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 THE STOCHASTIC CAUSTIC*

 B. S. WHITEt

 Abstract. The propagation of a high frequency initially plane wave through a homogeneous and
 isotropic random medium with small, order O(a), fluctuations in index of refraction is investigated using
 geometrical optics. It is shown that caustics occur along every ray in a distance scale of order O(o-2/3a)
 where a is the correlation length of the medium. On this scale the ray angle deviations are small, of order
 0(0.2/3), while the ray position deviates 0(1) from its deterministic value. Furthermore, it is shown that

 if t = y 113s where s is arclength along a ray,

 ly = 2 J dr(- a-)R (r),

 and R (r) is the correlation function of the medium, then as a function of t the probability density of
 distance to first caustic is as a -+ 0 a universal curve, with no free parameters and thus does not depend
 on the detailed statistics of the random medium. For small values of t this density is given by the asymptotic

 formula f(t) (a1/t4) exp {-a2/t3}, with a,= 1.7399+, a2 =.6565+. These results parallel results of V.
 Kulkarny and B. S. White for two-dimensional random media, where the analogous small t formula has
 been shown.to be valid into the initial region of caustic formation, and may thus be used to determine, in
 an experimental situation, whether or not caustic formation is likely.

 1. Introduction. In [1] the propagation of high frequency waves or weak shocks
 in a two-dimensional medium with small statistically homogeneous and isotropic
 random inhomogeneities was investigated using geometrical optics. It was shown that

 despite the assumed smallness, of order O(o), of the index of refraction fluctuations,
 a plane wave propagating long distances, of order O(o-213a), where a is the medium
 correlation length, will develop singular amplitudes, or caustics. Furthermore the
 probability distribution of the distance along a ray to first caustic formation is given,
 for small o-, by a universal curve; that is, under general hypotheses, the detailed
 statistics of the random medium are irrelevant to the form of the caustic probability
 curve, contributing only a single scale factor computable from the medium correlation
 function.

 Recently, the two-dimensional theory has been verified by the Monte-Carlo

 simulations of Hesselink [2], who has experimentally reproduced the universal caustic
 formation curve with the predicted scale factor.

 In this paper, the main results of [1] will be extended to treat the fully three-
 dimensional problem. It is assumed that the normalized propagation speed (reciprocal
 of the index of refraction) is of the form

 (1 . 1)(x) + c )

 where 0 < o- << 1, and C is a mean zero homogeneous and isotropic random field, with
 correlation function

 (1.2) R(Ix|) =E[c(x )c(x+x)].

 Then, if

 (1.3) Y/2= 21 (1 R (r)d
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 128 B. S. WHITE

 and

 (1.4) t = (0y2) 23s,

 where s is arclength along a ray, then the probability density of distance to first caustic,

 written as a function of t, is asymptotically as o- -- 0 a universal curve. For small values

 of t this curve takes the simple form

 (1.5) f(t)texp { -L},

 with approximate values of a1, a2 given by

 (1.6) a1 = 1.7399+, a2 =.6565+.

 The analogous small t expression for the two-dimensional problem has been

 shown to be valid into the initial region of caustic formation [1]. It may thus be used
 to determine, in an experimental situation, whether or not large amplitudes are likely.

 In [1] the two-dimensional formula analogous to (1.5) was also used as part of
 an approximation giving f(t) for all values of t. To accomplish this for the three-
 dimensional problem it is necessary to solve numerically a linear parabolic partial
 differential equation with singular coefficients, as will be shown here. The numerical
 work will be deferred to a future publication.

 2. Rays and wavefront curvatures. The phase, 4, of a wave propagating according

 to the laws of geometrical optics satisfies the eiconal equation [3]

 1
 (2.1) 1VP1c22
 where c = c (x) is the (normalized) propagation speed. The surfaces of constant T are
 wavefronts and the curves everywhere orthogonal to the wavefronts are rays. Equations
 for the rays can be obtained from (2.1) and this orthogonality condition. We denote

 the ray emanating from xo by x (s) where s is arclength along the ray. Then if I is the
 identity matrix, the ray equations take the form

 dx dV71 1 (I _ VlVT)VC, (2.2) ds V, ds c

 with initial conditions

 (2.3) x(0)-xo, V (0)= U0.

 Here V, is the unit tangent to x (s). Let V2, V3 be the unit normal and binormal
 respectively. Then the Frenet formulae [4] give equations for Vi, V2, V3:

 (2.4) dVl - K V2, -=-K V2 + TV3, -=-TV2, ds ds ds

 where K is the curvature and r the torsion of the space curve x (s). Equations
 (2.5)-(2. 10) are discussed in more detail in the Appendix, ? 8. Let

 (2.5) Ci = Vc * Vi, cij = Vi VVcVi.

 Then

 (2.6) C2 T = C13
 c C2
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 THE STOCHASTIC CAUSTIC 129

 Now a caustic occurs when one of the two principal normal curvatures of the
 wavefront becomes infinite. From the Appendix the two principal normal curvatures
 of the wavefront at the point x (s) are represented as the eigenvalues of a 2 x 2
 symmetric matrix R, with elements

 (2.7) Rij(s) = c (x (s)) VT+1 (s)VVP(x (s)) V?+1(s), i,j- 1, 2.

 R satisfies the propagation equation

 (2.8) R=-R +T(MR-RM)+-R Q
 ds c

 Here

 (2.9) ~ ~ ft[0 1] 1[C22 C23]
 i-M 1 oJ C [C23 C33J

 In (2.8), (2.9) r, ci, ci1 are evaluated along the ray, that is, at x (s).
 For a wavefront which is initially plane, we have the initial condition

 (2.10) R(O) = O.

 It is now assumed that c is of the form (1.1) with o small, and c a mean zero
 homogeneous and isotropic random field. We introduce the scaled variables t, U, y
 defined by

 2/3~~~~~~~~~~~O 2t (2.11) t=o- /s, VvzUo+cr213U,xX+7u+

 Thus, for t, of order 0(1), s will be large. Furthermore, we have anticipated that the
 fluctuations in V1 are 0(_2/3), those in x, 0(1). Then from (2.2), (1.1) we have

 dy -U
 dt

 (2.12) dU - 1
 1/3(IUoUo)VC +

 dt U

 Here c is evaluated along the ray, i.e.

