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ABSTRACT

It is demonstrated that the Eulerian and the Lagrangian descriptions of fluid motion yield the same form
for the mean wave-induced volume fluxes in the surface layer of a viscous rotating ocean. In the Eulerian
case, the volume fluxes are obtained in the familiar way by integrating the horizontal components of the
Navier–Stokes equation in the vertical direction, as seen, for example, in the book by Phillips. In the direct
Lagrangian approach, the perturbation equations for the second-order mean drift are integrated in the
vertical direction. This yields the advantage that the form drag, which is a source term for the wave-induced
transports, can be related to the virtual wave stress that acts to transfer dissipated mean wave momentum
into mean currents. In particular, for waves that are periodic in space and time, comparisons between
empirical and theoretical relations for the form drag yield an estimate for the wave-induced bulk turbulent
eddy viscosity in the surface layer. A simplistic approach extends this analysis to account for wave breaking.
By a generalization from a wave component to a wave spectrum, a set of equations for the wave-induced
transport in the surface layer is derived for a fully developed sea. Solutions are discussed for an idealized
spectral formulation. The problem is formulated such that a numerical wave prediction model can be used
to generate the wave-forcing terms in a numerical barotropic ocean surge model. Results from the numeri-
cal simulations with a wave-influenced surge model are discussed and compared with similar results from
forcing the surge model only by the traditional mean horizontal wind stress computed from the 10-m wind
speed. For the simulations presented here, the wave-induced stress constitutes about 50% of the total
atmospheric stress for moderate to strong winds.

1. Introduction

It is a well-known fact that surface waves carry mean
momentum (Stokes 1847). For monochromatic waves
in a viscous nonrotating fluid, the pioneering paper on
this subject is Longuet-Higgins (1953). He applied an
Eulerian fluid description with curvilinear coordinates
to solve this problem. For a direct Lagrangian approach
to wave drift in a rotating ocean, earlier treatments are

found in Chang (1969), Ünlüata and Mei (1970), and
Weber (1983). Also, the generalized Lagrangian mean
formulation of Andrews and McIntyre (1978) can be
applied to this problem.

Numerical general ocean circulation models (GCMs)
are widely used to predict oceanic motions caused by
the wind. Such models are usually based on an Eulerian
description of motion. Furthermore, they often assume
hydrostatic balance in the vertical, and accordingly they
do not capture wind-induced surface waves. Even non-
hydrostatic models do not resolve surface waves, or
they lack the forcing conditions that allow the genera-
tion of wind waves. Thus, it is not expected that such
models would include the mean drift resulting from pe-
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riodic wave motion. As pointed out by McWilliams and
Restrepo (1999), GCMs may underestimate the cur-
rents by taking only the mean horizontal wind stress
into account, yielding the traditional Ekman current.
One often asks if the Eulerian approach is capable of
determining the total mean wave-induced current, be-
cause the Stokes drift in this case is confined between
the wave crests and the wave troughs at the surface
(Phillips 1977). The aim of the present paper is to com-
pare results for the wave-induced drift obtained by an
Eulerian and a Lagrangian analysis. To determine the
wave-drift current in the entire fluid column from an
Eulerian approach is rather laborious (e.g., Longuet-
Higgins 1953), while it is fairly simple to do so from a
direct Lagrangian starting point (Weber 1983). We
shall therefore be content with making this comparison
for the mass or volume fluxes in the oceanic surface
layer. In this case the Eulerian approach is the simplest.
Here we extend Phillips’ (1977) analysis to a viscous
rotating ocean. For a simplified ocean with constant
(eddy) viscosity we can use earlier results (e.g., Weber
and Melsom 1993a) to obtain the mean Lagrangian
fluxes. This approach yields the additional bonus that
an explicit expression for the form drag is obtained. For
simplicity, we consider periodic waves with amplitudes
that vary slowly in time and space separately. Earlier,
Jenkins (1986, 1987) treated these cases simultaneously.

This paper is organized as follows: First we compare
the results for the mass fluxes derived by Eulerian and
Lagrangian starting points in a viscous rotating ocean
when the waves are 1) spatially periodic with ampli-
tudes that may vary slowly in time, and 2) temporally
periodic with amplitudes that may vary slowly in space.
Then we derive a general set of equations that includes
both these cases for a single wave component along the
x axis. This set of equations is generalized to a spectral
formulation, where the wave-forcing terms are evalu-
ated for a theoretical one-dimensional frequency spec-
trum for a saturated sea. Last, we formulate our wave-
influenced mass flux problem for a two-dimensional
wave spectrum that can be obtained from an opera-
tional wave prediction model. The wave-induced forc-
ing terms computed from this model drive a numerical
barotropic ocean surge model. Results from this model
are compared with results from similar simulations us-
ing the wind stress computed from the 10-m wind speed
(Large and Pond 1981).

2. The Eulerian approach

We consider plane waves that propagate along the x
axis in a Cartesian coordinate system, where the x and
y axis are situated at the undisturbed sea surface (see

Fig. 1). The z axis is vertical and directed upward. The
corresponding unit vectors are (i, j, k), respectively.
Our system rotates with constant angular velocity f /2
about the z axis, where f is the Coriolis parameter. We
first consider a traditional Eulerian description where
the velocity v � (u, �, w) and the pressure p are func-
tions of time t and the spatial coordinates (x, y, z). The
Navier–Stokes equation and the continuity equation for
a viscous, rotating fluid of constant density can be writ-
ten as

��v�t� v · ���v� � f k� ��v� � ��p� �gk� ��2v and

�1�

� · v � 0, �2�

where � is the density, 	 is the dynamic viscosity, and g
is the acceleration due to gravity. Furthermore, 
 and



2
are the gradient and Laplacian operators, respec-

tively. In the real ocean the presence of turbulence, and
its generation, maintenance, and interaction with the
mean flow are not known in detail. There are elaborate
models for some of these problems, but they are often
highly speculative. However, we know that laminar
waves propagating in a turbulent fluid suffer attenua-
tion (Ölmez and Milgram 1992). To model this effect in
the simplest possible way, we make the traditional
Boussinesq approximation of isotropic turbulence with
a constant eddy viscosity, that is, all of our variables in
(1) and (2) are averages and do not contain turbulent
fluctuations. Hence, the entire effect of turbulence is
embedded in the value of the viscosity coefficient in (1),
hereinafter referred to as the dynamic eddy viscosity.

