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A new theoretical approach for the wave-induced setup over a sloping beach is presented that takes into

consideration the explicit variations of the surface waves due to bottom slope and viscosity. In this way,

the wave forcing of the mean Lagrangian volume fluxes is calculated without assuming that the local

depth is constant. The analysis is valid in the region outside the surf zone and is based on the shallow-

water assumption. A novel approach for separating the viscous damping of the waves from the frictional

damping of the mean flow is introduced, where the mean Eulerian velocity is applied in the bottom

stress for the mean fluxes. In the case where the onshore Lagrangian mean transport is zero, a new

formula is derived for the Eulerian mean free surface slope, in which the effects of bottom slope, viscous

wave damping and frictional bottom drag on the mean flow are clearly identified. The analysis suggests

that viscous damping of the waves and frictional dissipation of the Eulerian near-bed return flow could

lead to setup outside the surf zone.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The mean mass transport due to swell on a sloping beach has
been studied extensively in the past. This problem has direct
application to the near-shore transport of bottom sediments in
suspension, and is therefore of great practical importance.
From theoretical point of view, the inclusion of radiation
stresses (Longuet-Higgins and Stewart, 1962) in the transport
equations is crucial as a driving mechanism. With waves along the
x1-axis, the divergence of the radiation stress component S11 of
Longuet-Higgins and Stewart appears as a forcing term for the
mean flow. Dolata and Rosenthal (1984) claim that the radiation
stress in the momentum equation for shallow water must be
different from that derived by Longuet-Higgins and Stewart
(1962). In their analysis, the value of S11 for deep water appears
as forcing in shallow water although most studies (e.g., Lentz and
Raubenheimer, 1999; Raubenheimer et al., 2001; Longuet-Higgins,
2005; Dean and Bender, 2006; Apotsos et al., 2007) apply
Longuet-Higgins and Stewart’s shallow-water version of S11.

In this paper, we examine wave-induced transports by
integrating the governing equations from the variable bottom to
the undulating surface for a fluid of constant density. This is a
traditional approach which yields the Lagrangian volume fluxes.
The primary wave motion is obtained for a gently sloping bottom
ll rights reserved.

r).
and a constant eddy viscosity by a two-scale analysis (e.g., Mei
et al. (2005)). We here introduce a new approach for the wave
field that enables us to separate the viscous boundary-layer part
from the barotropic part, in order to obtain the viscous damping of
the latter. We then derive explicitly the wave-induced forcing of
the mean flow using wave solutions that are valid for a sloping
bottom. This is not the conventional approach. In fact, most
authors have applied Longuet-Higgins and Stewart’s concept of
radiation stress in the momentum flux balance using an
expression for S11 which is actually based on wave solutions valid
for constant depth. By a more rigorous approach, we determine
the radiation stress more accurately, which enables us to check
the controversial result of Dolata and Rosenthal (1984) for shallow
water.

In the equations governing the mean transport we model
frictional effects by a parameterized bottom drag based on the
Eulerian mean velocity. This in contrast to previous studies
(e.g., Longuet-Higgins (2005), Dean and Bender (2006)) who
calculate this stress from the vertically varying streaming solution
of Longuet-Higgins (1953). It is shown that the parameterization
of the bottom stress has important consequences for the change of
the mean sea level (setup/setdown).

This paper is organized as follows: in Section 2, we state the
governing Eulerian equations and in Section 3, we discuss
the effect of viscous bottom boundary layers on the linear wave
dynamics. In Section 4, we present a two-scale approach and
obtain solutions for the linear barotropic wave field in the
presence of friction and a sloping bottom. In Sections 5 and 6,
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we calculate and discuss the non-linear wave-forcing terms for
the vertically integrated Lagrangian mean momentum and in
Section 7, we discuss the bottom stress acting on the mean flow.
Section 8 contains an explicit formulation for the gradient of the
mean surface level outside the surf zone. In this formulation, for
known wave amplitude and wave number at the beginning of our
domain, all quantities are functions only of the local depth or the
local bottom slope. Section 9 contains a discussion of the results.
Finally, a summary and some concluding remarks are found in
Section 10.
2. Governing equations and method of solution

Consider shallow-water motion in a rotating ocean with
constant density r. A Cartesian coordinate system is chosen such
that the x and y axes are situated at the undisturbed sea surface,
and the z-axis is positive upwards. The velocity components in
these directions are (u,v,w), respectively. The bottom topography
is generally given by z ¼ �H(x, y). We assume that the horizontal
scale is large enough to justify the hydrostatic approximation, i.e.,
we take for the pressure p that

p ¼ �rgðz� zÞ þ P0. (1)