 (2.13) Vc c X0+ U0+y

 We have also the initial conditions

 (2.14) y(0) = U(0) = 0.

 Now by definition (2. 1 1), V/ = Uo + 0(0_2/31 U |). We will derive similar approxima-
 tions for V2, V3 valid for long distances s = t/_2/3 with t of 0(1).

 For j2, 3

 0= Vj V1 = Vj* Uo + O-(a2/31 UI),

 so that

 (2.15) V1 U-o =0(0.2/3jUI) forj=2,3.

This content downloaded from 134.246.166.26 on Thu, 14 Jul 2016 12:27:28 UTC
All use subject to http://about.jstor.org/terms



 130 B. S. WHITE

 We now work in a fixed Cartesian coordinate system with V (0) = Uo = (1, 0, 0)T,
 V2(0) = (0, 1, 0)T V3(0) = (0, 0, 1) T. Then

 V1 = (1, 0, 0) T + o (_2131 Uj),

 V.6= (0, V521, Vl3) + O(cr2/31Uj), j=2, 3.

 Note that from (2.5), (2.6), (1.1) the curvature, K, of the ray is small, of order
 O(o), while the torsion, r, is order 0(1). We next approximate V52), V13) for 1=2, 3.
 From (2.4), (2.12) we obtain

 (2.17) dV 2/3 V3 1/3C2 dV3 = r (2.17) dt O- O c v dt o-/3V2
 Thus on the distance scale on which t is 0(1), V2, V3 undergo rapid random rotations
 with angular speed 0(o-2/3). Let the 2 x 2 matrix P be defined as

 (2.18) [v23 v33J

 From (2.16), (2.17), (2.18) we have that

 (2.19) dP 2r PM+o 0(]Uj), P() =L

 Now let E satisfy

 (2.20) EM, E(0) =L

 Clearly

 ( cos H -sin a] (2.21) E = lsin 7 COS 6J7
 where

 tr t/2/3

 (2.22) J(t) = J r(h) dh.

 Since E is a rotation matrix, ET = E 1, and ||ElI is bounded. Theretore, from (2.19),
 (2.20)

 d PET = O(fiUi),
 and hence

 (2.23) P(t) = -E(t) + 0(coItUlt),
 where l1Ull = I U(t)I + Jo I U(h)I dh. Thus V1, V2, V3 are determined approximately from
 (2.16), (2.18), (2.23).

 We next change basis of the representation of R in such a way as to remove,
 approximately, the troublesome torsion terms in (2.8). Thus, let

 (2.24) R= ERET.

 Clearly the eigenvalues of R are the same as those of R, and therefore are the principal

 normal curvatures of the wavefront at x (s). Substitution of (2.24) into (2.8) yields,
 d 2/3dR 2 + EQET

 (2.25) ~~~ds dt c
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 THE STOCHASTIC CAUSTIC 131

 Now let a/axi be a derivative in the fixed direction given by Vi (0), and let Q(t) be the
 2 x 2 matrix with elements

 1 a2c i t
 (2.26) t2i+2(t) =3 2 UO+y. ax3?1 a.X1?1 o /

 For i,j= 1, 2 we have from (2.15), since Q is O(o-), that

 ow 1 3 (k) a2C ( 1 0_ 3 (2.27) Q 1 Y. v C + O(o5 |Ul).
 C k,1=2 aXk aX1

 Therefore from (2.18), (2.26), (2.27)

 (2.28) Q= PQP + O(o1||IU|I).

 Substitution of (2.23) into (2.28) then yields

 (2.29) Q = EQET + O(r51311U1).

 Substitution of (2.29) into (2.25) then yields

 (2.30) d-R = r -dR = -R R+ Q + O(o513ItUII).
 ds dt c

 The equation (2.30) now has the torsion terms removed, and the matrix Q of
 second derivatives of c now has those derivatives, via (2.26) in fixed directions that
 do not rotate with V1, V2, V3.

 Direct approximations to R are not possible since, as will be shown, the eigenvalues
 of R become infinite for finite (random) t. Small errors in the determination of this
 value of t will thus give infinite errors in any approximation to R. To circumvent this
 difficulty, the Ricatti equation (2.30) will be reduced to a linear equation by the
 inclusion of more variables. Thus, let A be defined by

 d-
 (2.31) -A = RA, A(0) = L

 ds

 Letting B = RA we obtain the linear matrix equations

 (2.32) -A=B, -B = QA+O(o5 31IUII IIAII+oiIBII).
 ds ds

 Now letting t = a2 3s and

 (2.33) A0=2A, B=2/3B
 we have that on the t-scale

 d ^
 -tA=B9

 dt

 (2.34) d A

 CX2 X3 CX3X3

 Here

 (2.35) Cxx j cx0+ 2/3Uo+yy)
 ax. ax, \ O'
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 132 B. S. WHITE

 Equations (2.34) are now properly scaled for the limit of the next section. We
 note here what this scaling implies qualitatively for the actual curvatives, the eigen-

 values of R. Note that

 (2.36) R= _- BA

 Now K' = det R, the product of the principal normal curvatures, is the Gaussian
 curvature of the wavefront at x (s). With this interpretation, the scaling (2.36) shows

 the behavior of K' if well behaved limits for B, A are obtained. As long as det A is
 bounded away from zero, K' is small, of order O(-_4/3). However, in the relatively
 small distance (when viewed on the t = -23s scale) that it takes for det A to pass
 through zero K' must become infinite. The geometrical picture is then this: the patch
 of wavefront traveling with the ray x (s) first propagates substantially as a plane wave,
 i.e., its curvature is small; the formation of a caustic appears almost instantaneous on

 the t distance scale. If this phenomenon is observed experimentally, it may well be

 misinterpreted as implying a strong inhomogeneity in the velocity field in a neighbor-
 hood of the caustic. However, this impulsive behavior is predicted by the scaling law

 (2.36) when fluctuations in index of refraction are small.

 3. The limit equations. We now apply the Papanicolaou-Kohler theorem [5] to
 the results of the last section, after dropping the error terms. From (2.12) we have
 the two vector equations

 dy dU_ 1 A~
 (3.1) dt u dt =-;1 3 A

 [CX3

 with initial conditions

 (3.2) y(O)= U(O)=O,

 and the two 2 x 2 matrix equations

 dA dA_ A A
 (3.3) d A A dB =__ CX2X2 CX2X3 A (3.3) B, 3A A A dt dt 1/ CX2X3 CX3X3

 with initial conditions

 (3.4) A(O) = I, B(O) = O.

