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Abstract Boulders are an important coastal hazard event deposit because they can only be moved by
tsunamis and energetic storms effects of storms. Storms and tsunami are competing processes for coastal
change along many shorelines. Therefore, distinguishing the boulders that were moved during a storm
from those moved by a tsunami is important. In this contribution, we present the results of a parameter
study based on the TRIADS model for wave shoaling on mildly sloping beaches, coupled with a boulder-
dislodgement model that is based on Newton’s Second Law of Motion. The results show how smaller slopes
expose the waves longer to the nonlinear processes, thus increasing the energy in the infragravity wave
band. More energy in the infragravity wave band means that there are more energy wave lengths that can
dislodge larger boulders. At the same time, a steeper slope lowers the threshold for boulder dislodgement
(critical angle of dislodgement), making it more likely for larger boulders to be dislodged on a steeper slope.
The competition between these two processes govern boulder dislodgement during storms and is investi-
gated inhere.

1. Introduction

The term boulder refers to particle sizes larger than 0:256 m [Krumbein and Aberdeen, 1937; Blair and
McPherson, 1999, and references therein]. They are found along coastlines globally. Boulders are considered
to be good candidate deposits to improve coastal hazard assessments because only coastal hazards, such
as tsunami and storms (storm waves as well as far-field swell), carry enough energy to move these large par-
ticles [Noormets et al., 2002; Switzer and Burston, 2010; Lau et al., 2016]. The problem, however, is that tsuna-
mis and storms are competing causative processes for boulder transport on many coastlines, and that
separating boulders moved during storm from those moved by tsunami waves is important to avoid skew-
ing the storm or tsunami history along coastlines where both events can occur. Several simplified methods
[i.e., Nott, 2003; Benner et al., 2010; Buckley et al., 2012; Nandasena et al., 2011b] have been put forward to
calculate the wave amplitude of a ‘‘typical’’ storm or tsunami wave needed to move a boulder of certain
mass. What is a typical tsunami or storm wave? It is impossible to answer this question quantitatively
because the characteristics of tsunami and storm waves vary greatly and are not only controlled by the gen-
eration mechanism but also controlled by a complex interplay of water depth and wave-wave interactions
as the waves approach the shore, a process also known as shoaling.

In order to take the temporal dimension of the interaction between a boulder and a wave into account,
Weiss and Diplas [2015] introduced the concept of the critical angle of dislodgement that a boulder has
to reach as it interacts with a storm or tsunami wave. If the boulder does not reach or exceed the
critical angle of dislodgement, the boulder will not dislodge. In that case, Weiss and Diplas [2015] argue
that it is impossible to tell if the boulder moved. However, if the boulder interacts with the wave long
enough and the boulder reaches and exceeds the critical angle of dislodgement, the boulder will dis-
lodge and it can be recognized in the field that the boulder moved. Weiss and Diplas [2015] related the
time it takes for the boulder to reach the critical position for dislodgement to the half period of a
monochromatic wave. The results of this study indicate that the amplitudes of storm and tsunami waves
are similar enough so that the uncertainties involved in measuring the boulder mass and determining
the environmental parameters, such as slope and roughness in front the boulder, are large enough to
make it difficult if not impossible to distinguish between boulders moved by tsunami or during storms
where both causative processes are agents of coastal change.
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As mentioned earlier, the wave characteristics of storm and tsunamis wave are also governed by water
depth and other wave-related processes. In the past, monochromatic wave were assumed to represent
storm and tsunami waves reasonably well. We argue that monochromatic waves are not a good model for
storms and tsunami waves when it comes to boulder transport. This is because tsunami and storm wave
not only have different frequencies but also do not exist using a full nonlinear system (for more details see
sections 2.1 and 2.2) necessary to describe waves in the nearshore area even in a simplified context. The
closest approximation to monochromatic waves is the so-called ‘‘narrow spectrum’’ that results into a wave
shape similar to Stokes waves. However, even this narrow spectrum will undergo changes as the waves
approach the shore.

For boulder transport in tsunamis, it should be acknowledged that a coupling of boulder transport and dis-
lodgement models with tsunami propagation and inundation models has partly addressed the issues
related to wave shoaling. For more details about these models, we refer to Nandasena et al. [2011a]. Very lit-
tle work has been presented for boulder transport in storms. Most notably, Kennedy et al. [2016] is one of
the few if not the only scientific study that considers boulder transport by shoaling storm waves.

