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The steady path of doubling the global horizontal
resolution approximately every 8 years in numerical
weather prediction (NWP) at the European Centre
for Medium Range Weather Forecasts may be substan-
tially altered with emerging novel computing archi-
tectures. It coincides with the need to appropriately
address and determine forecast uncertainty with
increasing resolution, in particular, when convective-
scale motions start to be resolved. Blunt increases
in the model resolution will quickly become
unaffordable and may not lead to improved NWP
forecasts. Consequently, there is a need to accordingly
adjust proven numerical techniques. An informed
decision on the modelling strategy for harnessing
exascale, massively parallel computing power thus
also requires a deeper understanding of the sensitivity
to uncertainty—for each part of the model—and
ultimately a deeper understanding of multi-scale
interactions in the atmosphere and their numerical
realization in ultra-high-resolution NWP and climate
simulations. This paper explores opportunities
for substantial increases in the forecast efficiency
by judicious adjustment of the formal accuracy
or relative resolution in the spectral and physical
space. One path is to reduce the formal accuracy
by which the spectral transforms are computed.
The other pathway explores the importance of the
ratio used for the horizontal resolution in gridpoint
space versus wavenumbers in spectral space. This is
relevant for both high-resolution simulations as well
as ensemble-based uncertainty estimation.
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1. Introduction
Numerical weather prediction (NWP) requires an answer in real time with a window of
approximately 1 h to run a medium-range global forecast that can be delivered in time to its
customers. Increasingly, there is a need to address not only the primary question of the forecast
outcome, but also to quantify the uncertainty with which the forecast is made. Today, ensembles
of simulations with suitable perturbations are run to provide such an uncertainty estimate.
Moreover, while computational efficiency remains one of the most pressing needs of NWP, there is
an open question about how to make the most effective use of the affordable computer power that
will be available over the next decades, while seeking the most accurate forecast possible. With
increased computing capacity and corresponding advances in the numerical techniques applied
(e.g. semi-implicit timestepping [1] and semi-Lagrangian advection [2]), there has been a steady
increase in horizontal resolution, by approximately doubling the global horizontal resolution
every 8 years at the European Centre for Medium Range Weather Forecasts (ECMWF). This rate
reflects corresponding increases in computing power and provides the basis for an increase in the
time range for which successful forecasts can be made by 0.5–1 day per decade. However, this
rate is too slow for the growing demand to run subkilometre scale, convection-resolving global
weather and climate simulations within the next decade.

At present, the factors driving continued horizontal resolution increases are (i) at current
resolutions, important processes determining the vertical redistribution of energy in the
atmosphere are not resolved, (ii) more accurate resolved representations of the forcing, i.e.
topography, vegetation, land-use fields and ocean currents, have a decisive impact on the
atmospheric dynamics, (iii) so far horizontal resolution increases have improved the skill of NWP
and climate predictions, and (iv) larger problems scale better on massively parallel platforms. In
the future, however, model development will be constrained by other drivers: these are, from a
technical point of view, the energy efficiency and the (hardware-related) reliability of massively
parallel computations, and from a scientific point of view, the reliability of forecasts together with
a quantitative assessment of the uncertainty.

Uncertainty increases with increased degrees of freedom. Global NWP has reached
the threshold of permitting and resolving convection explicitly, where the convective-scale
uncertainty and thus errors in the forecast may grow upscale more quickly, and accounting
for various sources of uncertainty in simulations that explicitly simulate moist convection is
an active area of research (see [3] and references therein). It is also unclear how this will alter
predictability at the larger scales. Therefore, there is a need to appropriately address forecast
uncertainty with increasing resolution and how to best represent this uncertainty in the model.
There are different sources of uncertainty to be considered, uncertainty around the best estimate
of the initial state, uncertainty arising from imperfect model assumptions, and uncertainty
arising from the choices made for particular numerical algorithms associated with numerical
truncation errors as well as arithmetical round-off errors. An informed decision on the modelling
strategy for harnessing exascale, massively parallel computing power thus also requires a deeper
understanding of the model’s sensitivity to uncertainty (and possibly to the lack of hardware
reliability)—for each part of the model—and ultimately a deeper understanding of multi-scale
interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and
climate simulations.