The wind and waves in our problem are directed
along the x axis, and we assume that the variables are
independent of y. We follow Phillips’ (1977) approach,
and integrate the horizontal components of (1) between
a constant depth z��H, where the viscous stresses are
assumed to vanish, and the material surface z � �(x, t);

FIG. 1. Sketch of the ocean layer.
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see Fig. 1. The surface layer is assumed to be so deep
that it encompasses the Ekman layer as well as the
deep-water wave field. In practice H will be compa-
rable to the Ekman depth DE � �(2
/f )1/2 in the open
ocean, where 
 � 	/� is the kinematic eddy viscosity.

Utilizing the kinematic boundary condition at the
free surface (e.g., Phillips 1977), we find

Qt
�x� � fQ�y� � �Qxx

�x� � ���
�H

�

��uu� p� dz�
x

� p����x,

� ��uz� u�xx� 2ux�x�z�� �3�

and

Qt
�y� � fQ�x� � �Qxx

�y� � ���
�H

�

�u� dz�
x

� ���z � ��xx � 2�x�x�z��. �4�

Here subscripts denote partial differentiation. The
mass transport components are defined as

Q�x� � �
�H

�

�u dz and Q�y� � �
�H

�

�v dz. �5�

It is worth pointing out that the mass transport compo-
nents in (5) include the Stokes drift, because the inte-
gration is carried out to the undulating surface. Accord-
ingly, Q(x) and Q(y) represent the Lagrangian mass
transport.

The dynamical condition at the surface becomes sec-
ond order in the wave steepness (neglecting the effect
of surface films),

��t� � ��n��x���uz�wx�� p�x� 2�ux�x and z� ��x, t�.

�6�

Here �(t) is the tangential wind stress and �(n) is the
normal wind stress along the sea surface. Utilizing (6),
(3) and (4) reduce to

Qt
�x� � fQ�y� � �Qxx

�x� � ���
�H

�

��uu � p� dz�x � ��t�

� ��n��x � ��wx � u�xx�z�� �7�

and

Qt
�y� � fQ�x� � �Qxx

�y� � ���
�H

�

�uv dz�x� ���v�x�x�z��.

�8�

To second order in wave amplitude, utilizing (2), the
last term in (7) becomes

�wx � u�xx�z�� � �wx�z�0 � �wxz�z�0� � �u�xx�z�0

� �wx�z�0 � ��uxx� � u�xx�z�0. �9�

Here the last term vanishes identically for a wave com-
ponent. For high-frequency wind waves along the x

axis, the velocity component in the y direction is very
small, which means that the friction term in (8) can be
neglected. Similarly, the friction term 	wx(z � �) in (7)
is small. It practically vanishes when averaged over the
wave cycle. Hence, to O(�2),

Qt
�x� � fQ�y� � �Qxx

�x� � ���
�H

�

��uu � p� dz�x

� ��t� � ��n��x and �10�

Qt
�y� � fQ�x� � �Qxx

�y� � ���
�H

�

�u� dz�x. �11�

The mean mass transport will be obtained from these
equations by averaging over one wave cycle.

In a recent paper Ardhuin et al. (2004) discuss the
mean mass transport by integrating the Eulerian equa-
tions in the vertical from the ocean bottom to the free
surface. Like Hasselmann (1971), they define their
mean flow by integrating the horizontal mean velocity
to the position of the mean sea level, and the wave part
(the Stokes mass transport) by the averaged integral of
the velocity from the mean sea level to the position of
the free surface. In this way the correlation between the
variable air pressure and the free surface slope becomes
a part of the forcing of the Stokes mass transport. In
addition, Ardhuin et al. do not apply the dynamic sur-
face boundary conditions, which introduce the normal
and tangential surface stresses into the problem. In this
way the role of the form drag [averaged last term on the
right-hand side of (10)] as the main source term for the
total wave-induced mean mass transport is obscured.
We think that Phillips’ (1977) formalism, as used here,
is the most convenient method for describing the total
mean mass transport resulting from wind and waves in
an Eulerian context.

We consider first waves that are periodic in x. The
amplitude is spatially homogeneous, but may grow or
decay slowly in time. By averaging over one wave-
length, (10) and (11) reduce to

�Q

�t
� if Q � ��t� � ��n��x. �12�

Here we have defined the complex mass transport as
Q � Q(x) � iQ(y), where i is the imaginary unit. In (12)
the mean tangential wind stress is essentially respon-
sible for the traditional Ekman transport. We are par-
ticularly interested in the wave-induced part of the
mean transport. This is basically related to the action of
the form drag �D, defined as

�D � � ��n��x. �13�
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Here the fluctuating air pressure dominates in the ex-
pression for �(n) (Phillips 1977). Also, a fluctuating tan-
gential viscous stress in the air (skin friction) may give
rise to wave growth (Lamb 1932). However, the skin
friction in phase with the surface elevation appears to
be a minor factor in transferring energy from the wind
to the wave field under realistic conditions (Chalikov
and Makin 1991). The Ekman transport forced by �(t) is
well discussed in the literature and will not be treated
here. Separating the fluxes in the linear Eq. (12) as Q�
QEkman � Qwave, we may introduce wave-induced vol-
ume fluxes (U, V) such that

�U �Qwave
�x� and �V �Qwave

�y� . �14�

From (12) the total flux resulting from spatially peri-
odic waves in a viscous rotating ocean forced by �D can
then be written, with W � U � iV, as

�W

�t
� if W � �D��. �15�

The wave-induced fluxes in (15) include both the
Stokes drift and the wave-induced Eulerian mean mo-
tion. Accordingly, (15) expresses the Lagrangian vol-
ume transport derived from the Eulerian equations. We
realize from (15) that for no wind (�D � 0), that is,
decaying waves, the mass transport is zero when aver-
aged over one inertial cycle; see Weber (1983), who
derived this result from a direct Lagrangian approach.
For waves in the absence of friction, this was first shown
by Hasselmann (1970). In a nonrotating viscous ocean
( f � 0) with no wind, we find that the total mean wave
momentum must be conserved. This means that the
decaying Stokes drift, which in an Eulerian description
is confined between the wave crests and the wave
troughs, induces a compensating mean Eulerian current
in the fluid.