Here z(x, y, t), where t is time, denotes the deviation of the free
surface from the equilibrium position, g is the acceleration owing
to gravity, and P0 is the constant atmospheric surface pressure. For
simplicity, we take that H ¼ H(x) in this analysis. Integrating
the continuity equation in the vertical, and applying the appro-
priate boundary conditions at the surface and at the bottom, we
obtain for the conservation of horizontal momentum and mass
(e.g., Phillips, 1977)

ut þ uux þ vuy þwuz � fv ¼ �gzx þ tðxÞz ,

vt þ uvx þ vvy þwvz þ fu ¼ �gzy þ tðyÞz ,

zt ¼ �

Z z

�HðxÞ
udz

 !
x

�

Z z

�HðxÞ
vdz

 !
y

, (2)

where subscripts denote partial differentiation. Here (t(x),t(y)) are
the frictional stresses in the fluid, and f is the constant Coriolis
parameter (we do not consider planetary flows here).

This problem is solved by a series expansion after the wave
amplitude (or formally the wave steepness) as a small parameter.
The first-order problem, proportional to the wave amplitude,
yields the linear gravity wave solutions. This problem is non-
trivial, since the waves propagate in a viscous ocean of variable
depth. To second order in wave amplitude, we only consider
the average volume fluxes and the mean change of the position of
the sea level. Higher-order effects, proportional to the third
or fourth power of the wave amplitude, are neglected in the
present analysis. Hence our results are valid in the region outside
the surf zone. Inside this zone the waves become very steep and
finally break. We assume that breaking effectively inhibits
reflection of wave momentum from the surf or swash zones.
3. Linear wave dynamics; the bottom boundary layer

We let the waves propagate in the x-direction, i.e., perpendi-
cular to the shoreline. To include frictional effects in shallow-
water waves in the simplest way, we consider a horizontal
velocity that consists of two parts:

u ¼ ~uðx; tÞ þ ûðx; z; tÞ, (3)

i.e., one barotropic part ~u which is independent of depth and a
boundary-layer part û which is different from zero when the
viscosity has a non-zero value. For plane waves along the x-axis,
the continuity equation in (2) becomes

zt ¼ �
@

@x
ðH þ zÞ ~uþ

Z z

�H
û dz

" #
. (4)

Linearizing (4), we obtain

zt ¼ �ðH ~uÞx �
@

@x

Z 0

�H
ûdz. (5)

For waves of constant frequency o, we may write zt ¼ �ioz and
~ut ¼ �io ~u, such that the barotropic pressure gradient in (2) can be
written as

�gzx ¼ �
g

o2
ðH ~uÞxxt � BðûÞ, (6)

where

BðûÞ ¼ �
ig

o
@2

@x2

Z 0

�H
û dz. (7)

As discussed in the literature (Jenkins, 1989; Weber and
Melsom, 1993; Ardhuin and Jenkins, 2006), one should use
different parameterizations for the frictional effect on the waves
and on the mean flow. This is because the timescale of the waves
is so short that, e.g., eddies on the spatial scale of the waves have
no influence on the oscillatory motion. The opposite is true for
the mean flow, and in the depth-integrated equations governing
the mean motion we will use a bottom drag formulation
commonly used for shallow-water flows. For the periodic motion,
however, we assume a constant eddy viscosity n. Furthermore,
we assume that our surface gravity waves have much higher
frequency than the inertial frequency f. Hence, we can neglect the
effect of the earth’s rotation on the wave field (but not on the
much slower wave drift). The linearized horizontal momentum
equation in (2) then becomes

~ut þ ût � nð ~uxx þ ûzzÞ ¼ �
g

o2
ðH ~uÞxxt � BðûÞ, (8)

where we have utilized that |ûxx|5|ûzz| in the viscous boundary
layer. Since the barotropic terms in (8) are linearly independent of
the z-dependent terms, the equation governing the boundary-
layer motion is thus

ût � nûzz ¼ 0. (9)

At the bottom we require a no-slip condition. Hence, û ¼ � ~u at
z ¼ �H. Furthermore, we require that û is confined to the bottom
boundary layer, i.e., we neglect the much weaker viscous effects at
the surface. Taking that û ¼ gðzÞ ~uðx; tÞ, the solution of (9) becomes

û ¼ � ~u exp½�ð1� iÞgðzþ HÞ�. (10)

Here g�1
¼ d ¼ (2n/o)1/2 is the thickness of the bottom boundary

layer, e.g., Longuet-Higgins (1953). The present analysis rests on
the assumption that the boundary-layer thickness is much smaller
than the local water depth, i.e., d/H51. We may now evaluate the
contribution from the boundary-layer solution in the equation
governing the barotropic part of the motion. By vertical integra-
tion of (10), we find from the definition (7) that

BðûÞ ¼ ð1� iÞr ~u, (11)

where

r ¼
o

2gH
¼
ðonÞ1=2

21=2H
. (12)