The more advanced work for tsunami by Nandasena et al. [2011a] has benefited from simple, yet ground-
breaking work by Nott [2003]. Similar basic work does not yet exist for boulders moved by storm waves.
With this contribution, we seek to establish a basic understanding of boulders interacting with storm waves
in the nearshore area. For this endeavor, we couple the TRIADS model by Sheremet et al. [2016, and referen-
ces therein] with boulder-dislodgement model by Weiss and Diplas [2015, hereafter referred to as BoDiMo
for boulder-dislodgement model]. Due to the characteristics of the TRIADS model (see sections 2.2 and 2.4),
the coupling between TRIADS and BoDiMo constitutes an important step toward a new paradigm for the
use of deposits in hazard assessments integrated stochastic processes provide a mathematically consistent
framework.

2. Theoretical Background

2.1. Waves as Random Processes
Ocean waves are a weakly nonlinear. Although the governing equations are nonlinear, the nonlinearity is
small and the system is linear in the leading order approximation. Therefore, in the leading order, the gen-
eral solution can be represented as superposition of ‘‘elementary’’ solutions. This is the basic idea behind
the Fourier representation. The elementary solutions are sinusoids, or more general, complex exponentials
ei kðxjÞx2xj t½ �. For example, in the one-dimensional case, one formally writes the free surface elevation g as

gðx; tÞ5
X
j51

ajðx;xÞei kðxjÞx2xj t½ �; (1)

where the summation is carried over all angular frequencies xj, and kðxjÞ is the wave number, related to
the frequency through the dispersion relation. Equation (1) is usually referred to as the Fourier decomposi-
tion. Under certain quite general conditions, this representation is unique (in other words, the elementary
functions provide a basis for the linear solution space). The ‘‘elementary’’ functions are also called modes
and are identified by their angular frequency xj. The coefficients aj are complex, with the modulus jaj pro-
portional to the amplitude, and h5arg aðxÞ the initial phase of mode x. In equation (1), the summation
should be regarded as a symbolic operation; for example, for a continuum of modes, the sum should be
replaced by integration.

Ocean waves are often described as random. This means that two wave measurements g1;2ðx; tÞ are not
identical even if they represent what one would describe intuitively the ‘‘same ocean state’’ (for example,
two 10 min measurements taken 20 min apart during a storm). Such measurements are usually regarded as
‘‘realizations’’ of the ‘‘same ocean state.’’ The fact that g1 6¼ g2 implies that they have distinct sets of Fourier
coefficients, say ajðxÞ. If the identity of the ‘‘ocean state’’ is defined by the set of all its realizations, it follows
it is also completely defined by the ensemble of all sets of Fourier coefficients of these realizations. It can be
shown that most of the statistical properties of engineering interest that describe a given ‘‘ocean state’’ can
be represented by realizations that have the identical amplitudes jaðxÞj, and modal phases uniformly dis-
tributed in the interval ½0; p�.
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The Fourier representation (1), however, is not a solution of the full nonlinear governing equations for
waves. Because the system is weakly nonlinear, one can still use a Fourier representation, but in this case
the amplitudes cannot be constant, and therefore have to evolve in time. Indeed, because the Fourier
modes are solutions of the linear equation, the Fourier decomposition (1) yields a system of equations that
describes the evolution of modal amplitudes aðxÞ through mutual (wave-wave) interactions.

Wave-wave interactions have two important effects: (1) the transfer of energy between Fourier modes, for
example, exciting modes that whose amplitude was negligible initially and (2) they generate weak correla-
tions between modal phases, which result in the deformation of the wave shape. These effects are domi-
nant in shoaling waves. For example, energy transfer toward low frequencies excites infragravity waves,
negligible in deep water but reaching heights of the order of 0.5 m in the nearshore. Transfers of energy
toward higher frequencies, accompanied by strong phase correlations, play an important role in the wave
peaking and breaking process.