The mean Eulerian and Stokes drift contributions are
recognized straight away in the present approximation
by writing the integrals in (15) for the wave-induced
drift as

�
�H

�

u dz� �
�H

0

u dz� �
0

�

u dz� �
�H

0

u dz� �u��z�0

and

�
�H

�

	 dz� �
�H

0

	 dz� �
0

�

	 dz� �
�H

0

	 dz� �	��z�0.

�16�

When averaged, the first term on the right-hand side
yields the mean Eulerian volume flux. The average of
the second term is the volume transport due to the
Stokes drift (US, VS), as easily can be seen by inserting

for a linear wave component (e.g., Longuet-Higgins
1953). The averaged procedure (16) corresponds basi-
cally to the subdivision made by Hasselmann (1971). In
the present problem the Stokes transport becomes

US � 
�̂2�2 and VS � 0, �17�

where � is the angular wave frequency and �̂ is a wave
amplitude that is allowed to vary slowly with time (slow
relative to the wave period 2�/�). Accordingly, if we
write the averaged integrals in (16) as

U � UE � US and V � VE, �18�

we find from (15) that

�WE

�t
� if WE �

�D

�
�

�US

�t
� if US. �19�

Here, WE � UE � iVE. We realize that the Stokes
transport terms ��US/�t and �fUS appear as forcing
terms in the x and y directions, respectively, in this
equation for the wave-induced Eulerian transport.
However, it is somewhat deceptive to regard the prob-
lem in this way. The important fluxes in the oceanic
surface layer affecting the mass balance are the
Lagrangian fluxes, that is, in general (UE � US, VE �
VS). As shown by (15), the only forcing term in the
spatially periodic wave-drift problem is the form drag.

3. Lagrangian approach

In the Lagrangian description a fluid particle is asso-
ciated with its initial coordinates (a, b, c). The particle
position at later times (X, Y, Z) and the pressure P will
then be functions of a, b, c, and time t. Velocity com-
ponents and acceleration are given by (Xt, Yt, Zt, ) and
(Xtt, Ytt, Ztt), respectively. For plane waves along the x
axis, the deviations (x, y, z, p) from the initial state will
not depend on b. We then may write

X � a � x�a, c, t�, Y � b � y�a, c, t�,
Z � c � z�a, c, t� and P � ��gc � p�a, c, t�. �20�

For convenience, we introduce a complex horizontal
velocity q � xt � iyt. By including the effect of the
earth’s rotation, the equations for the conservation of
momentum and mass can be obtained from Lamb
(1932). With the present notation, the momentum
equations become, to second order in wave steepness,

qt � if q � ��L
2 q � �

1
�
�p � �gz�a �

1
�

J�p, z�

� ��J�qa, z� � J�x, qc� � J�q, z�a � J�x, q�c� and

�21�
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ztt � ��L
2 zt � �

1
�
�p � �gz�c �

1
�

J�x, p� � gJ�x, z�

� ��J�zta, z� � J�x, ztc� � J�zt, z�a

� J�x, zt�c�, �22�

where 
2
L � �

2/�a2 � �2/�c2 is the Laplacian operator in
Lagrangian coordinates, and J(A, B) � AaBc � AcBa is
the Jacobian. The conservation of mass (here volume)
leads to

xa � zc � �J�x, z�. �23�

In the Lagrangian formulation the free material sur-
face is given by c� 0. When averaging in time or space,
we then obtain

�
�H

0

q dc � �
�H

0

q dc. �24�

We can therefore integrate the mean drift equations to
second order in the wave steepness to obtain the de-
sired equations for the volume fluxes, that is, we can
use the results of Weber and Melsom (1993a) [their
(3.8) with constant eddy viscosity]. Disregarding the
traditional Ekman flow (i.e., the flow driven directly by
frictional wind stress), we find for spatially periodic
waves that

�

�t ��H

0

q dc� if�
�H

0

q dc� �Br� ��
�
2�0
2 exp�2�t�,

�25�

which is (7.5) of Weber and Melsom (1993a). Here � is
the wave growth/decay rate, and �0 is the initial wave
amplitude. The real coefficient Br is related to the vor-
ticity part of the primary wave field. Neglecting the
effect of the tangential fluctuating wind stress in phase
with the surface elevation, which is of minor influence
in comparison with the fluctuating wind stress in phase
with the surface slope in the wave generation process,
we find that

Br � k2��2. �26�

Here k is the wavenumber, and � � (�/2
)1/2 is the
inverse viscous boundary layer thickness at the surface.
The form drag in this problem can be written

�D � �
̃z̃a, c � 0, �27�

where �̃ is the real part of the fluctuating wind stress
component normal to the sea surface, and z̃ is the real
part of the vertical displacement of the primary wave
field. Inserting for the primary wave field from Weber
and Melsom (1993a), we find that

�D � ���



�

k2

�2�
2�0
2 exp�2�t�. �28�

From (26) and (28) we realize that (25) can be written

�

�t ��H

0

q dc � if�
�H

0

q dc � �D��. �29�

To second order in wave amplitude, (29), for the mean
Lagrangian volume fluxes resulting from spatially peri-
odic wave motion, is identical to (15), which was ob-
tained from an Eulerian analysis.