In the Integrated Forecasting System (IFS) at ECMWF, horizontal resolution is expressed by
the cut-off spectral truncation number N of the spherical harmonics series expansion of the
prognostic variables. The spectral transform method has been successfully applied at ECMWF
for approximately 30 years, with the first spectral model introduced into operations in April 1983.
Spectral transforms on the sphere involve discrete spherical harmonics transformations between
physical (gridpoint) space and spectral (spherical harmonics) space. The spectral transform
method was introduced to NWP following the work of Eliasen et al. [4] and Orszag [5], who
pioneered the efficiency obtained by partitioning the computations. One part of the computations
is performed in physical space, where products of terms, the semi-Lagrangian or Eulerian
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advection, and the physical parametrizations are computed. The other part is solved in spectral
space, where the Helmholtz equation arising from the semi-implicit timestepping scheme can be
solved easily and horizontal gradients on the (reduced) Gaussian grid are computed accurately,
particularly the Laplacian operator that is so fundamental to the propagation of atmospheric
waves. The success of the spectral transform method in NWP in comparison with alternative
methods has been overwhelming, with many operational forecast centres having made the
spectral transform their method of choice, as comprehensively reviewed in [6].

A spherical harmonics transform is a Fourier transformation in longitude and a
Legendre transformation in latitude, thus keeping a latitude–longitude structure in gridpoint
space. The Fourier transform part of a spherical harmonics transform is computed
numerically very efficiently by using the fast Fourier transform [7,8] that reduces the
computational complexity to ∝O(N2 log N). However, the conventional Legendre transform has
a computational complexity ∝O(N3), and with increasing horizontal resolution the Legendre
transform will eventually become the most expensive part of the computations in terms of the
number of floating point operations and subsequently the elapsed (wall-clock) time required.
Owing to the relative cost increase of the Legendre transforms compared with the gridpoint
computations, very high-resolution spectral models were believed to eventually become
prohibitively expensive. However, the recent implementation of a fast Legendre transform (FLT)
[9] mitigates the concern about the disproportionally growing computational cost. FLTs are
a paradigm algorithm for trading formal accuracy for computational efficiency, following the
seminal work of Tygert [10,11], the algorithm for the rapid evaluation of special functions
described in O’Neil et al. [12] and the efficient interpolative decomposition matrix compression
technique described in Cheng et al. [13].

One issue that arises with the new emerging computing architectures is the mandatory
restriction of data movement across physically distant processors owing to its high cost in
terms of energy and wall-clock time. In this paper, the IFS at ECMWF is used to illustrate
some of the issues facing operational NWP while contributing to a better understanding of
future horizontal resolution increases, and where formal accuracy may be traded for enhanced
numerical efficiency. For example, in IFS, the only mechanism to compute horizontal derivatives
is via the global spectral transforms. Hence, if sufficiently accurate local derivative computations
can be constructed outside spectral space, the remaining use of the spectral representation would
be the solution of the semi-implicit linear problem (the nonlinear residual is computed explicitly
in gridpoint space) including the trivial representation of the horizontal Laplacian of a variable,
∇2ψ ≡ −(n(n + 1)/a2)ψ , where ψ is a spectral coefficient, a is the Earth’s radius and n is the total
wavenumber. The choice of the cut-off truncation wavenumber N is dictated by accurately (‘alias-
free’) representing linear or quadratic terms. Historically, this led to choosing the number of
longitudes along a given Gaussian latitude greater or equal to 2N + 1, and the number of latitudes
≥(2N + 1)/2 for the so-called linear grid [14], whereas ≥3N + 1 longitudes with ≥(3N + 1)/2
latitudes for the so-called quadratic grid [4,15,16]. In addition, a reduced grid is introduced [17],
where the number of longitudes is reduced towards the poles, keeping the relative distances
between points approximately constant, i.e. quasi-uniform. The reduction of the gridpoints with
increasing geographical latitude θ away from the equator follows the rule with 3Nr + 1 gridpoints
for the reduced number of waves Nr (see [18] and also §3 for more details). Notably, in IFS,
the number of Fourier modes on each latitude towards the poles is further optimized, reducing
proportional to 1/(2 + cos2(θ )), leading effectively to a linear grid for high latitudes with any
truncation choice. Thus, another important role of the spectral transform method emerges, the
process of ‘filtering’, and specifically on the sphere, where the transformation to spectral space
provides for an ‘ideal’ polar filter.