Another important aspect of this more comprehensive wave theory is the length and time scales the wave
are exposed to a varying slope. The equations employed in the following sections belong to the category of
mild-slope equations. The parameter that describes the scales is the mild-slope parameter l, defined as

l5
jjrhjj

kh
� 1; (2)

where h is the local depth, jjrhjj is the geometric beach slope, and k is the characteristic local wave num-
ber of the wave field. The parameter l represents the relative variation of the depth over a characteristic
wave length. Note that the slope scaling depends on the wave length. A fixed geometric slope jjrhjj is
steeper for longer waves than shorter waves.

2.2. The TRIADS Wave Model
The nonlinear shoaling evolution of waves in the nearshore area is simulated using a unidirectional ver-
sion of the TRIADS model [Davis et al., 2014; Sheremet et al., 2016], which integrates the directional, hyper-
bolic equations describing the evolution directional triads proposed by Agnon and Sheremet [1997]. The
formulation assumes the beach to be cylindrical (laterally uniform) and mildly sloping in the cross-shore
direction (h(x) with x as the cross-shore direction). Waves are assumed to propagate perpendicular to the
shoreline. The free surface elevation gðx; tÞ is represented as a superposition Fourier modes (compare to
equation (1)):

gðx; tÞ5
XN

j51

ajðx; tÞ exp hjðx; tÞ2xj t
� �

(3)

with complex amplitudes aj and phases hjðx; tÞ. Here N is the total number of Fourier modes, with a mode
uniquely defined by its radian frequency xj satisfying the linear dispersion relation:

x2
j 5gkjtanh kj h; kj5

dhj

dx
: (4)

Because we assume a mild beach slope, the wave number kj varies with the position at much lower rate
that the phase. The evolution of the amplitude aj is governed by the equation:

dbj

dx
52i

XN

p;q51

Wj;p;qbpbqe2iDj;p;qhd Dj;p;qx
� �

12i
XN

p;q51

Wj;2p;qb2pbqe2iDj;p;2qhd Dj;p;2qx
� �

; (5)

where bj5aj c
1=2
j , with cj the cross-shore component of the modal group velocity, and Dj;p;6qn5nj2np7nq,

with d the Kronecker delta. The interaction coefficient Wj;6p;q depends on the frequencies and the linear
wave numbers (equation (5)) of the interacting modes j, p, and q.

The model was run for plane beaches hðxÞ5ax, where a denotes the constant slope. Model wave significant
wave height at the offshore boundary of the model was specified using a JONSWAP spectrum [Hasselmann

Geochemistry, Geophysics, Geosystems 10.1002/2017GC006926

WEISS AND SHEREMET NEW PARADIGM FOR BOULDER DISLODGEMENT 3



et al., 1973]. Assuming the offshore boundary is far enough from the shoaling zone to allow for a linear pro-
cess representation, the complex modal amplitudes at the offshore boundary can be written as

a1j 5

ffiffiffiffiffiffiffiffiffiffiffi
Sj

Dx
p

r
ei/j ;

where Sj5S xj
� �

is the JONSWAP spectrum discretized at frequencies xj, and 0 � /j � 2p are uniformly dis-
tributed random initial phases. For a single set of initial phases /j

� �
j51;N

, the numerical solution of equation
(5) with boundary conditions a1j corresponds to a single realization of the shoaling of the JONSWAP spec-
trum. The wave spectrum is retrieved from TRIADS simulations as function of water depth h:

SjðhÞ5
p

Dx
hjajðhÞj2i; (6)

where the angular brackets denote the ensemble average. In this study, we average over 100 realizations,
i.e., over 100 simulations using different sets of initial phases.

2.3. Boulder-Dislodgement Model
The boulder-dislodgement model is based on Weiss and Diplas [2015], which employs the adapted version
of the Newton’s Second Law of Motion:

r
7
5

qs1Cmqf

	 

Vhtt5 D sin ðh2aÞ1½L1B�cos ðh2aÞ

2Wcos ðhÞ
; (7)

in which qs and qf are the boulder and fluid densities, D, L, B, and W represent the drag and lift forces, the
buoyancy, and weight of the boulder. Parameter a denotes the slope on which the boulder in questions is
situated. The angle h is the result of the simplification of Newton’s Second Law of Motion, which is based
on the assumption that the boulders are spherical and therefore has to rotate out of its stable pocket. If
the angle h exceeds a critical angle, the boulder dislodges. This critical angle of dislodgement, hc is a func-
tion the slope angle a and the roughness elements in front of the boulder. The governing equation, equa-
tion (7), is solved numerically employing an Adaptive Runge-Kutta method [Cash and Carp, 1990] with
embedded integration formulas for the fourth-order and fifth-order terms [Fehlberg, 1969]. In order to
unsure efficient and accurate computations, the Python library odespy by Langtangen and Wang [2013] is
utilized.