In the present Lagrangian approach, we have solved
the linear wave problem in the ocean, derived the equa-
tions for the mean drift, and integrated these equations
in the vertical. This yields the advantage that we have
obtained an expression (28) for the form drag that con-
tains wave parameters. For example, for vanishing form
drag (purely damped waves), we obtain from (28) the
well-known result for the attenuation rate, � � �2
k2.
The form drag (28), with �̂ � �0 exp(�t), can also be
written

�D �
�

�t
��US� � �w, �30�

where �US � ���̂
2/2 is the total horizontal wave mo-

mentum, and �w is the virtual wave stress originally
introduced by Longuet-Higgins (1969). It can be writ-
ten [Weber 1997, his (77)] as

�w � 2��k2
�̂2. �31�

Here we interpret 
 as the bulk turbulent eddy viscos-
ity. We see right away from (30) that for purely decay-
ing waves (�D � 0)

�
0

�

�w dt � �US�t � 0�. �32�

In this case the virtual wave stress acts to transfer the
entire lost mean wave momentum into an Eulerian cur-
rent. For a steady sea state, the form drag and the vir-
tual wave stress have equilibrium values that balance;
that is, from (30),

�D
�eq� � �w

�eq� � 2��k2
�0
2. �33�

Although the computations involved up to now are
based on the assumption of a well-defined material
wavy sea surface, we allow that the eddy viscosity in
(31) may contain a contribution from breaking or white
capping. This means that the virtual wave stress �w

transfers the lost wave momentum from all kind of dis-
sipative processes.

2110 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



From experimental data Phillips (1977) suggests that
the amplitude of the air pressure variation pam over a
smooth wave component can be approximated by

pam � 0.05�au10
2 k�0, �34�

where �a is the density of the air and u10 is the wind
speed at 10-m height. Hence, we can write the form
drag (27) over a wave component as

�D � p̃z̃a � 2.5 � 10�2�au10
2 k2�0

2. �35�

Combining (33) and (35) we obtain

� � 1.25 � 10�2s
u10

2



, �36�

for the bulk eddy viscosity in the surface layer, where
s � �a/�. Associating the wave component in question
with the peak of the wind–wave spectrum, we have
approximately that �/k � u10 for this peak. Applying
the deep-water dispersion relation �2 � gk, (36) can be
written as

� � 1.25 � 10�2s
u10

3

g
. �37�

This relation yields reasonable values for the bulk eddy
viscosity associated with wave motion in a turbulent
ocean, for example, 
 � 15 cm2 s�1 for u10 � 10 m s�1

and 
 � 122 cm2 s�1 for u10 � 20 m s�1. For rougher
sea, where breaking occurs, the form drag is larger than
over a smooth wave (Banner 1990). Then (35) under-
estimates the value of the form drag. We shall return to
the effect of wave breaking on the eddy viscosity in
section 5.

4. Temporally periodic waves

For waves that are periodic in time, we go back to the
Eulerian formulations (10) and (11). We now allow the
wave amplitude to vary slowly in space (slow relative to
the wavelength), and we average the integrated equa-
tions over the wave period. The horizontal divergence
terms may now be calculated to second order in the
wave amplitude by utilizing the results from linear
deep-water waves and the pressure from integrating the
vertical component of (1) (e.g., Phillips 1977). We con-
sider a horizontally unlimited ocean and take the mean
surface gradient to be zero (�x � 0). Disregarding the
mean tangential wind stress, and considering only the
mean volume fluxes in (14) induced by temporally pe-
riodic wave motion, (10) and (11) finally reduce to

�W

�t
� if W �

�D

�
�

1
�

��Cg�US�

�x
. �38�

This equation is valid for an ocean that is much deeper
than the wavelength. In (38) the form drag �D is defined
by (13) and Cg � �/(2k) is the group velocity. In the
derivation of (38), we have neglected the small friction
terms 
Q(x)

xx and 
Q(y)
xx .

The last term on the right-hand side of (38) is the hori-
zontal divergence of the wave momentum flux. It is just
an alternative expression for the radiation stress intro-
duced by Longuet-Higgins and Stewart (1960). This
can be seen as follows: for deep-water waves the ra-
diation stress tensor ℜ � [R(mn)imin] of Longuet-Hig-
gins and Stewart (1960) can be written for a single wave
component as

R�mn� �
Elmln

2�l1
2 � l2

2�
, �39�

where l1 and l2 are the horizontal wavenumber compo-
nents, and E � MC is the wave energy density (Starr
1959). For waves along the x axis (l1� k, l2� 0) we find
that M� �US, and hence E� ��US/k. By insertion into
(39), it is then seen that the last term of the wave-
induced stress in (38) is just the remaining nonzero
component of the divergence of the radiation stress ten-
sor per unit density.

Equation (38) for the volume fluxes, induced by tem-
porally periodic waves, has also been derived from a
direct Lagrangian analyses by Weber [2003, his (4.11)],

�

�t ��H

0

q dc � if�
�H

0

q dc �
�D

�
�

1
�

��Cg�US�

�a
,

�40�

which is equivalent to (38). Because (40) was based on
vertical integration of the mean drift equations to sec-
ond order in the wave steepness, it gave the added
bonus that the form drag could be expressed in terms of
the wave parameters. For waves with no spatial decay,
�D becomes equal to the virtual wave stress �w, and the
relation (33) reappears.

