on u. Note that the constant C is deemed negative to avoid growing expo-
nential-type solutions in time. By twice differentiating T, the constant C is found to be: C = �x2. The space-
dependent part, F(x), obeys
F 00 ¼ x2 � 1

a2
F ;
where it is required that x2 > 1 to avoid an exponential dependence on x, which could not satisfy the boundary
conditions. For the same reason, solutions involving cosine cannot exist. Thus, we have
F ðxÞ ¼ B sinðkxÞ;

where k2 ¼ x2�1

a2 . Now, to satisfy both boundary conditions, we must have k = kn = (2n � 1)p, which con-

strains x to x ¼ xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

n

q
. Combining the time and space dependences, the velocity u(x, t) is given

by an infinite sum of those harmonics:
uðx; tÞ ¼
X1
n¼1

Dn sinðxntÞ sinðknxÞ; ð19Þ
where the constant Dn is to be determined. To do so, we may write Eq. (3) at t = 0:
a2 og
ox
¼ � ou

ot
¼ �

X1
n¼1

Dnxn sinðknxÞ.
This equality is satisfied provided that the initial elevation field g0(x) take the following form
g0ðxÞ ¼
X1
n¼1

Hn cosðknxÞ;
where the coefficients Hn are given by
Hn ¼ 2

Z 1

0

g0ðxÞ cosðknxÞdx. ð20Þ

http://www.astr.ucl.ac.be/SLIM
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Thus, for each n, we have
Dn ¼
a2kn

xn
H n
and the final expression for u(x, t) is
uðx; tÞ ¼
X1
n¼1

H n
a2kn

xn
sinðxntÞ sinðknxÞ. ð21Þ
Now that u(x, t) is known, we may seek the expression for v(x, t) by using Eq. (4) and the initial condition
v(x, 0) = 0, which yields
vðx; tÞ ¼
X1
n¼1

H n
a2kn

xn
½cosðxntÞ � 1� sinðkntÞ. ð22Þ
Finally, the elevation field g(x, t) is easily inferred from Eq. (3). A few algebraic manipulations lead to
gðx; tÞ ¼
X1
n¼1

H n cosðknxÞ 1� a2k2
n

x2
n

½1� cosðxntÞ�
� �

. ð23Þ
Depending on the initial condition, an analytical expression can be found for Hn. For the sign function, coef-
ficients Hn amount to
H n ¼
4ð�1Þn

kn
.

Appendix B. Derivation of the variational formulation for the DGM

We focus on the continuity equation to show how formulations (14) and (15) are derived. Integration by
parts of the term involving the spatial derivative generates an extra term, as shown hereafter:
XNe

e¼1

Z
Xe

oun

ox
ĝdx ¼ �

XNe

e¼1

Z
Xe

un oĝ
ox

dxþ
XNe

e¼1

junĝjoXe
. ð24Þ
The last sum of (24) may be expanded so that the index now runs on physical nodes:
XNe

e¼1

¼ junĝjoXe

XNv

i¼1

funðX�i ÞĝðX�i Þ � unðXþi ÞĝðXþi Þg ¼
XNv

i¼1

fhunðX iÞi½ĝðX iÞ� þ ½unðX iÞ�hĝðX iÞig; ð25Þ
where h(fXi)i and [f(Xi)] are the average and jump of f at physical node Xi, defined as
hf ðxiÞi ¼
1

2
ðf ðX�i Þ þ f ðXþi ÞÞ;

f ðX iÞ½ � ¼ f ðX�i Þ � f ðXþi Þ.
The last sum of (25) is obtained from the following equality:
ac� bd ¼ 1

2
ðaþ bÞðc� dÞ þ 1

2
ða� bÞðcþ dÞ.
Next, the sum S2 in (13) may be rewritten so as to run on physical node indices as well. We have
XNe

e¼1

jaðĝÞ½un�joXe
¼
XNe

e¼1

aðĝðX�eþ1ÞÞ½unðX eþ1Þ� � aðĝðXþe ÞÞ½unðX eÞ� ¼
XNv

i¼1

½aðĝðX iÞÞ�½unðX iÞ�. ð26Þ
Combining (24)–(26) yields formulation (14). Finally, we arrive at formulation (15) by putting together both
sums. That is, we can write
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XNv

i¼1

hunðX iÞi½ĝðX iÞ� þ ½unðX iÞ�hĝðX iÞi þ ½aðĝðX iÞÞ�½unðX iÞ�

¼
XNv

i¼1

hunðX iÞi½ĝðX iÞ� þ ½unðX iÞ� hĝðX iÞi þ k� 1

2

� �
ĝðX�i Þ � kþ 1

2

� �
ĝðXþi Þ

� �

¼
XNv

i¼1

hunðX iÞi½ĝðX iÞ� þ ½unðX iÞ�k½ĝðX iÞ� ¼
XNv

i¼1

½ĝðX iÞ�hunðX iÞik; ð27Þ
where hf(Xi)ik is a weighted average:
hf ðX iÞik ¼
1

2
þ k

� �
f ðX�i Þ þ

1

2
� k

� �
f ðXþi Þ.
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