Given the relatively larger cost increase of the spectral computations with increasing
resolution, and the Legendre transforms in particular, there may be a case for solving the linear
global semi-implicit problem more cheaply by using fewer wavenumbers than dictated by the
linear grid choice. This hypothesis is explored in this paper by comparing the numerical efficiency
and the large-scale hemispheric meteorological forecast accuracy—the ultimate measure of
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success in NWP—for the linear, the quadratic and a newly formulated cubic grid representation
(as defined below) at very high resolution. Notably, the advection, right-hand-side forcing terms,
the subgrid-scale effects and also the perturbations used in ensemble forecasts are computed in
gridpoint space that would continue to increase in resolution, whereas the spectral truncation
remains constant or is increased more slowly. It is of particular interest how these choices
influence the effective resolution of the model.

The article is organized as follows. Section 2 describes experiments with FLTs using various
degrees of approximation in the FLT algorithm, while measuring the acceleration of the
computations and comparing the meteorological results. These results extend the analysis
provided in Wedi et al. [9]. Section 3 explores new options for the duality of gridpoint and spectral
space computations and their respective influence on efficacy. Finally, §4 draws some conclusions.

2. Experimenting with the fast spherical harmonics transform
Because the fastest numerical methods used in geophysical fluid dynamics scale linearly with the
number of gridpoints (i.e. proportional to N2), the cost of the Legendre transforms would not
be competitive at problem sizes with N = O(1000), and very high-resolution spectral models may
become prohibitively expensive. However, up to a resolution of approximately N = 2047, the very
high rate of floating point operations per second (flops) achieved in matrix–matrix multiplications
used within the spectral computations masks the ∝ N3 cost of this part of the IFS model. For
higher resolutions, the implementation of the FLTs into the spectral transform model IFS has been
shown to mitigate the increased computational cost by scaling according to O(N2 log3 N) [9].

FLTs represent a paradigm algorithm for trading formal accuracy and computational efficiency.
The essence of the so-called butterfly algorithm [11,12] is that matrices arising in part of the
summations may be compressed using an interpolative decomposition [13], such that

|Sr×s − Cr×kAk×s| ≤ ε, (2.1)

where matrix Cr×k constitutes a subset of the columns of matrix Sr×s and where matrix Ak×s
contains a k × k identity matrix with k being called the ε-rank of submatrix Sr×s [13,19]. The
parameter ε defines the accuracy required in the compression part of the algorithm. Wedi et al. [9]
find that with ε = 10−7 equivalent meteorological accuracy as measured in terms of hemispheric
root-mean square error (RMS) and anomaly correlation of 500 hPa geopotential height and other
parameters (not shown)—typically used to verify technical model changes—is obtained. Further
to the analysis presented in that paper, here we analyse more closely the effect of compression
accuracy and the impact on the efficiency of the computations. Table 1 summarizes these results.
Flop refers to the counted number of floating point operations used in a 48 h forecast for inverse
and direct transforms, respectively. All results shown in table 1 with the specified choices
for ε have an equivalent meteorological performance with the same RMS as defined above
when averaged over seven independent selected dates. A stronger compression does reduce the
computational cost further, but this does impair ultimately the meteorological forecast. We find
that while the number of floating point operations continues to reduce with successively lower
thresholds of ε, the dominant saving is already achieved with ε = 10−10. Notably, we do not find
any degradation in the meteorological result nor in global kinetic energy spectra (not shown)
with ε = 10−4 for the inverse transform only. Incidentally, the inverse transform is the most costly
part, because, in this step, the derivatives also are computed. By contrast, the direct transforms
are sensitive to the choice ε < 10−7. In [9], the model was shown to be numerically unstable
after 5 days of simulation with ε = 10−2, showing a build-up of energy at the tail of the kinetic
energy spectrum. This instability can be eliminated if the ε = 10−2 threshold is only used for the
inverse transform.