For waves that are periodic in time and space, there
must be a balance between the energy input from the
wind and the viscous dissipation in the fluid. The rate of
energy input from the wind can be written as

��p̃z̃t�c�0 �



k
�p̃z̃a�c�0 � C�D. �41�

The numerical value of rate of energy dissipation D for
deep-water gravity waves with an uncontaminated sur-
face is determined by the irrotational part of the wave
field (Phillips 1977), and is given by

D � 2��
2k�0
2. �42�
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In a balanced state we obtain from (41) and (42)

C�D � D, �43�

which yields exactly the same form drag as in (33). The
work done by the form drag over one wave period T �
�/C in this case is thus given by

C�DT � ��D � TD. �44�

The physics behind this relation will be utilized in the
next section, where we consider breaking waves in a
fully developed sea.

Last, the cases of temporally and spatially modulated
wave amplitudes can be combined. This was first done
by Jenkins (1986), who calculated the mean Lagrangian
drift resulting from such waves. From his (3.3) and
(3.7), the form drag associated with temporally and spa-
tially modulated waves can be written in our notation as

�D � �w �
�

�t
��US� �

�

�a
�Cg�US�. �45�

We then realize that the equation

�W

�t
� if W �

�w

�
�

�US

�t
, �46�

for the mean Lagrangian volume fluxes, covers the
combined cases of temporally and spatially varying
wave amplitudes. We note that (29) and (39) follow
directly from (45) and (46) for the two different cases of
amplitude modulation. Equivalently, from (45), the
right-hand side of (46) can be expressed by the form
drag minus the radiation stress.

5. Effect of wave breaking: A simplistic approach

In a saturated sea state, the energy input from the
wind must essentially be balanced by dissipation in the
form of wave breaking. If the wave amplitudes before
and after breaking are �cr and �0, respectively, the en-
ergy lost per wavelength for an infinitely long wave
train during the breaking event is

�E �
1
2

�g�� cr
2 � �0

2�. �47�

Let the average time between breaking events be TB.
Then, by analogy with (44), this energy loss must be
compensated by the work done by the equilibrium form
drag, that is,

C�D
�eq�TB � �E. �48�

By assuming that the wave amplitude grows exponen-
tially in the time interval from post- to the next break-

ing, the relative energy lost during one breaking event
can be written (Melsom 1996) as

�e �
� cr

2 � �0
2

�0
2 � exp�2�TB� � 1, �49�

where � is the growth rate of the fastest growing waves.
From experimental data we find that

�



� K

U2

*
C2 , �50�

where U* is the friction velocity in the air. A typical
value for K is 1 � 10�2 (Plant 1982). Furthermore,
experimental observations indicate that �e lies between
10�2 and 10�1 (Melville and Rapp 1985). We then ob-
tain approximately from (49)

TB �
�e

2�
. �51�

By inserting the results above into (48), we obtain the
equilibrium form drag in the presence of white capping.
According to our previous results, this must equal the
equilibrium virtual wave stress that transfers this mo-
mentum to Eulerian flows. We then find

�D
�eq� � �w

�eq� � �cDKu10
2 k2�0

2. �52�

For a saturated sea state we typically have cD � 2 �
10�3 for the drag coefficient. We note the interesting
fact that this expression for the form drag has the same
functional dependence of the wind velocity and the
wave steepness as (35) for nonbreaking waves.

A crude estimate for the bulk eddy viscosity 
B as-
sociated with a breaking wave component can now be
obtained by combining (33) and (52). For the spectral
peak component this leads to

�B � cDK�u10
3

g �. �53�

With K � 1 � 10�2 and cD � 2 � 10�3, as suggested
above, the coefficient in (53) becomes 2 � 10�5. This is
about 25% higher than the corresponding value esti-
mated for smooth waves in (37), and appears to be a
reasonable result.

In fact, from purely dimensional grounds one would
expect the bulk eddy viscosity associated with wind-
generated gravity waves to scale with the friction ve-
locity U* in the air and g as U3

*/g, or equivalently as
u3

10/g, because U2

* � cDu2
10. This also follows from ap-

plying the law-of-the-wall distribution 
 � ��u*c for
the eddy viscosity in the ocean (Madsen 1977). Here �
is von Kármán’s constant and u* is the friction velocity
in the ocean (u* � s1/2U*). When integrating this dis-
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tribution in the vertical over one wavelength, we find
for the vertically averaged eddy viscosity that 
 � u3

10/g.
Based on analogy with grid-induced turbulence, Kitaig-
orodskii [1996, his (25)] obtained for the bulk eddy
viscosity in breaking waves in our notation

� � 2 � 10�4
u10

3

g
. �54�

However, this formula overestimates the bulk eddy vis-
cosity in the ocean; that is, a wind of 20 m s�1 would
yield 
 �1600 cm2 s�1. Breaking or white capping in the
open sea will increase the eddy viscosity, but not that
dramatically. We therefore argue that our (53) is much
closer to a realistic modeling of the magnitude
of the wave-induced eddy viscosity than (54). It should
be noted that the viscosity discussed here is relevant for
the transport of mean momentum, that is, for ocean
currents. For the wave field itself the appropriate eddy
viscosity should be considerably less (Jenkins 1989;
Weber and Melsom 1993a).

6. Spectral considerations for a fully developed sea

We now apply the general form (46) of the transport
equations, valid for sinusoidal waves with temporally
and spatially modulated amplitudes. In generalizing,
going from a single wave component to a fully devel-
oped sea, our wave amplitude must be associated with
the spectral distribution of the wave energy. Because
we here have considered plane waves along the x axis,
we shall be content with considering the one-
dimensional wave spectrum for illustrative purposes.
However, an extension to a two-dimensional spectrum
is straightforward. This is left for the next section where
we apply a wave prediction model.