 Here, of course,

 A a A__

 cxi = dc (xo+23UO+y),

 with a similar expression for cx,.X
 Note that, from (3.1), u( - = 0, so that taking xo as the origin and writing

 in Cartesian coordinates we have that

 a 1/3 Cx A ( (2) y(3))

 with a similar expression for C^XXi, To apply the limit theorem, we need to assume a
 "mixing hypothesis". This means roughly, that the values of c in sets i, 04 of physical
 space become asymptotically statistically independent as the distance between d and
 0,B becomes large.
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 THE STOCHASTIC CAUSTIC 133

 We now apply the Papanicolaou-Kohler theorem, using the easily proven
 identities that if R (r) is the correlation function of c [1.2] and if

 qij(r) E[ac(xl +r x2, X3) &C(x1, X2, X3)]
 ax, ax,

 (3.5) qijk (r) = E [a2 (Xi + r,x2,x3) aA(x1,x2,x3)]

 qa c(x1 +r, X2, X3) aC (X1, X2, X3)] (3.5) ~ qijkl(r) =E x x X X

 ax, axi aXk aX1
 then

 qij(r) = -a R(r) 8ij fori0l , jOl ,
 r ar

 (3.6) qi1k(r)=O for i$ 1, j$ 1, k $ 1,

 qijkl(r) = [( r-)2R (r)] [Ai 'kl + 5ik8jl + 8il 8k]

 for i$1, j$1,k 1,l$1.

 Here 8ij is the Kronecker delta.
 The result of the limit theorem is then that (y, U, A, B) converges weakly as a

 stochastic process (on ij[0, to] for any to) to (y, U, A, B), where (y, U) is statistically
 independent of A, B (this independence is basically a consequence of qijk =0 in (3.6)).
 Then (C, U) satisfy the Ito stochastic differential equations

 -(1) = (1) o

 y(2 =u =0,Y (3.7) dy2 = u(2 dt, da12= did31,

 dy(= u dt, dau2 = -1 dj32.

 Here 132, 33 are independent Brownian motions and

 (3.8) (-2 1

 Thus, on this scale the ray deviations, 11(2), 1(3) are independent Brownian
 motions, and the positions y(2), y(3) are their integrals. This corresponds to a result
 of Chernov's [6], but is here derived by an honest method in the sense of J. B. Keller
 [7]. We also see the scale on which this result holds, i.e., propagation distance is of
 order O(o_-2/3), the ray angles are of order O(o_2/3), but the ray positions have deviated
 0(1) in the plane orthogonal to the initial direction of propagation.

 We now turn to the limit equations for A, B. Letting, for i, j = 1, 2, Ai1, Bij be the
 elements of A, B we obtain the infinitesimal generator (Kolmogorov backward
 operator) in the form

 1 ijkl aa
 (3.9) Y = -a d Bij

 2 aBqj aBkl aAi*

 where the summation convention is implied. The coefficients a ijkl are given by

 (3.10) a k= Y5 [5im5kp + 45ik5mp + 5ip5mk ]AmiApi,
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 134 B. S. WHITE

 where

 (3.11) v2=(2 J(i-) R(r)dr)

 The generator f corresponds to the Ito stochastic differential equation

 (3.12) dA i = Bij dt, dBij = himnrAmjd/3nr,

 where /3nr are independent Brownian motions. Since

 a ijkl dt = dBij dBkl = himnrhkpnrAmjApi dt,

 himnr may be determined, via (3.10), by the (nonunique) factorization

 (3.13) himnrhkpnr = Y2 [45im5kp + 45ik8mp + 4Sip'Smk].

 Equation (3.13) may be solved by writing the 16 components of himnr as a 4 x 4 matrix

 I with components

 (3.14) himnr = Mk(i,m),k(n,r),

 with k (1, 1) = 1, k (2, 2) = 2, k(1, 2) = 3, k(2, 1) = 4. The equation for h then becomes

 3 1 0 0

 (3.15) MIT 2 1 3 0
 O 0 1 1

 with a conveniently chosen factorization

 X 1 0 0

 (3.16) =XY2 0 0 1 0

 L 0 1 0o

 Then himnr d/3nr may be determined from

 df3121 Y2 dj i 1 + d/922 (3.17) Y 2 j d d
 dj62 d/3 12 Ld#21lj L df312

 so that himnr dt3nr may be written as the matrix of stochastic differentials

 (3.18) H =Y2 1 d,611 + dP22 dE 2
 dj12 v/2 1d3 11 - df322

 Therefore we obtain from the expression (3.12)

 (3.19) dAij =Bijdt, dBij = (HA)ij.

 Now the constant Y2 may be set equal to unity by the rescaling
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 THE STOCHASTIC CAUSTIC 135

 We then obtain universal equations for A, B with no free parameters. We will drop
 the primes in (3.20) and write the equations fully. They are

 dA=Bdt,

 (3.21) dB (2 [0 1 di,1 + [0 1j d22+ 1 0 dP12) Al
 A(0) =I, B(0) = 0.

 Thus the random coefficient in (3.21) consists of the sum of three independent white
 noises multiplied by three Pauli spin matrices.

 We may now transform to find the equation satisfied by R-BA-1. R satisfies
 the stochastic Ito-Riccati equation

 dR=R 2 dt +v[2 1] d11+[o _1 dP22+[l 0 ] dP2,

 (3.22) R(0) = 0.