3. Gridpoint versus spectral computations
For ensemble-based uncertainty estimation in operational forecast centres, the execution speed at
which the ensemble members can be computed is critical. Often the individual forecast quality
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Table 1. Results for forecasts using FLTswith different compressionε (split into inverse anddirect transform; see text for details).

truncation N FLT εinv εdir flopinv (×107) flopdir (×107)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1279 no — — 46.4 33.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1279 yes 10−10 10−10 36.6 26.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1279 yes 10−4 10−7 34.2 24.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2047 no — — 249.6 181.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2047 yes 10−7 10−7 153.3 110.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2047 yes 10−4 10−7 147.1 110.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GP_DYN RAD

SP_DYN

WAMPHYSICS

LTRANSFTRANS

11%

4%
2% 3%

14%
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14%
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Figure 1. Cost distribution of a 10 day forecast at Tq1364 resolution (a) and the cost distribution at Tl2047 (b). Both forecasts
use the same number of gridpoints. The computations associated with spectral space (≈10% of the total), including the
transpositions from gridpoint to spectral to gridpoint, are FTRANS (Fourier transforms), LTRANS (Legendre transforms) and
SP_DYN (semi-implicit spectral computations). GP_DYN represents the semi-Lagrangian gridpoint computations (14%), RAD
are the radiation gridpoint computations (43%), PHYSICS represents the other physical parametrization calculations (23%),
and WAM is the cost of the ocean surface wave model. Although not visible in the percentages here, the cost of the spectral
computations is reduced by approximately 30% for the Tq1364 quadratic grid.

is degraded as a result, and the ensemble spread is larger. This effect compensates sometimes
for a tendency to have too little spread, or in other words, an over-confident forecast. On the
other hand, improving the quality of the forecast model for each individual ensemble member
leads to a sharper probability distribution and higher confidence in the forecast, accompanied by
a smaller spread. In order to improve the efficiency, while maintaining a high level of accuracy,
it is important to know where the computational effort is spent and where it should be spent.
Figure 1 illustrates the computational cost distribution of two simulations with the equivalent
number of gridpoints. Figure 1 refers to simulations with N = 1364 (figure 1a) and N = 2047
(figure 1b) spectral wavenumbers. The latter simulation is more expensive in the spectral part
of the computations by approximately 30%. Notably, about 60% of the cost is spent in gridpoint
space calculations with the largest part in the physics and radiation calculations. The simulations
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were coupled to a 0.1 degree wave model which is approximately doubling the resolution (and the
relative computational effort) compared with the operational configuration. Moreover, the cost
distribution is representative of a timestep when the radiation calculations are called. Typically,
the cost of the radiation is reduced by reducing the frequency (in time) of these calculations and
by reducing the grid on which these calculations are performed (a coarser grid corresponding to
Tl799 has been used in all simulations in this paper). However, both choices impact negatively
the meteorological performance, especially near coastlines with sharp gradients in radiative
properties and where the differences between different resolution grids are very apparent. The
Tq1364 refers to a quadratic grid simulation, where aliasing in the quadratic terms is avoided
by ensuring that the number of gridpoints used along equatorial Gaussian latitudes is not less
than 3N + 1. If aliasing in the terms involving triple products is to be avoided, the number of
gridpoints used should not be less than 4N + 1, leading to a cubic grid. The Tl2047 refers to a
linear grid simulation where the number of gridpoints used along equatorial Gaussian latitudes
is 2N + 1, thus admitting aliasing in quadratic and higher-order terms. For practical reasons, the
number of points along the Gaussian latitudes in the reduced grid (approx. outside of ±30 degrees
latitude) are always selected according to the 3Nr + 1 rule [18]. Consequently, east–west aliasing
for cubic terms in the cubic grid remains, and for the linear grid, east–west aliasing of quadratic
terms is removed in this way.