In a fully developed sea the energy spectrum varies
only slowly in time and space around a mean saturated
state. Letting �2

0 � 2�(�)��, where � is the frequency
spectrum (Bye 1967), the equilibrium virtual wave
stress in (52) may be written in spectral form as

��w� �
2�cDKu10

2

g2 � 
4��
� d
, �55�

where {} denotes spectral average. The explicit slow
variations in time and space of the forcing terms are
given by the time derivative of the total wave momen-
tum and the negative horizontal divergence of the wave
momentum flux expressed in terms of the surface wave
spectrum. From (46) the equations for the wave-
induced average volume fluxes in a fully developed sea
can then be written as

�W

�t
� if W �

��w�

�
�

1
�

���Us�

�t
. �56�

In (56) the generalized wave momentum is given by

��US� � ��
��
� d
. �57�

The frequency spectrum, and its time and space depen-
dence, may be obtained from an ocean wave prediction
model (e.g., Komen et al. 1994). It is the wave-induced
fluxes from (56) that should be added to the mean wind
stress–driven fluxes from a general ocean circulation
model in order to obtain the total transports in the
oceanic surface layer.

For illustrative purposes we introduce the frequency
spectrum suggested by Toba (1973). It can be stated as

� �
�TgU*


4 . �58�

Field measurements yield a value of Toba’s constant �T

between 6 � l0�2 and 11 � 10�2 (Phillips 1985). The
expressions (55) and (57) will be integrated from the
peak spectral frequency �p to a high-frequency limit �h,
representing the upper tail of the spectrum (�h k �p).
Utilizing that �2

p � gkp, and �2
h � gkh � rg2/U2

*, where
r1/2 is a constant of order unity (Phillips 1985), we find
from (55) that

{�w} � 2��TcDr1�2Ku10
2 . �59�

By assuming that the spectrum locally adjusts to the
changes in the wind, we obtain from (57)

�{�Us}
�t

�
3��TcD

1�2u10
2

2g ��u10

�t �. �60�

First we check the ratio of the virtual wave stress (59) to
the total momentum flux at the sea surface, that is,

{�w}

�aU2

*
�

2�Tr1�2K

s
. �61�

Taking “middle of the road” values from Phillips (1985)
and Plant (1982), that is, �T� 8� 10�2, r1/2� 5� 10�1,
K � 1 � 10�2, and s � 1.25 � 10�3, we find that the
ratio (61) is about 0.6. This is the order of magnitude
one would expect for an ocean where the dissipation is
dominated by wave breaking (Mitsuyasu 1985; Melville
and Rapp 1985; Weber and Melsom 1993b).

To verify our hypothesis that the time-dependent
term in the generalized flux equation in (56) introduces
only minor deviations from the forcing by the virtual
wave stress, we consider an oceanic example where the
wind typically varies over a time scale Ts of about 12 h
(Ts � 0.5 � 105 s), while the length scale Ls of the wind
field is 500 km. The maximum wind speed u10 is taken
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to be 20 m s�1. Utilizing our adopted values for the
parameters, we find that

|�{�Us}��t |
{�w}

�
3

4cD
1�2r1�2K

�u10

gTs
� � 0.1. �62�

According to this, we could expect contributions of the
order of 10% from the time derivative of the total wave
momentum as compared with the action of the virtual
wave stress in the flux equations. A similar small con-
tribution comes from the radiation stresses if we use the
alternative description in (45) with the form drag minus
the radiation stress on the right-hand side of (56).

7. Model results

Here we apply an operational wave prediction model
to compute the various source terms in (56), while the
Lagrangian fluxes U and V are obtained by a numerical
simulation. First we introduce the two-dimensional fre-
quency spectrum F( , !). Here  � �/2�, and ! is the
angle of the wavenumber vector � with respect to the y
axis, measured positive in the clockwise direction, that
is, �� (� sin!, � cos!). For deep water, the equation for
the evolution of the wave spectrum becomes (Komen et
al. 1994)

�F ��, ��

�t
� Cg · �F ��, �� � Sin��, �� � Snl��, ��

� Sds��, ��, �63�

where the group velocity vector for deep-water waves is
defined by Cg � [C(x)

g , C(y)
g ] � (� sin!/�, � cos!/�).

Furthermore, Sin is the rate of energy input from the
atmosphere, Snl is the contribution from components of
different wavenumbers by nonlinear wave–wave inter-
action, and Sds is the wave energy dissipation.

We intend to apply (63) to generate the forcing terms
from real weather situations in a numerical barotropic
storm surge model. In that case we must include a mean
surface elevation h(x, y, t) and a variable air surface
pressure P0(x, y, t) into the model. We must also in-
clude some sort of bottom friction to dampen inertial
oscillations. Here we choose a linear Rayleigh friction
with a constant friction coefficient Rf . We take the
depth of integration to be considerably larger than the
wavelength of the most energetic surface waves, imply-
ing that we can apply deep-water wave theory. Extend-
ing our wave-forcing formulation in (56) to two dimen-
sions, the ocean surge model for a wave-influenced sur-
face stress can be written in vector form as

�V
�t
� fk�V�RfV�H��gh�P0����

1
�
��wind� �wave�

and

�h

�t
� � · V � 0, �64�

where V � (U, V). Furthermore �wind � [�(x)
wind, �(y)

wind] is
the horizontal wind stress. Its form will be specified
later. According to (46), the wave-induced stress com-
ponent is given by

�wave

�
�

{�w}
�
�

�{VS}
�t

. �65�

Here {} denotes the two-dimensional spectral average,
and VS � (US, VS) is the Stokes transport. For a single
wave component, we have in the present notation that
US � (��2

0 sin!)/2 and VS � (��2
0 cos!)/2. Associating

now the wave amplitude for a single component in the
spectrum by �2

0 � 2F( , !)� �!, we obtain for the
spectral distribution

{VS} � 2��
0

2� ��
0

�

�F ��, ��{i sin� � j cos�} d�� d�;

�66�

see also Jenkins (1989).
The virtual wave stress components {�(x)

w } and {�(y)
w } in

(65) are related to the wave energy dissipation Sds in
(63) caused by turbulent dissipation and breaking [e.g.,
(33) and (52)]. In our spectral formulation, we can write

{�w}��2���
0

2���
0

�

�S ds��, ��{i sin�� j cos�} d��d�.