 4. Evolution of the principal normal curvatures. Now the two principal normal
 curvatures of the wavefront are related to the eigenvalues, A1, A2, of R by scaling. To
 determine the first distance at which a caustic occurs, we look for values of t at which
 one of A 1, A2 becomes infinite. To obtain evolution equations for A 1, A2, we diagonalize
 R. Let

 (4.1) D [cos 8 -sin 0
 sin 9 cos J

 be the rotation matrix that puts R in diagonal form, i.e.,

 (4.2) D RD=[ ]

 Now 9, A 1, A2 are functions of R. d9, dA 1, dA2 are therefore stochastic differentials, e.g.,

 d9 = qo dt + q1 dP11 + 4'2 dE2 + &3 dP22,

 where Xi are nonanticipating functionals of P11,P22,1P12. To obtain equations for
 dO, dA1, dA2, Ito calculus [8] must be used. Thus, many terms appear in the following
 calculations which would not appear in ordinary calculus, e.g.,

 (4.3) dD =r -sin 9 -cos 9 1 -Cos 9 sinG (d@)2a
 [cos90 -sin 0] 29~ -sinG0 -cos9]

 By proceeding in this way and using (3.22) the following three equations are obtained
 from the expression for

 d Al O
 d[O A2]

 dA 1 = -A 1 dt +1>2 dp1 + cos 29 dp22 +sin 29 dp12

 (4.5)
 + (A2-Al1)(dt9)2 2 sin 269 d922 d69 + 2 cos 20 d8 12 dO,

 dA2 =-A 2 dt + V/2 d,8l- cos 2 0 dg 22 -sin 2 0 d,82

 +(A1-A2)(d9)2+2 sin 29d d22 d9-2 cos 29dpl2 dO,

 (4.6) 0 = (A2-A 1) dO-sin 29 d/22 + cos 29 dpi2
 -2 cos 2d,822 d9-2 sin 29 d,12 dO.
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 136 B. S. WHITE

 Multiplication of (4.6) successively by d,811, d,822, d,f12 yields the three equations

 (4.7) d,811 d8 = 0,

 (4.8) (A2-A1) d8 df822= sin 28 dt,

 (4.9) (A2-A 1) d8 d,f12 =-cos 28 dt.

 Putting (4.8), (4.9) into (4.6) yields

 (4.10) (A1-A2) d8 = -sin 28dd22+cos 2 d 12.

 Squaring (4.10) we obtain

 (4.11) (A1-A2)2(d8)2 = dt.

 Now substitution of (4.7)-(4. 11) into (4.4), (4.5) yields

 (4.12) dAl=- (A+ (A A )) dt + V/2 dlii + cos 28 dj22+sin 2H d 12,

 (4.13) dA2=-(A+(A'A dt)+V2 ddI l-cos 28dI22-sin 28dt12.

 The relevant equations are now (4.10), (4.12), (4.13). These may be simplified
 further by defining l, 132, (33 by

 dfl = dfl3,

 (4.14) df32 = cos 28 d322+ sin 28 d,312,

 d,83 = -sin 28 d,822+cos 28 d.812.

 Note that d,8i dfli = 3iq dt. ,1, 2, 133 are therefore independent standard Brownian
 motions. In terms of them (4.10), (4.12), (4.13) become

 (4.15) dA 1 =-(A1 +(-k2 ))dt+ d + d1+d2,

 (4.16) d2=- (A2 (A-A2)) dt+ $V2d1 -d 2,

 (4.17) de (A-

 These equations may now be contrasted with that of the two-dimensional theory,
 where the single wavefront curvature Z satisfies [1]

 (4.18) dZ=-Z2dt+d 3.

 (The scaling convention is chosen somewhat differently for this case.) The three-
 dimensional theory is thus quite similar to that of (4.18), except that the two curvatures
 have correlated noise terms and repel each other inversely as their separation. Because
 of the repulsion term, A1 and A2 cannot coalesce for any t> 0, although they may
 become arbitrarily close.

 Now, for an initially plane wave, A l(O) = A2(0)=0. The eigenvalues separate
 instantaneously for t > 0, say A <A2. Then A <A2 for all t. If A satisfies

 (4.19) dA =-A dt+sI2 d( +df32,
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 THE STOCHASTIC CAUSTIC 137

 then

 dA1+A 2dt = dA +A2 dt + A - dt<dA +A2 dt.

 Therefore

 d (exp j[Al(s)+A2(S)]ds) (A1(t)-A2(t))<0,

 and hence

 (4.20) A 1(t) < A (t).

 Since, by the two-dimensional theory, A -> -oo for some finite t with probability one,
 (4.20) implies the same for A 1. That is, a caustic occurs in finite t-distance with probability
 one.

 This caustic will be formed by one of the principal normal curvatures becoming

 negatively infinite; that is, the ends of the patch of wavefront focusing will be further
 advanced along the direction of propagation than will be the middle of the patch. To
 rule out positively infinite curvatures, we consider the equations for

 (4.21) 6=A1+A2, p = JA2-A1I.
 For A1 <A2 the Ito equations for 4, p can be computed from (4.15), (4.16). They are

 d 2 = X(2+p2) dt + 2 d31,
 (4.22)

 dp = (- p dt - 2 d/32.

 We may compare 6 to A defined by

 dA =-A2 + 212 d,3 1, A(0) =0.

 As in the comparison of A 1 with A, we obtain that 4 < A, and hence that 4 -o- for
 some finite t with probability one. Furthermore, the probability that ( -e +00 is zero
 since +00 is an entrance boundary for A[1].

 Finally, note that (A1, A 2) form a diffusion Markov process without the necessity
 of including 8 in the state space. The angle 8 merely performs a one-dimensioal
 random walk on a random time scale governed by (A1 - A 2); the rotation speeds up
 when the curvatures are close and slows down when they are far apart.

 The forward Kolmogorov (Fokker-Planck) equation for the probability density
 P(t, A1, A2) of (A1, A2) at distance t is given, from (4.15), (4.16) as

 3 3 air2 ___
 Pt=2PAiAi +PA1A2 +2PA2A2 +aA (A- A)]2)

 (4.23) A A
 aAr2 11\Al

 For an initially plane wave the initial condition for (4.23) is

 (4.24) P(0, A1, A2) = 8(A1)8(A2).

 Equivalently, we may consider 4, p defined by (4.21). The probability density

 P(t, 4, p) of 4, p is given by the solution of

 (4.25) Pt =4P+2pp+ a +[-2+p2 + ([pa Pe P)2

This content downloaded from 134.246.166.26 on Thu, 14 Jul 2016 12:27:28 UTC
All use subject to http://about.jstor.org/terms



 138 B. S. WHITE

 with initial condition for a plane wave

 (4.26) P(O, el P)= ( (P

 5. Small t: probability rays in curvature space. We will first investigate the initial
 separation of A 1, A 2 for very short distances t << 1. For extremely small t 4, p are also
 small so that we may neglect quadratic terms in (4.22) to get

 2
 (5.1) de2z12d2 d, dp =-dt-2 d32

 p

 Thus, while e, p are both still small, they are approximately independent, with 4
 performing a random walk, and p behaving like a Bessel process; that is, the equation
 for p is the same as that satisfied by the radial part of a two-dimensional Brownian
 motion viewed in polar coordinates. Thus the joint probability density P(t, 4, p) of 4, p
 can be written down easily as

 (5.2) P(t,,p,el) - p exp 2 + 2p2)

 The corresponding density for A 1, A 2 is then

 (5 .3) P (t, A 1, A 2) ='4, exp -6t[3A 1 - 2A1lA2 +3A 2

 Evidently, the probability of caustic formation can be neglected on the scale for
 which (5.3) is valid. We shall next obtain an asymptotic expansion valid into the initial
 region of caustic formation. Equation (5.3) will be used as a matching condition for

 extremely small t.