This model constitutes a significant improvement over previous models, because it takes into account
not only the magnitude of the forces but also their duration. The duration is important because the
amount of the time the sum of the forces is larger than zero, which is the threshold of motion and the
basis criterion of previous models, might not be large enough for the boulder to reach the critical angle
of dislodgement. In that case, the boulder will move back into its original position as soon as the resist-
ing forces dominate the sum of the forces, resulting in RF < 0. Weiss and Diplas [2015] employed this
model to distinguish boulders moved by tsunami and storm waves because, without loss of generality,
the magnitude of the lift and drag forces are related to the wave amplitude, but the duration is linked
to their period (storm waves have periods that are at least 2 orders of magnitude smaller than the
period of tsunamis).

2.4. Coupling Between TRIADS and Boulder-Dislodgement Model
Because the drag and lift forces can be computed by their classic quadratic dependency of the horizontal
velocity, the coupling the wave and boulder-dislodgement models reduces to a simple calculation of the
horizontal velocity associated with the nonlinear wave process described by TRIADS:

uðx; z; tÞ5
XN

J

gkj

xj
ajðx; tÞ cosh kjðz1hÞ

sinh kj h
exp i hjðx; tÞ2xj t

� �
; (8)

where z is the height above the bed where the velocity is calculated (top of the boulder). Note that equa-
tion (8) represents one realization of the stochastic process of wave transformation in the nearshore; in this
study, one hundred different realizations were computed for each input spectrum.
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2.5. Frequency of Boulder Dislodgement
For the same geometric setup and initial spectrum, it can be expected that not every realization will cause
boulder dislodgement. In order to be able to quantify how many of the realizations for the same geometric
setup and initial spectrum do, we introduce the frequency of dislodgement, D5ND½N�21, where N is the
total number of realizations (N 5 100), and ND is the number of realizations for which boulder dislodgement
occurred.

2.6. Parameter Study
The parameter study comprises a total of about 5:63106 runs of the coupled model, for 3 different slopes,
16 different initial wave characteristics (16 different input spectra), 100 realizations using random relative
phases, 20 different roughness elements in front of the boulder, and 61 different boulder masses. The
slopes have the values a150:01 (small), a250:05 (medium), and a350:1 (steep), which are similar to the
slopes reported in McLachlan and Dorvlo [2005]. The 16 different initial spectra characterized by the signifi-
cant wave height, Hs ranging from 2 to 8 m, and the peak period, Tp, which varies from 8 to 16 s. The density
of the fluid is qf 51000 kg

m3 and the density of the boulder is qs51400 kg
m3. Zainali and Weiss [2015] studied the

in impact of the initial boulder position on boulder transport, a factor that was introduced as submergence.
In our simulations we leave submergence constant for all boulders.

3. Results

3.1. The Rise of Infragravity Energy
The nonlinear processes represented in the TRIADS model, specifically, the second term in the right-hand
side of equation (5), transfer energy from the peak of the frequency spectrum toward low frequencies, in
the range of 0.005–0.05 Hz. Waves in this frequency range, are called ‘‘infragravity’’ waves and are only pro-
duced during the shoaling process. For discussion about the nonlinear shoaling process, we refer to Herbers
et al. [1994], Herbers et al. [1995], and Sheremet et al. [2002]. Figures 1a–1c show the shoaling transformation
over a 0.01 slope of a JONSWAP spectrum (Tp58 s; Hs52 m).

The maximum spectral density in the infragravity band increases about an order of magnitude as the waves
travel from deeper into shallower water. In this particular example, the ratio of infragravity energy to the
total energy:

~EðhÞ5

X
fj<0:05

SjðhÞX
j
SjðhÞ

(9)

(where Sj is given by equation (6)) increases from ~Eð20 mÞ55:631024 to ~Eð15 mÞ52:331023, and
~Eð5 mÞ52:631022; the relative spectral content of infragravity energy increases approximately 200 times
from 20 to 5 m water depth.