�67�

A related expression for the terms that redistribute the
momentum lost from the waves by dissipation is pro-
posed by Jenkins (1989).

It is interesting to note that if we multiply the wave
equation in (63) by 2� sin!� �!i, and 2� 
cos!� �!j, respectively, and integrate over the spec-
trum, we obtain

�{VS}
�t

� � · {CgVS} � {�D}�� � {�w}��, �68�

where {�w} is given by (67), and the spectral form drag is

{�D}� 2���
0

2���
0

�

�Sin��, ��{i sin�� j cos�} d��d�.

�69�

Here we have assumed that the integral over the spec-
trum of the nonlinear interaction terms is zero. Accord-
ingly, by rearranging (68), we find

{�D} � {�w} �
�{�VS}

�t
� � · {Cg�VS}. �70�
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This is the two-dimensional spectral analogy to (45),
which was derived entirely from the momentum equa-
tion and the dynamical boundary conditions. This
means that the wave-forcing terms (65) in the storm
surge equation alternatively can be written

�wave � {�D} � � · {Cg�VS} � {�D} � � · {ℜ},

�71�

where ℜ is the radiation stress tensor (39).
To produce forcing data for the storm surge model,

the numerical ocean wave model (WAM; Komen et al.
1994) was run for a period of 2 months, starting at 1
January 2004. As input to the wave model we used
analyzed winds from the European Centre for Medium-
Range Weather Forecasts (ECMWF). The model do-
main, which is the same for both the wave model and
the storm surge model, is shown in Fig. 2. The grid is
rotated spherical with the equator located at 60°N. The
horizontal resolution is 0.45° in both directions. Every
third hour, the wave model calculates the forcing terms
on the right-hand side of (64). The storm surge equa-
tions in (64) were discretized on a C grid with centered
differences in both time and space. To remove any pos-
sible spurious modes, an Eulerian (forward) time step

was applied every 20 time steps. At each time step, the
surface elevation was updated first and then each of the
two horizontal components was updated. In this proce-
dure, the Sielecki method (Sielecki 1968) was used.
This means that all the updated variables are used im-
mediately in the subsequent equations. The bathymetry
for the computational domain is in some places more
than 4000 m deep. For such deep waters, the Courant–
Friederichs–Lewy (CFL) criterion imposes an ex-
tremely short time step on the storm surge model.
Therefore, the water depth is limited everywhere to 200
m in this study. This of course, makes the experiments
rather unrealistic as storm surge simulations for the real
world. However, because the main scope of this experi-
ment is not to forecast the surge as realistically as pos-
sible but to quantify the relative effects of the wave-
forcing terms on the right-hand side of (64), we believe
that this simplification can be justified. Another simpli-
fication is the removal of all the open boundaries for
the storm surge model. This makes it easier to handle
the boundary conditions in the model. The introduction
of these artificial walls may introduce spurious reflec-
tions of long barotropic waves. The justification for this
is again the fact that the main purpose of this investi-

FIG. 2. Model domain for the wave and storm surge model runs. The dashed line is the monthly
(February 2004) mean difference in surface elevation (m) between the control run and the experiment
(positive values when the experiment elevation is larger than the surface elevation of the control run).
The black squares are the locations of the stations, together with the station numbers, where the modeled
wind- and wave-induced forcing has been compared with the surface forcing from the 10-m wind speed
(Table 1).
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gation is to quantify the effects of the wave-induced
forcing. Reflected barotropic waves will probably be
present in both the experiment and the control runs.
Our assumption is that this will have little effect on the
difference between the two runs.

The model was run twice for the experiment period.
First, we performed a control run using the traditional
method of calculating the surface stress from the 10-m
wind speed (Large and Pond 1981). Here, the stress
components are given by

�10
�x� � cDM�a |v10 |u10 and

�10
�y� � cDM�a |v10 |	10, �72�

where u10 and �10 are the x and y components of the
10-m wind vector v10. The model drag coefficient cDM is
independent of the wind when the wind speed is below
the threshold value of 11 m s�1 and is linearly depen-
dent on the wind for stronger wind speeds, that is,

cDM� � 0.0012 if |v10 | � 11 m s�1,

�0.49� 0.065 |v10 |�10�3 if |v10 | � 11 m s�1.

�73�

The larger drag coefficient for |v10| " 11 m s�1 is intro-
duced to model, in a crude way, the increasing effect of
the sea state on the momentum transfer from the at-
mosphere to the ocean at higher wind speeds. For the
control run, the stresses calculated from (72) and (73)
were used instead of �wind � �wave on the right-hand
side of (64). Second, an experiment was run for the
same period, but with the wave-forcing term �wave, de-
fined by (65), calculated from the WAM. For simplicity,
the turbulent wind-forcing term �wind in (64) for this
case was parameterized as in (72), but with a constant
drag coefficient (cD � 1.2 � 10�3). As already men-
tioned, the simulation period was the first two months
of 2004. January was basically used as a period for spin-
ning up the models. Accordingly, all of the results pre-
sented here will be for February 2004, which is taken to
be the experiment period.

In Fig. 2, the monthly mean differences in sea surface
elevation are depicted. Here, the mean differences in
surface elevation are in some areas larger than 0.6 m.
The largest differences are found in the North Atlantic.
For substantial parts of the computational domain, the
mean differences between the experiment and the con-
trol run are about 0.2 m. Clearly, the introduction of a
sea-state-dependent forcing has a significant impact on
storm surge modeling. However, because our experi-
mental model runs gave consistently higher values for
the surface elevation than the control run, it is obvious
that the flat drag coefficient cD � 1.2 � 10�3 from
Large and Pond (1981), which we used in our runs for

the wind-induced stress, contains some wave effects as
well. To remedy this, we calculated the average flat
drag coefficient from five selected stations depicted in
Fig. 2 (black squares) such that the average stress of the
control run with (72) and (73) was equal to the mean
value of �wind � �wave at these stations. This indicated
that our wind stress could be approximated by

�wind � �acD |v10 |v10, cD � 0.95 � 10�3. �74�

To investigate the relative importance of the various
terms on the right-hand side of (64), a time series of
separate terms has been written to file at the five se-
lected stations inside the model domain (see Fig. 2). In
Table 1, the monthly mean values for February 2004 of
these forcing terms are given for all five stations.