 Let O < << 1, and define

 (5.4) t' 13t, A 1t 3 3t.

 Thus for E fixed, t' order one, t will be small. We therefore obtain an approximation
 for small t if t' is held fixed and E -0 . It is emphasized that E has no physical significance
 and is introduced here only for convenience in applying an asymptotic method.

 Putting (5.4) into (4.23), and dropping the prime notation, we obtain

 E2 PAIA + PA1A2 + 2 PA2A2) +APA +A2P2

 (5.5) [PAI PA21 2P
 + 2(A l + A 2)P + E A- ]+[ -A-2

 [Al-A2] A-2

 We proceed to apply a W.K.B. method developed by Ludwig [9] for parabolic
 equations. Thus, let

 (5.6) P - e -0/6 a
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 to obtain

 2 ~~2 2 E U +Ut= e (OA1 +OAIA2+ - A2 E 4 U EU

 (3qA1uA1 + UA1qx2 + UA2qA1 + 3qA2UA2) + A 2UA1 + A 2UA2 (5.6) +UIA A0I1 2A
 u (3 AIAI + AIA2 + OA2) +(OAI A2) u +2(A1+A2)u

 + E (2 UA1A1 + UA1 2 UA2A2)-E (A A 2)

 3 3U i+ ~ 8(UA I- UA2) +8 2u

 By equating, in (5.6), the coefficients of E we obtain

 (5.7) Xt + 20 AI + OA1XA2 + 2+ A2 A 10A A 2OA2 = ?

 By equating the coefficient of 80 we obtain

 ut aU(2 3AIAI + OA1A2 + 23A2A2 [A -A2] 2[A1 +A 2])

 (5.8)22
 + UA1(A 1 30A1 - OA2) + UA2(A 2- 3OA2 4 A1).

 The method and terminology now mimic that of geometrical optics. Thus (5.7) is an

 "eiconal equation" for the "phase", X of the solution given by (5.6). Equation (5.8)
 is a "transport equation" for the "amplitude", u of (5.6). The "eiconal" equation
 may be solved by the method of "rays", which are its characteristics. A matching

 condition, for small t, is given by considering the "canonical problem" (5.1), which
 has solution (5.2). For the remainder of ?? 5 and 6, the geometrical optics terminology
 will be used for these "probability rays in curvature space", without, it is hoped,
 causing confusion with the physical rays of the true eiconal, equation (2.1).

 The equations of the rays are

 t=I, q5=O,

 (5.9) A1=-A1 + 3 +qA2, A2=-A 2 +3OA2 + OA1I

 = 2A 1 A,1, xA2= 2A2OA2X

 The dots in (5.9) represent derivatives along the ray path. From the first of equations
 (5.9), these may be identified with t-derivatives. Since the rays emanate from (A 1, A 2) =
 (0, 0) at t = 0, we have the initial conditions that

 (5.10) A1=A2=0, qA1,=al, xA2=a2, for t = 0.

 Here a1, a2 parametrize the ray, and the mapping (a,, a2) -* (A1, A2) gives, for fixed
 t, a covering of (A1, A 2)-space by rays. To determine X at a point (A1, A 2) and fixed t
 we must determine the ray that reaches (A 1, A 2) at t. X can then be found by integration
 along this ray of the equation

 (5.11) + 20AI +OAIOA2 + 2A2'

 with initial conditions

 (5.12) O =0 fort=0.
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 Note that once X and its first and second derivatives have been determined, the
 transport equation (5.8) can be solved as a linear ordinary differential equation for u
 along a ray

 (5.13) 3O( <A,I, OA A2 32<k2+ 2[A +A2]+ [A; I - ) u.

 Here we may think of Ai, OAi, OA,A, as functions of t and the ray parameters, e.g.,
 Ai = Ai(t, a1, a2), etc.

 Since second derivatives of X are needed in (5.13), and these are not obtained
 directly from solution of (5.9), we will also need propagation equations for the second
 derivatives of X along a ray. For a 1, a 2 fixed let i)AA (t, a 1, a 2) be the 2 x 2 matrix with

 elements OAia1(t, a,, a 2). Then, by the chain rule,

 (5.14) 1)AA = qAacaA = 'Aa (Aa )

 where

 (OAa )ij OA dXa(t, a,, a 2) (A,)ij Ai(t, a l, a2)
 aai l aaj

 By differentiation of the ray equations (5.9) with respect to ai, we obtain propagation
 equations for Aac, iAa:

 (5.15) dA (t, a, a2) = -2[ 0] +23 1 A2]

 + 20AA Al 0 3-A [ ] AA.

 Thus, by differentiating (5.14) and using (5.15), (5.16) we obtain a matrix Ricatti
 equation for 1)AA

 dt 0 O]+2 0 A 0 A 13
 (5.17) ~ ?A XA2] A2] A+2A [O A2 ]-AA [3 1]

 Equivalently, we may obtain from (5.17) a matrix Ricatti equation for the propagation

 of q5-j1 along a ray

 (5.17)/ d -=3 1l 2 Al 01 2Al 01 -0-[A,?l
 dt L1 3 l O A2 2 ? Ao ( r 2 L 0 ?A OAA X

 To complete the specifications, it remains to give initial conditions for u, i)AA as
 t I 0. These quantities are necessarily singular as t I 0 since P must reduce to a delta
 function at t =0. The correct matching condition can be obtained by use of the
 canonical problem (5.1) with solution (5.3). By putting back the scaling (5.4), and
 matching amplitude and phase from (5.6), we obtain

 (5.18) u E as tIo,

 (5.19) 16t, (3,A2-2AlA2+3A2) as tIO.
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 Now in ray coordinates we have from (5.9) that, for very small t,

 A -A1 2 - 2(OA-X A2)t 2(a 1 -a2)t,

 so that (5.18) may be rewritten along a ray as

 (5.20) u -5/6 1ala2l as t A O
 8-,lTt

 Similarly, differentiation of (5.19) gives that

 (5.21) qAA 8[-1 3] as t0,

 or equivalently,

 (5.22) qA ~t[l 3] o ? as to0.