Figure 1. Spectra for in (a) 10 m, (b) 15 m, and (c) 5 m water depth. From 20 m water depth (Figure 1a) to 5 m water depth (Figure 1c), the
spectral density increases an order of magnitude in the infragravity frequency band, fi. The blue line in Figure 1a refers to input spectrum
at the offshore boundary of the computational domain on which the realizations are based. The red line in Figures 1a–1c represents the
average over the hundred realizations, while the grey area defines the envelope.
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Figure 2 shows TRIADS simulations of the shoaling evolution of the infragravity energy content ~E as a func-
tion of water depth for all wave conditions and slopes examined. In general, the energy content increases
with increasing significant wave heights and increasing peak periods at all water depths. The increase of
the infragravity energy content is stronger for smaller slopes, due to the increased spatial scale over which
nonlinear interaction is active.

Note that estimates of the infragravity energy content are based on spectral quantities (i.e., ensemble-
averaged values, equation (6), red line in Figure 1). While the increase in the mean infragravity energy con-
tent for a350:1 is the smallest in our tests, it is possible that a small number of realizations will exceed the
mean increase corresponding to smallest slope (a150:01). Because individual realizations can exhibit signifi-
cant deviations from the mean, a significant number of realizations can cause situations at which a boulder
can be dislodged, while mean conditions will not or vice versa. Therefore, it is necessary to consider individ-
ual realizations to calculate the time series of the velocity that governs the dislodgement of boulders.

3.2. Boulder Dislodgement
In order to find the realizations that for a given wave condition and slope are able to dislodge boulders,
time series of the horizontal velocity need the calculated from the individual spectra. Figure 3 depicts time
series of the horizontal velocity calculated with equation (8) for 3 of the 100 realizations. From the longer
times in Figures 3a–3c, we can see that the waves generally experience an increase from deep to shallower
water. Aside from the increase in significant wave height, we can also see that the time series in deeper
water has fewer spikes that are much larger than the majority of wave crests. The number of these outliers
increases as well from deep to shallower water.

The actual wave forms are shown in Figures 3d–3f in time series that only cover 50 seconds instead of 600 s
(Figures 3a–3c). In all three plots, the superposition of different frequency components leads to complicated
velocity time series. We can discern an increase in significant wave height from deeper to shallower water,
but what can also be recognized is the increasing asymmetry between the wave crest and trough, which is
an effect of the shoaling process. It is also important to note that the qualitative difference between the
individual time series increases significantly from deep to shallower water depth. Therefore, a larger

Figure 2. Energy ratio, ~E , as a function of water depth. The lines in each subplot represent the different slope, and the subplots represent
different wave conditions.

Geochemistry, Geophysics, Geosystems 10.1002/2017GC006926

WEISS AND SHEREMET NEW PARADIGM FOR BOULDER DISLODGEMENT 6



variability in the boulder dislodgement frequency can be expected in shallower water. This is a direct result
of nonlinear processes acting on the wave during the shoaling process.

Figure 4 shows the dislodgement frequency D as a function of boulder mass for a peak period of 16 s, 6 m
in significant wave height, and a roughness of 0.5 of the boulder radius. As expected, we can see that for
smaller masses the number of realizations that are able to dislodge boulders is larger than for bigger
masses. For example, a dislodgement frequency of larger than 95 is occurs for masses smaller than about
m15255 kg; for D575, the mass is 512 kg; for D 5 50, the mass is about 925 kg; for D525, the mass is
1969 kg; and for D 5 5, the mass is 7552 kg.