We realize from Table 1 that on these five stations
the magnitude of the average virtual wave stress alone
is nearly 50% of mean stress from the 10-m wind speed.
This is in good accordance with our previous estimates
in section 6. All terms involving the Stokes drift in (65)
are, on the average, one to two orders of magnitude
smaller than the total stress. This also agrees well with
our findings in section 6. If we used the alternative
expression in (71) for the wave-induced stress, the mag-
nitudes of the radiations stress terms are found to be
equally small. To illustrate further the effect of the sea-
state-dependent surface stresses, the time series for the
wind-induced stress in (74) and the wave-induced stress
in (65) is plotted in Fig. 3 together with the mean stress
in (72) and (73) calculated from the 10-m wind speed.
Here, we have depicted the results from stations 1 and
5. From Fig. 3 we note the interesting fact that for
small-to-moderate winds, the wind-induced stress is
larger than the wave-induced stress. However, for
stronger winds (large peaks in the plot) the wave-
induced part is the largest. At such winds our computed
value of |(�wind� �wave)/� | exceeds the traditional value
of |�10/� | in the forcing terms for the surge. The quan-
tification of the enhanced influence of the wave part of
the stress for stronger winds is important, because the
assessment of damage caused by the surge is particu-
larly relevant in the case of storm events.

TABLE 1. Forcing terms (m2 s�2) on the right-hand side of (64)
at five selected stations. The table shows the monthly average for
February 2004.

|�{VS}/�t | | {�w}/� | | (�wind � �wave)/� | | �10/� |

Station 1 0.010 0.095 0.258 0.230
Station 2 0.007 0.069 0.207 0.185
Station 3 0.003 0.018 0.097 0.098
Station 4 0.007 0.057 0.183 0.168
Station 5 0.010 0.090 0.248 0.222
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8. Summary and concluding remarks

We have demonstrated that integration of the Eule-
rian momentum equation from a constant depth of van-
ishing motion to the oscillating surface yields the same
equations for the volume transport in periodic waves as
that obtained from a direct Lagrangian analysis to sec-
ond order in the wave steepness. It is found that the
form drag associated with the action of the fluctuating
wind stress over the wave slopes is the only source term
in the equation for the integrated Lagrangian volume
transport induced by spatially periodic waves. Accord-
ingly, waves that decay in time in the absence of exter-
nal forcing do not induce any net transport in a rotating
ocean. This is valid whether the decay is due to viscous
dissipation or wave breaking. In the case of temporally
periodic waves, where the wave amplitude may grow or
decay slowly in space, we show that the horizontal di-
vergence of the total wave momentum flux is an addi-
tional source term in the equations for the wave-
induced volume transports. Alternatively, this term can
be written in terms of the radiation stress, as shown by
Phillips (1977). Comparison between analytical and
empirical expressions for the form drag over smooth
waves in a balanced state (statistically steady waves)
leads to a simple estimate for the bulk eddy viscosity in
the surface layer associated with wind waves. By mod-
eling wave breaking in a simple way, a similar formula

for the eddy viscosity in a saturated sea, where breaking
dominates the dissipation process, is obtained. On the
basis of the results for a single wave component, we
derive equations for the wave-induced volume trans-
ports in a fully developed sea where the wave spectrum
may change slowly in space and time. For an idealized
one-dimensional frequency spectrum (Toba 1973), and
for reasonable estimates for the time and space varia-
tion of the wind, our equations for the wave-induced
volume fluxes appear to have realistic forcing terms.
For the precise form of the wave spectrum in a real
ocean, these equations need input from an ocean wave
prediction model (e.g., Komen et al. 1994).

The wave-forcing terms for a storm surge model have
been calculated for a 2-month period in 2004 by run-
ning the WAM (Komen et al. 1994) over a model do-
main covering the northern North Atlantic and the
Nordic Seas. These terms were then used to force a
storm surge model for the same period. The calculated
surface elevations were compared with the results from
a control run where the surface stresses were obtained
in the traditional way, using the 10-m wind speed. In
this way it was found that the non-wave-dependent
drag coefficient for the wind stress part of the forcing
could be approximated as cD � 0.95 � 10�3. Time se-
ries of each individual forcing term for selected loca-
tions revealed that the contribution from the virtual

FIG. 3. Time series of the surface stresses (m2 s�2) at two selected stations (1 and 5) for
February 2004. The locations of these stations are depicted in Fig. 2. The dotted lines are the
stresses calculated from the 10-m wind speed. The solid thick lines are the wave-induced stress
(65) and the solid thin lines are the wind-induced stress (74).
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wave stress amounted to about 50% of the total forcing
for moderate to strong winds. The terms involving the
time rate of change of the Stokes transport and the
radiation stress in the alternative formulation were at
least one order of magnitude smaller than the total
stress. In the case of storm events with rough seas, the
wave-induced part of the stress is larger than the wind
stress. This is an important finding, because it is par-
ticularly in connection with strong winds that reliable
surge simulations are needed.

The order-of-magnitude estimates from the idealized
spectral formulation in section 6 for the wave-induced
forcing were remarkably close to those obtained from
the numerical ocean simulations in section 7, using the
WAM. This lends support to the robustness of the
present formulation for the wave-influenced transport
in the oceanic surface layer. For shallow waters, where
the influence of bottom friction and wave breaking are
more prominent, the effect of the radiation stresses will
also be larger. This may change the balance between
the forcing terms in the surge equation. A wave-
influenced storm surge model for a shallow coastal re-
gion is clearly the next step in line for this type of
investigation.
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