 The equations of this section do not appear solvable in closed form. We shall,
 however, use them in ? 6 to determine, in closed form, the caustic probability curve.
 For this purpose we need two implicit relations, equations (5.27) and (5.30) below,
 which will now be derived.

 From (5.9), q, = 0, and hence q, is constant along a ray. Therefore, from (5.7)
 we have that along a fixed ray

 (5.23)~~2 2A I + OA1OA2 + 2XkA2 =A10A, + A 2OA2 +C1

 where

 (5.24) C, = 2a 1 +ala2+ 32

 is constant along a ray. Putting (5.23) into (5.11) yields

 (5.25) (5(t, a,, a2) = Clt+ 1 (A,1+Ax2)(S,,22)ds.
 0

 But, since from (5.9) qA5 = 2AjOA1, we obtain from (5.25) upon integration by parts
 and further use of (5.19)

 1 t
 X = Cit +- (Al $A,I+A 2OA2) ds

 (5.26) (A 20AI +A 2

 I (0 A I + OiAlOA2 + 20 A2) ds.

 22

 Now use of (5.25), (5.26) and (5.11) yields, upon rearrangement, the final implicit
 formula for X,

 (5.27) q (t, at1, a2) =(a2a1 + a la2+2a 2)+4(A 1pA+A2OA2).

 Next, an implicit relation will be derived for u. From (5.13),

 rt 3 3
 u(t, a, a2) = u(to, a, a2) exp (| (-2<AlA -<AIA2 <A2A2

 (5.28)

 + 2[A 1 + A 2] +I I , 21 )ds[.
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 Now from (5.9)

 dt (A1-A2) =A -A2 +2(OA1-OA2))

 so that

 | [A A ]]ds = 2 log JA 1 -A21 + 2 (A 1 +A 2) ds.
 J[Al -A2] uS21oIA 2I~jk1F2C

 Hence

 u(t, a,, a2) = C2(al, a2) -

 (5.29) exp (e j (A 1 +A2) ds - j(2AsAI + x lki2+ 2 xA2A2 -) ds}

 where the 1/s term has been inserted in the exponential to cancel the singularity at
 s = 0 as determined by (5.22). The integration constant C2 may be determined by
 matching to (5.20). Then the final implicit result for u is that

 E 5/6 2 2(a a 2) (A 1-A 2) |1/2
 u(t,aEl,a2) - 8t - lr

 (5.30) t ds}
 *exp { 5 (A 1 + A 2) ds -I (2 AIA l + iA I A2 + 3 OA2A2 5 ) ds

 6. A closed form expression for the initial region of caustic formation. In this
 section, we will use the equations of ? 5 to derive a simple expression for the caustic
 probability curve, valid into the initial region of caustic formation. We first write (5.5)
 in the form of a conservation law,

 (6.1) Pt = V*J,

 where the probability flux vector is given by

 (6.2) 2 2 PA2) ( A -A 1])

 LE(22A2 + 2j 2[A2 ]

 Now if T is the (random) distance to the first caustic we have that

 _00 _00 (6.3) P{T>t}= J0 0 JP(t, Al, A 2) dA 1 dA 2,

 since P{T > t} is the probability that A 1, A2 are still finite by distance t. If

 (6.4) f(t) =-a P{T > t}
 at

 is the probability density of the random variable T, we have from (6.1), (6.3) that

 (6.5) f(t) lim Jj(V ( J) dA1 dA2.

This content downloaded from 134.246.166.26 on Thu, 14 Jul 2016 12:27:28 UTC
All use subject to http://about.jstor.org/terms



 THE STOCHASTIC CAUSTIC 143

 Let flM be the square of side 2M centered at (A1, A2) = (0, 0). From the divergence
 theorem,

 (6.6) f(t)=- lim J (J * v)ds,

 where v is the outward-pointing normal to aflM. We label the sides of aflM by
 Fi,i=1,2,3,4asinFig. 1. Let

 (6.7) Ik(M)=- (J. * )ds, k=1, 2, 3,4.
 rk(M)

 r2
 I(MM)

 r4

 FIG. 1. Region of integration in the (A1, A2) -plane.

 Then from (6.2) we have that

 (6.8) I2 = I3 = ([PA2 + -PA,] + [A 2 (A dA 1)]

 (6.9) I1=14= - (4-PA,+2PA2] +[Al d(AlA2)]P

 Putting the W.K.B. Ansatz (5.6) into (6.8), (6.9) we obtain,

 (6.10) I, - - (A 1 _0Aj 2OA2) u exp f--? dA2l

 (6.11) I2 - (A 27_<A27 j A1) u exp dA1 |

 The integrals in (6.10), (6.11 ) will be evaluated asymptotically as e e 0 by Laplace's
 method; thus only points corresponding to a minimum of qS on aflM will contribute
 to the final result. We will show that in fact q -* +00 on all of F2 as M -+ oo, so that
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 the contribution from I2 can be neglected altogether. This is to be expected since,
 from the results of ? 4, {A2 -* + X0 for finite t} is an event of zero probability. Further-
 more, it will be shown that there is a single minimum of X on F1 which asymptotically
 gives the total contribution to I,.

 Equation (5.23) may be solved alternately for q1, q 2 to obtain

 (6.12) 3+bx +qSA2-A1 = (sgn ([3a i + a2]) (A 2-2)2 + 6C + 6A 2qA2-9q A2,

 (6. 13) 3+A A- 2 = (sgn V[a2 + a1]) /(A 2 _-OA1)2 + 6C, + 6A 2O'kj-9A Xo

 Comparison of (6.12), (6.13) with (5.9) now shows that

 A1>0 for all t if and only if 3a 1+ a2>O,

 (6.14) 12k2>0 for all t if and only if 3a2+a1>0.
 We first consider the corner at (M, M). To reach this point along a ray, we must

 take a 1 = a2, whence A 1 A 2, fx, fA2 for all t. Because of (6.14), we must take a1 > 0.
 Then, since from (5.9) we have that

 (6.15) O'q(t, a, ,a2) = aj exp {2 fAi(s, at, a2) dsj, i = 1, 2

 it follows that A qok, + oo as M- oo if a1=a2 are chosen so that Ai(t, ai, a2)=M.
 Thus, from (5.27) S o-X also.