Figure 5 depicts the frequency of dislodgement for significant wave height, peak periods, slopes, and a
range of masses and roughnesses. The roughness in all subplots varies from 0.1 to 1.0, and mass varies
from about 1 kg to about 40 t. The different panes in the subplots, marked with a1, a2, and a3, represent
the slopes a150:01; a250:05, and a350:1. The different rows indicate an increase of the significant wave

height from 2 to 8 m, and the wave peak
period increases from 8 to 16 s in the differ-
ent columns. Employing a d50:5 to look at
the data, we see that only the steepest
slope (a3) for the condition Hs52 m, Tp58 s
is able to have a frequency of dislodgement
that is larger than D 5 50. For a significant
wave height of Hs54 m, the mass at which
D 5 50 (assuming d50:5) increases from
about 4 kg for Tp58 s to about 100 kg for a
peak period of 16 s independent of the
slope. For larger significant amplitudes
(Hs56 m and Hs58 m), differences for the
different slopes are significant. For example,
for Hs58 m and Tp516 s, the mass for
D 5 50 and a1 is about 105 kg, for a2 the
mass is about 900 kg, and for a3 the mass is
about 2000 kg.

Figure 3. Time series of the horizontal velocity inverted from the spectra for the three randomly chosen realization for the (a–c) 600 s and
from (d–f) 50 to 100 s.

Figure 4. Frequency of dislodgement, D as a function of boulder mass for
a peak wave period of 16 s, a significant wave height of 6 m, and rough-
ness of 0.5 the boulder radius.
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It is important to determine not only at which masses certain dislodgement frequencies D occur but also
over which mass range an increase from low to high values of D takes place. It should be noted that for the
different wave conditions this mass range over which the transition from low to high values of D occurs will
take place in the single digit kilogram values to several tons. To eliminate the bias introduced by the wide
range of order of magnitude, we define the log-scale difference n with n5log 10 mðlow DÞ½mðhigh DÞ�21� �

in
which mðlow DÞ represents the mass with low and mðhigh DÞ denotes the mass for a high value of D. An exam-
ple is shown in Figure 4 in which the log-scale difference between D 5 5 and D 5 95 is calculated to be
n51:47. Table 1 contains the log-scale differences for different wave conditions for a constant roughness of
d50:5. It is interesting to note that the log-scale difference more than doubles for the different slope angles
for larger significant wave heights and longer peak periods and remains more or less constant for small
waves and shorter peak periods.

4. Discussion

As waves propagate from deeper into shallower water, wave-wave interaction transfers energy toward
lower and higher frequencies of the spectrum. The latter causes a modification of the wave shape, for exam-
ple, by increasing the skewness and asymmetry of waves in shallower water (Figure 3). Transferring wave

energy into higher frequencies results into the
generation of infragravity waves (Figure 1).
While for all simulated wave conditions and
slopes, the increase in infragravity wave energy
in shallower water is apparent, the smallest
slope exhibits the most significant increase (Fig-
ure 2). This observation can be ascribed to fact
that a milder slope allows the waves to nonli-
nearly interact with each for longer and over a
farther distances. The generation of infragravity
waves has profound consequences for the indi-
vidual realizations of the velocity time series
needed in the boulder-dislodgement model
(Figure 3). As to whether a specific realization
can dislodge a boulder of certain mass depends
on the specific wave-wave interactions that
developed within the time history of the wave

Figure 5. Frequency of dislodgement, D as a function of boulder mass for all wave conditions, roughnesses, and slopes.

Table 1. Selected Wave Conditions and Their Respective Log-Scale
Differences, n, for the Different Slopes a1, a2, and a3