The linear grid has been used at ECMWF for decades [15] as the remaining aliasing could be
controlled by other means, such as horizontal diffusion or special de-aliasing filters. In return,
the higher spectral resolution offered substantial advantages. Most importantly, at moderate
horizontal resolutions, the orographic forcing, the representation of the meridional derivatives,
and the Laplacian operator could be enhanced in this way for little extra cost. However, at
ultra-high resolution, we find that the situation is reversed. The relative cost increase of the
Legendre computations combined with more costly de-aliasing procedures (see the difference
in flop in table 1 between Tl2047 and Tl1279) suggests that the quadratic or cubic grid may
be more efficient at higher resolutions. For example, at climate resolutions of Tl511 (or an
equivalent horizontal grid spacing of �≈ 39 km), the difference to the quadratic grid is 170
waves, which appears meteorologically significant—covering synoptic- and mesoscale—yet it
is computationally insignificant. However, at the next planned operational resolution upgrade
to Tl2047 (�≈ 10 km), the difference is 683 waves, and at the next resolution doubling Tl3999
(�≈ 5 km) the difference is 1333 waves. In both cases, the range of the last third of the spectrum
covers smaller and smaller—arguably less predictable—scales, and is subject to aliasing and
thus special filtering in the case of the linear grid. This raises the question if the additional
expense for higher spectral resolution is significant or even appropriate at these very high
resolutions. Recent evaluations of the effective resolution of NWP simulations suggest a range
of 6–8� [20,21], which is above the filter range of the quadratic grid (2–3�) [16] and the
cubic grid (3–4�).

On the other hand, we know from experimentation (not shown) that the representation of
orography is important and that the additional wavenumbers improve both the forecast and the
assimilation [15]. So far, the orography has been derived from a latitude–longitude representation
at 1 km resolution by first applying a band pass filter with a physical filter width equivalent to the
average distance of gridpoints in the target Gaussian grid (i.e. 16 km for the operational Tl1279
resolution). The resulting field (still on the original grid) is interpolated to the Gaussian grid and a
direct spectral transform is applied. In spectral space, the field is filtered with a high-order spectral
Butterworth-type filter to avoid aliasing at the smallest scales. Here, a new approach is adopted. In
order to benefit from orography information at relatively higher resolution (despite a nominally
lower truncation wavenumber for the quadratic grid), the underlying orography is derived
from the N = 7999 spectral representation of orography by spectral interpolation to N = 1364
and subsequent inverse transform to the corresponding Gaussian grid. Figure 2 illustrates how
the new approach retains more variance in the orography field compared with the orographies
derived previously, with the dotted line (Tq1364 from Tl7999) above both the standard Tq1364 and
the linear grid Tl2047 in the wavenumber range 700–1200. All simulations with the quadratic and
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Figure 2. Comparison of global orographic variance (power density spectrum in m2) at different horizontal resolutions. The
orographies using the standard procedure described in the text at Tq1364 (solid) and Tl2047 (dashed) resolutions are compared
with the Tq1364 (dotted) orography derived by spectral interpolation from the Tl7999 orography. (Online version in colour.)