 Similarly, we may consider the corner at (-M, M). Because A1 <0, A2>0 there
 we must have, from (6.14) that 3a 1 + a2 < 0, 3a2 + a 1 > 0. But these inequalities imply

 that aj<O,a2>O. Using (6.15) again, we have that A1q51,+A2q52_-+00 as
 M -oo, A1 = -M, A2 = +M. So again q -* +oo by (5.27).

 To complete the analysis of r2, we look for a critical point of X, A51 = 0 on r2.
 By (6.15) this can be achieved only if a1 = 0, whence, by (6.14), we must take a 2> O
 to reach r2. But then again, A2qA2 -* +00 at this point as A2(t, 0, a2) =M -* +00. Hence
 by (5.27) X -* +00 also.

 We next consider r1, starting with the corner at (-M, -M). The ray reaching
 this point at distance t must have a1 = a2 <0 for some value of a. Thus along this

 ray A1 A2, OA I5A2. From (6.12) we have that on this ray

 (6.16) 40,Al- A 2 =-A/A + 16a12,
 and hence, from (5.9),

 (6.17) A1=oA1 + 16a 1 .

 We define the function g (x) by

 (6.18) g(x) = de

 Then the solution of (6.17) may be written implicitly as

 (6.19) I( !AL1|)=21 t.

 Thus the ray parameters of the ray hitting (-M, -M) are given by, as M o-,

 k 2
 (6.20) al=a2 t2,

 4t
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 where

 (6.21) k = g(oo) = 1.854+.

 Then, from (6.16), we have that A A1, 0 along this ray as M -* co. Hence, from
 (5.27), we get

 ( k2 kk2 k4

 It remains to look for a critical point on r1. Since OA2 = 0 there, we must take
 a2 =0 because of (6.15). Thus q52- 0 all along this ray. Therefore, from (6.13) with
 ai<O

 (6.23) 3OA2-A A=-V +9a.

 Substitution of (6.23) into (5.9) gives

 (6.24) A1 =a,

 with the implicit solution

 (6.25) g(1jV 3IajIt.

 As A1 = -M -* -co, (6.24) yields

 k2
 (6.26) al- t2a

 3t

 Now A2qA2 0 O and, as before, we show A kA, -*0 as M o o. Thus, by (5.27),

 (6.27) +(t, -3 18t

 This point is clearly the minimum of 0. The situation is summarized in Fig. 2.
 Thus, for fixed t the probability ray of maximum likelihood of caustic formation

 is given by a= -k2/3t2, a2 =0. Evaluation of I, by Laplace's method gives that
 asymptotically

 k4 21 'E 1/2 i (A2)
 (6.28) f(tV -2 lim I, -2 exp ____ 2ire0 . i ( (6.28) ~~M (0 18? }(A2A2) At A
 where starred quantities refer to the maximum likelihood ray.

 Now along this ray,

 OAx(S, _k2t 0) =al exp (2 |Aide= [A 2 2 l+

 Therefore as s t t, A 1 o- -0x

 exp {5 Al d4 - 43a 1']5/4
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 X2

 (M,M)

 +00

 3

 Q A1

 MIN: K

 K4 r~~~~~~~~~

 -12-N 4

 MIN:

 18t3

 FIG. 2. Behavior of q as M oo.

 Since also JA1 -A21"1/2~ A111/2 we have, on substituting into (5.29) and letting s - t

 3/4"-1/3k7/2 { k4

 2/2 e k t''16V/30 *t/2 18 1Et 3
 (6.29) q2X2 8e

 exp { J A2 dS (- A Al + A lA2 + - A2A2 -) ds}

 where the integrals are along the maximum likelihood ray. These integrals are, in
 fact, constants! This fact follows from a scaling law of the ray equations (5.9), namely
 that for a1= -k2/3t2 s_t

 Ai(s, a0, O) = VialAj(Jl|aiIs, -1, 0),

 (6.30) O7Ai(S, a1, 0) = IalIxAi(|Vdals, -1, 0),

 I-AAk (S, a1, 0) =-A 1 aixls, -1, 0).

 (6.30) may be verified by noting that equated quantities satisfy the same differential
 equations (5.9), (5.18) and initial conditions. We also obtain from the scaling laws

 (6.31) kA2A2 = OA52A2 (t, 3 t22 ?) /= ,A2 'k 2 1, o) 0
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 Thus, all quantities in (6.29) can be computed by numerical integration of the single
 ray, at = -1, a!2 = 0. This has been done, and the final answer, obtained after setting
 E = 1 is

 (6.32) f(t) a2exp t I

 where numerical values for a1, a2 are

 (6.33) a1 = 1.7399+, a2 =.6565+.

 7. Comparison with Monte Carlo experiments. The limiting equations (3.21) for
 the eight entries of the matrices A, B have been simulated digitally using pseudorandom
 numbers. Now the first value of t for which det A = 0 corresponds to the first occurrence
 of a caustic. For n = 10,000 simulations the histogram of this value has been plotted
 as the x in Fig. 3. Plotted also are the small t approximations of (6.32) and (6.33),
 and an exponential curve of the form

 a3 exp {-a4t},

 with the values a3?= 1.000, a4 =.893.

 1.8_

 1.7_

 1.6_

 1.5_ Al: 1.739940
 A2: 0.656503

 1.4 A3: 1.000000

 1.3- A4: 0.893000

 1.2_

 1.1

 1.0

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.12U

 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

 FIG. 3. Monte-Carlo simulations, small and large t approximations.

 The qualitative form of the curve is quite similar to that of the two-dimensional
 theory [2] with the small t approximation valid into the region where the probability
 of caustic formation is appreciable.

 For large values of t, the curve will be approximately a decaying exponential if
 it is assumed that the operator on the right-hand side of (4.23) has a discrete spectrum;
 the decay rate would then be the lowest eigenvalue of this operator. Although it has
 not been shown that the operator in (4.23) does have a discrete spectrum, the
 exponential plotted in Fig. 3 appears to fit the data quite well.
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 8. Appendix. In this section we derive propagation equations for the principal
 normal curvatures of the wavefront.