a

Wave Condition Slope n

6: Hs54 m, Ts58 s a1 1.27
a2 1.27
a3 1.27

9: Hs54 m, Ts514 s a1 0.88
a2 0.98
a3 0.88

12: Hs56 m; Ts512 s a1 0.98
a2 0.98
a3 1.08

14: Hs56 m; Ts516 s a1 0.88
a2 1.08
a3 1.47

16: Hs58 m; Ts516 s a1 0.78
a2 1.57
a3 1.67

aThe roughness for all cases is d50:5.
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propagation. This fact results in the observation that from the same initial wave characteristics one realiza-
tion is and another realization is not capable of dislodging a boulder of certain mass. How many realizations
of a certain initial wave characteristics are able to dislodge a boulder are collected in the frequency of dis-
lodgement. Figures 4 and 5 show that the frequency of dislodgement depends on the magnitude of the ini-
tial wave characteristics, mass, and slope. Obviously, larger waves can dislodge heavier boulders, but it also
seems that a steeper slopes allow for heavier boulders to be dislodged more easily than on smaller slopes,
due to the fact that the slope reduces the critical angle of dislodgement. This reduction of the critical angle
of dislodgement on steeper slopes appears to have a larger influence on boulder dislodgement than the
rise of infragravity energy on smaller slopes. Another interesting observation is that the log-scale difference
between high and low number of the frequency of dislodgement shows significant diversity for larger initial
waves and seems to be much larger for steeper slopes. We hypothesize that this is related the length and
time scales of wave-wave interactions and its influence on boulder dislodgment, but the theoretical analysis
required to test our hypothesis is beyond the scope of this contribution. The introduction of the frequency
of dislodgment and its shape as function of boulder mass and the behavior of the log-scale different n indi-
cate that there are nonlinear relationships among the significant wave height of the input spectrum Hs the
peak period Tp, and the boulder mass m as well as slope a. More simulations with more offshore wave con-
ditions and more slopes are needed to determine just how nonlinear, and there for how sensitive these
relationships are to errors made in determining the environmental parameters, such as mass, roughness
and slope.

5. Conclusion

In this contribution, we coupled the model TRIADS [Sheremet et al., 2016, and references therein] with the
boulder-dislodgement model from Weiss and Diplas [2015]. Because TRIADS is a nonlinear wave model, it
allows the transfer of wave energy across frequencies, which is an important feature observed in coastal
waves and was not considered in previously published models of boulder dislodgement during storms. Fur-
thermore, TRIADS describes the evolution of directional triads (as proposed by Agnon and Sheremet [1997])
based on one hundred different initial phases of the same initial spectrum, making it possible to move from
a simple framework in which one particular wave is responsible for the dislodgement of one particular boul-
der mass toward an ensemble approach that reflects the physical and mathematical complexities more real-
istically. While this stochastic framework is not fully developed in this contribution, we argue that the
definition of the frequency of dislodgement is a pivotal intermediate step.

The results of our parameter study match previously published models well both intuitively and quantita-
tively. Our results also highlight the importance of the environmental parameters, such as slope on which
the boulder is resting and the roughness elements in the direction of dislodgement, as long with the boul-
der mass and characteristics of the waves. For more details on the influence of roughness and slope, see
Nott [2003] and Weiss and Diplas [2015]. The environmental parameters are difficult, if not impossible, to
observe in the field, but we think that the frequency of dislodgement (and later the stochastic framework)
will help to, at least, qualitatively assess the uncertainty arising from this shortcoming. Based on the wealth
of information contained in Figure 5, we argue that it is possible and necessary to derive a new boulder dis-
lodgement equation that not only includes boulder mass, roughness in front of the boulder, and slope
angle but also includes frequency of dislodgement. Inverting both components of the wave characteristics
is not trivial because Hs and Tp are both unknowns and there are nonlinear relationships to boulder mass
and slope.

In summary, the theoretical consequences of our approach, i.e., the dislodgement frequency and consider-
ing waves as a random process, allow us to extend our thinking framework considerably toward a more
realistic situation in which the wave spectrum changes its shape depending on water depth and wave-
wave interaction and boulder dislodgement is governed not only by the amplitude of the passing waves
but also by how long sum of the forces is larger than zero. Through our simulations, it becomes evident
that a nonlinear treatment of the waves is pivotal because the nonlinear deformation of the wave shape
can generate forces that can be both significantly stronger or weaker and act longer or shorter than those
generated by a linear wave with same spectral density distribution. Once there is more information on how
the peak period and significant wave height are impacted by the roughness in front of boulder, the ways
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are paved to derive a new formula for boulder dislodgement based on the frequency of dislodgement.
However, no matter the form this new formula will have, the nonlinear relationships between the inverted
values of offshore significant wave height and peak period, and variables, such as mass, roughness, and
slope, the collected data in the field, which are the basis for the inversion, need to be known much more
accurately. This is difficult to achieve, introducing, therefore, unwelcome uncertainty. Yet such inversions
are extremely important to estimate the hazard coming from storms to improve mitigation efforts. We
argue that a stochastic framework should be able to address the increased uncertainty. In the end, it
remains to be seen if a stochastic approach can truly achieve this. Our results, however, indicate that a sto-
chastic approach will be successful.
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