cubic grid in the following are done with the newly derived orographic field. One might think
that the same new approach could be used for the linear grid simulations such as Tl2047, but
this is not the case. The higher variance conflicts with the de-aliasing filter used for the linear
grid and it is much more difficult (if possible at all) to control the aliasing in this case. As a
result, this leads to unrealistic spectral blocking at the end of the spectrum and worse forecast
skill (not shown). The effect of the orographic forcing can also be seen in the global horizontal
kinetic energy spectra derived from the vorticity and divergence at different vertical levels after 5
days of simulation. Figure 3 compares the spectra of the Tc1023 and the Tl2047 simulations with
a higher resolution reference simulation at Tl3999. Figure 3a is near the surface and figure 3b at a
model level at approximately 500 hPa. The low wavenumber range is identical and only the high
wavenumber part is shown in figure 3. The k−5/3 spectrum is clearly visible near the surface but
less pronounced in the mid-troposphere. In both cases, the cubic grid Tc1023 evinces a higher
effective resolution in the 300–900 wavenumber range, assuming that the Tl3999 represents the
best estimate of the expected ‘truth’ and based on the experience that the high wavenumber part
of the horizontal kinetic energy spectrum asymptotes towards higher amplitude with increasing
horizontal resolution (see also fig. 5 in [9]). The increase in amplitude in the 300–900 wavenumber
range despite coarser spectral truncation indicates the importance of the increase in resolution
in gridpoint space. Comparing the Tq1364 and the Tl2047 with both using the same number of
gridpoints (not shown), both appear very similar up to the point where de-aliasing filters and/or
horizontal diffusion act (the last third of the spectrum in the linear grid case). This is in particular
the case with the new way of deriving the orography. However, comparing upper tropospheric
spectra of the Tc1023 and Tl2047 simulations (not shown), the slopes extend in the linear grid case
beyond the cubic grid truncation along the same slope, suggesting more effective resolution for
the higher (linear grid) wavenumber simulation.

The spectra would suggest that increasing the number of gridpoints is beneficial even if
gridpoint-vertical-column calculated physical parametrizations are used to represent subgrid-
scale diabatic forcings. On the contrary, not much may be gained for the larger-scale upper
tropospheric motions by the use of the linear grid compared with the quadratic grid. But when
comparing with the Tl3999, energetically significant differences can be seen at wavenumbers
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Figure 3. Horizontal kinetic energy (KE) spectra plots. Comparison of global spectra after 5 days of simulation for the resolutions
Tc1023 and Tl1279 at the lowest model level≈10 m height (a) and at a mid-tropospheric model level≈ 500 hPa (b). The cubic
grid Tc1023 evinces a higher effective resolution despite a lower spectral truncation, indicating the importance of the increase
in resolution in gridpoint space and the revised derivation of the underlying orography. For reference, the spectra of a Tl3999
simulation after 5 days (albeit for a different date) are also shown. (Online version in colour.)

much less than the nominal resolution of the other simulations, implying a general need for
continued resolution increases in the future. The picture is incomplete since figure 3 only shows
the horizontal kinetic energy, and the differences could suggest a substantial repartition of
vertical and horizontal energy that depends on the model resolution and how the physical
parametrizations are able to emulate the subgrid scale effects driving this repartition and any
potential upscale effects.

In the following, we investigate the sensitivity to increasing the horizontal resolution in the
gridpoint space part of the computations only. Technically, in the experiments, the number of
gridpoints are actually kept constant, while using successively lower spectral truncations. All
simulations start with the same Tl1279 initial conditions and are conducted with 137 vertical
levels. The different simulations are summarized in table 2 comparing the cost and effect.
The number of gridpoints in the table refer to a single model level. All simulations ran on the
IBM Power 7 supercomputer using 256 MPI tasks with each using 16 OMP threads, equalling
4096 compute tasks in each simulation. As illustrated in table 2, the robustness of the quadratic
grid may be stretched further, by increasing the timestep of the simulation compared with
the linear grid one. The size of the timestep plays a crucial role in the success of NWP and
climate, where limits due to fast but energetically insignificant waves have been removed by
semi-implicit timestepping, and where the advective Courant–Friedrichs–Lewy limit has been
substantially enhanced by the semi-Lagrangian advection algorithm. We postulate that ‘large
timestep’ solutions continue to be an important aspect of efficient NWP and climate integrations
as long as the physically relevant and resolved time scales remain larger. In the following
comparison, the Tl2047 simulations use a (experimentally determined) maximum permissible
timestep �t = 450 s, and two Tq1364 simulation series are done with timestep �t = 450 s and
�t = 600 s, respectively. Equivalent control simulations have been done with the currently
operational resolution Tl1279 using�t = 600 s. The combination of the reduction in the truncation
and the increase in the timestep size leads to a significant overall speedup in terms of achieved
forecast days per day of 44%. Notably, the ratio of the simulated forecast days per real day
(FCday) is reduced by slightly less than half when increasing the number of gridpoints by a
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Table 2. Comparison of linear Tl1023, Tl1279, Tl2047, quadratic Tq1364 and cubic Tc1023 grid simulations on 4096 tasks on the IBM
Power 7 (the lowest resolution grid simulation Tl1023 used 2048 tasks). Mean values for the anomaly correlation (acc Z500) of
the 500 hPa geopotential surface and root-mean square error (RMS T850) of the 850 hPa temperature surface are representative
for the Northern Hemisphere after 8 days. All data of these simulations are stored in the ECMWFMars data archive.