 The eiconal equation is

 (8.1) jVf C2,

 where C is the space-varying propagation speed and fl is the phase of the disturbance.

 We follow a single ray X(s) parametrized by arclength s and emanating from XO at
 s = 0. Let V1(s) be the unit tangent to X(s). Since the rays are orthogonal to surfaces
 of constant (f,

 (8.2) V1(s) = C(X(s))Vfr(X(s)).

 By differentiating (8.1) we obtain

 (8.3) 1 qxixi =-C Cxi
 j=1C

 Then by differentiating (8.2) and using (8.3), we obtain the ray propagation equations
 in the form

 (8.4) ~~d d VI 1
 ds 1 ds C (C 1)1

 Let K (s) be the curvature of the ray, r(s) the torsion, V2(s) the unit normal, and

 V3(s) the unit binormal. If P(s) is the 3 x 3 matrix with Vi as its ith column, then the
 Frenet-Serret formulae [4] give

 ds (8.5) ds P(s) = P(s)M(s),

 where

 O -K O

 (8.6) M(s) = K K -0

 Let

 (8.7) D(s) = PT(s)VVf(X(s))P(s).

 A propagation equation may be written for D by differentiating (8.7), using (8.5) and

 the identity

 (8.8) 2 (fiXiXikqXi + qfXiXqXiXiXk) - C3 xi)
 aXkC

 obtained by differentiation of (8.3). D(s) satisfies the matrix Ricatti equation

 (8.9) -D =DM-MD-CD2+ Q1,
 ds

 where

 (8.10) Q = (PTVC)(PTVC)T 2PTVVCP
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 Now from (8.4), (8.5), (8.6), we obtain

 (8.11) KV2=(VC * V) C +cvvqfvl.
 C

 By taking the dot product of (8.11) with, respectively V1, V2, V3, and recalling the
 definition (8.7) we obtain

 1 K
 (8.12) Di,=- -VC * VI, D12 =D21 = c D13 =D31 = O.

 Since D is symmetric, (8.9) contains six scalar equations. By writing these out,
 and using the three equations (8.12), we can derive the matrix Ricatti equation (2.8)
 for the 2 x 2 symmetric matrix R, where

 (8.13) fI=C[D32 D33j

 The eigenvalues of R are the two principal normal curvatures of the wavefront at
 X(s). The expressions (2.6) are also obtained from this calculation.

 Acknowledgment. I would like to thank Daryl Madura for his help with the
 numerical computations of ?? 6 and 7.

 REFERENCES

 [1] V. KULKARNY AND B. S. WHITE, Focusing of waves in turbulent inhomogeneous media, Phys. Fluids,
 25 (1982), pp. 1770-1784.

 [2] L. HESSELINK, Propagation of shock waves through random media, submitted J. Fluid Mech.
 [3] G. B. WHITHAM, Linear and Nonlinear Waves, John Wiley, New York, 1974.
 [4] D. LAUGWITZ, Differential and Riemannian Geometry, Academic Press, New York, 1965.
 [5] G. PAPANICOLAOU AND W. KOHLER, Asymptotic theory of mixing stochastic ordinary differential

 equations, Comm. Pure Appl. Math, 27 (1974), pp. 641-668.
 [6] L. A. CHERNOV, Wave Propagation in a Random Medium, trans. R. A. Silverman, McGraw-Hill,

 New York, 1960.

 [7] J. B. KELLER, Wave propagation in random media, Proc. Symposia in Applied Mathematics, vol. 13,
 American Mathematical Society, Providence RI, 1962, pp. 227-246.

 [8] H. P. MCKEAN, Stochastic Integrals, Academic Press, New York, 1969.
 [9] D. LUDWIG, Persistence of dynamical systems, SIAM Rev., 17 (1975), pp. 605-640.

 [10] R. M. LEWIS AND J. B. KELLER, Asymptotic methods for partial differential equations: The reduced
 wave equation and Maxwell's equations, Res. Rep. EM-194, AFCRL, Air Force Contract 4 AF
 19(604)5238, 1964.

This content downloaded from 134.246.166.26 on Thu, 14 Jul 2016 12:27:28 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 127
	p. 128
	p. 129
	p. 130
	p. 131
	p. 132
	p. 133
	p. 134
	p. 135
	p. 136
	p. 137
	p. 138
	p. 139
	p. 140
	p. 141
	p. 142
	p. 143
	p. 144
	p. 145
	p. 146
	p. 147
	p. 148
	p. 149

	Issue Table of Contents
	SIAM Journal on Applied Mathematics, Vol. 44, No. 1 (Feb., 1984) pp. 1-220
	Front Matter [pp. ]
	Uniform Asymptotic Solutions of Two-Dimensional Problems of Elasticity for the Domain Exterior to a Thin Region [pp. 1-10]
	Homology and the Nonlinear Heat Diffusion Equation [pp. 11-18]
	Stokes Flow Past a Thin Oblate Body of Revolution: Axially Incident Uniform Flow [pp. 19-32]
	On the Taylor-Aris Theory of Solute Transport in a Capillary [pp. 33-39]
	Polyhedral Flames--An Exercise in Bimodal Bifurcation Analysis [pp. 40-55]
	Existence of Travelling Wave Solutions of Predator-Prey Systems via the Connection Index [pp. 56-79]
	Period Doublings and Possible Chaos in Neural Models [pp. 80-95]
	Stationary Wave Solutions of a System of Reaction-Diffusion Equations Derived from the Fitzhugh-Nagumo Equations [pp. 96-110]
	Boolean Difference Equations, I: Formulation and Dynamic Behavior [pp. 111-126]
	The Stochastic Caustic [pp. 127-149]
	On the H-Function and Convergence Towards Equilibrium for a Space-Homogeneous Molecular Density [pp. 150-159]
	Robustness and Approximation of Escape Times and Large Deviations Estimates for Systems with Small Noise Effects [pp. 160-182]
	Convergence of Vector Quantizers with Applications to Optimal Quantization [pp. 183-189]
	On Miroshin's Second-Order Reciprocal Processes [pp. 190-192]
	Polynomial Based Algorithms for Computed Tomography II [pp. 193-208]
	Relationships Between l<sup>1</sup> Metrics on Linear Ranking Spaces [pp. 209-220]
	Back Matter [pp. ]