truncation N FC per day �t (s) no. gridpoints acc Z500 (%) RMS T850 (K)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tl1023 225 600 1 373 624 65.36 3.72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tl1279 359 600 2 140 702 64.76 3.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tl2047 117 450 5 447 118 64.29 3.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq1364 131 450 5 447 118 65.48 3.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq1364 169 600 5 447 118 65.48 3.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tc1023 173 600 5 447 118 65.95 3.66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tc1023 196 720 5 447 118 64.80 3.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

factor ≈2.5, while changing the spectral resolution from Tl1279 to Tq1364, indicating a near-linear
scaling with the number of gridpoints and with the number of timesteps. In addition, two sets
of simulations have been done with the newly generated Tc1023 cubic grid, using �t = 600 s and
�t = 720 s, respectively. These results are also summarized in table 2 indicating an equivalent or
better hemispheric meteorological performance and a further speedup in FCday. These may also
be compared with the results of a Tl1023 linear grid, where the spectral truncation is kept constant
but the number of gridpoints is approximately one-quarter of the cubic grid.

The meteorological accuracy is measured in terms of northern hemispheric RMS (figure 4a–c),
and northern hemisphere anomaly correlation (acc) of the 500 hPa geopotential height surface
(figure 4d–f ) and other parameters (see also table 2). The data of all simulations have been
truncated to the same N = 120 prior to calculating the scores. The results show two aspects. First,
with the same high-resolution physical grid (�≈ 10 km), we find neutral or improved results
for the simulations with relatively coarser spectral truncation (quadratic or cubic) compared
with the linear grid. Second, with a higher resolution physical grid, (�≈ 10 km) compared with
(�≈ 16 km), and similar spectral truncation, Tc1023 and Tq1364 compared with Tl1279, we also
find improved RMS and acc scores. The improvement in scores is further confirmed by comparing
the Tc1023 with the Tl1023 simulations (see also table 2) with physical grids (�≈ 10 km) and
(�≈ 20 km), respectively. Over the series of 27 selected forecast dates some values are reaching
significance at the 95% level (bars above the zero line), despite the relatively short series. As
can be seen from table 2, the skill is still high at day 8 with an average of approximately 65%
anomaly correlation for the 500 hPa geopotential surface. Moreover, we find that near surface
parameters such as the forecast significant wave height improve in the medium-range forecast
with the quadratic and cubic grid simulations (not shown), moving closer to the verifying
analysis. The series is perhaps too limited to conclude generally on the relative performance
of either grid/resolution configuration, especially because all forecasts start from the same
resolution initial conditions and do not include corresponding changes in the assimilation system.
Nevertheless, for the purpose of this paper, it clearly underlines the message that trading some
formal resolution and numerical accuracy at the smallest scales for computational and ultimately
energy efficiency in ensemble-based uncertainty estimation is possible in various ways. Based on
these results, increasing the resolution more rapidly in gridpoint space than in the corresponding
spectral space emerges as a compelling concept for increasingly higher resolutions, in contrast to
the practice in the past years. In gridpoint space, the forcings, the subgrid-scale effects and also
the perturbations used in ensemble forecasts are computed, leading to relatively more spatial
variability in these fields commensurate with the observations. Interestingly, the idea could
also be used to initialize a cubic grid ensemble forecast with a high-resolution surface analysis
without the need to interpolate the surface initial conditions, and thus eliminate the associated
degradation due to interpolation.
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Figure 4. 500 hPa geopotential height root-mean square error (a–c) and anomaly correlation (d–f ) in the Northern
Hemisphere comparing the experiment (exp) Tl2047, Tq1364, and Tc1023 simulations against the control (ctrl) linear grid
configuration Tl1279 for a series of 27 forecasts with different initial dates (every 15 days) for the period 20 August 2012–
1 September 2013. The line graph shows the mean difference of experiment minus control normalized by the mean of both.
The sign of the differences is chosen such that positive values always indicate that the experiment is better than the control.
Confidence intervals (bars) are computed according to the t-test with a specified 95% confidence interval. (Online version
in colour.)
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4. Conclusion
ECMWF plans to implement a global horizontal resolution of approximately 10 km by 2015 for its
assimilation and high-resolution forecasts, and approximately 20 km for the ensemble forecasts.
The benefit of using the FLTs with enhanced compression in this resolution range is found to be
limited. Moreover, the results show that the primary effect of reducing the computational effort is
already achieved with a tiny non-zero ε. With further compression, the inverse transforms have
been found to be less sensitive to a lower ε than the direct transforms. The efficiency gain in
the floating point operations required by using the FLTs is substantial, but up to Tl2047 the gain
in terms of wall-clock time is relatively small. The scales resolved in the simulations presented
in this paper are still hydrostatic and questions remain about the importance of resolving
the repartition of energy due to convective motions rather than parametrizing their effect in
medium-range forecasts. It has been found that the efficiency and accuracy of the hydrostatic,
semi-Lagrangian, semi-implicit solution procedure using the spectral transform method may
be enhanced substantially by moving to the quadratic or cubic grid equivalents at these and
higher resolutions. Notably, a substantial increase in efficiency of the cubic grid compared with
the linear grid can be expected in the future from the corresponding reduction in the cost of
transpositions and their associated parallel communications at larger processor counts. Especially,
when combined with local calculations (e.g. of derivatives) in gridpoint space, the spectral semi-
implicit solution procedure may be viewed as a small-scale filter, and an even further reduction of
the wavenumbers involved (e.g. using a cubic or quartic grid) may be permissible as long as the
relevant (large-scale) wave motions are sufficiently accurately captured. The Tc1023 simulations
presented here are a first step in this direction with a smallest half-wavelength of 20 km in
spectral space and a 10 km spacing in gridpoint space. For the high resolutions presented in
this paper, with either keeping the grid constant or keeping the spectral truncation constant, the
combination of a relatively coarser spectral truncation and a finer physical grid is meritorious. It
is speculated that the mathematically correct filtering of aliased noise, the higher resolution in the
computation of all nonlinear right-hand-side forcings and the relatively smaller physical distance
of the interpolation stencil, associated with less damping in the semi-Lagrangian interpolations,
contribute to this positive result. In addition, the parametrized physical forcings and surface
interactions are calculated at relatively higher resolution. Notably, all moist quantities remain
in higher resolution gridpoint space throughout the simulation. While Lander et al. [22] argued
for a coarser ‘physics’ grid on the basis that parametrizations may be forced wrongly by poorly
resolved flow features, their basic idea is not necessarily contrary to the results presented here.
Horizontal divergence and thus the resolved vertical velocity ω are notably filtered to the
coarser spectral truncation which in return provide feedback to the physical parametrizations,
e.g. convection.

In conclusion, horizontal resolution increases in NWP and climate prediction are likely
to continue to provide improvements in forecast quality and offer new opportunities for
uncertainty estimation. However, blunt increases are not a panacea without adjusting the
numerical techniques applied and are likely to be unaffordable or, worse, they may not lead
to the desired improvements. To the contrary, the simulations may become illusory in that
they provide solutions that appear more realistic, but potentially with impaired predictability.
Thus, merely facilitating scalability through code adaptation is unlikely to be sufficient for
successful future global NWP and climate predictions. Overall, the results presented here pose
interesting new questions about the nature of linear and nonlinear multi-scale interactions in the
atmosphere and how they are best represented and solved for in global simulations of weather
and climate.
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