We realize that r/o ¼ d/(2H) is a small parameter. This will be
utilized in the forthcoming calculations. Defining a local wave
number k, we have that n ~uxx � �nk2 ~u. Because (nk2)/r ¼ O(kH

kd)51, we neglect the barotropic viscous term on the left of (8).
With these modifications in mind, we obtain, by subtracting (9)
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from (8), an equation for the barotropic part of the linear wave
field

~ut þ ð1� iÞr ~u ¼ �g ~zx. (13)

Here we have defined a ‘‘non-viscous’’ surface elevation ~z by

~zt ¼ �ðH ~uÞx (14)

and utilized that ~ztt ¼ �o2 ~z. We realize that in this novel
approach the barotropic part of the wave field attenuates
according to a linear friction law or a so-called Rayleigh friction.
However, the linear friction coefficient r is related to the eddy
viscosity, the frequency, and the depth through (12). In this
problem |dr/dx| is a very small quantity, and will be neglected in
the following analysis, i.e., we take r to be constant.

Finally, we are applying our results to the case with a rough sea
bottom. For a rippled bed, the eddy viscosity, causing the
dissipation of the wave field, will depend on the wave motion.
From Longuet-Higgins (2005) we obtain that

n ¼ K2 ga2

2Ho , (15)

where a is a typical wave amplitude and K ¼ 0.16. Accordingly, our
friction parameter r in (12) for the damping of linear waves
becomes

r ¼ K
g1=2a

2H3=2
. (16)

4. Linear wave dynamics; the barotropic wave field

We assume for the surface wave that

~z ¼ FðxÞ expð�iotÞ. (17)

In this problem, we consider wave amplitudes that change in
space. Accordingly, o is real. Utilizing that r/o51, we obtain from
(13) and (14) that

d

dx
gH

dF

dx

� �
þ ðo2 þ iorÞF ¼ 0. (18)

The part of the first term in (18), proportional to dH/dx,
contributes to the dependence of the wave amplitude with depth,
while the last term, proportional to ior, contributes to the spatial
change of wave amplitude owing to the effect of viscosity. The
corresponding horizontal wave velocities can be written to this
approximation

~u ¼ �g
ioþ r

o2

� �
dF

dx
expð�iotÞ,

~v ¼ 0. (19)

We take that the ocean bottom varies gently. That means that
|dH/dx|51 in this problem. Accordingly, we can neglect any wave
reflection from the slope in this case. Furthermore, we assume
that the effect of friction is small. More precisely, we take that the
frictional decay of the waves occurs on a length scale L that is
large compared to the wavelength l, i.e., l/L51. By inspecting
(18), we see that this is equivalent to require r/o51. But since
r/o ¼ d/(2H) from (12), we realize that l/L51 is fulfilled when
the viscous boundary layer is much thinner than the local depth.

Following Mei et al. (2005), we apply a two-scale approach in
solving (18), where we assume a rapidly varying wave phase, and
a slowly varying wave amplitude A. If the typical dimensionless
scale of the bottom slope is m, we define a slow variable x by

x ¼ mx. (20)
We then write

F ¼ AðxÞ expðiSðxÞ=mÞ, (21)

where S is the phase function. The wave number k in the
x-direction is then given by

kðxÞ ¼
1

m
dS

dx
¼

dS

dx
. (22)

Inserting (21) into (18), carrying out the differentiations, and
neglecting small terms of O(m2, mr/o, r2/o2), the real part of (18)
yields to the lowest order

o ¼ ðgHÞ1=2k. (23)

Furthermore, multiplying the imaginary part of (18) by the
amplitude A, we find

dA2

dx
¼ �

dðlnðkHÞÞ

dx
�

kr

o

� �
A2. (24)

In the term that involves the product of k and the small
parameter r/o, we can assume that k is constant. Hence, the
solution becomes

A ¼ A0
k0H0

kH

� �1=2

exp �
r

2C
x

� �
. (25)

Here the sub-zeros denote the values at the start of our domain
x ¼ 0 and C ¼ (gH)1/2 is the local phase speed.

We assume that the wave number is constant in time. From the
kinematical conservation equation for the density of waves
(Whitham, 1962), it follows that the frequency must be constant
in space. Since o ¼ o(k,H), we can write

do
dx
¼
@o
@k

dk

dx
þ
@o
@H

dH

dx
¼ 0. (26)

Utilizing (23), we readily obtain (e.g., Longuet-Higgins and
Stewart, 1962)

k2
¼

H0

H
k2

0. (27)

We define the part of our wave amplitude that depends on the
bottom topography as

a ¼ A0
k0H0

kH

� �1=2

. (28)

If we introduce a new phase function j by

j ¼ 1

m

Z
kdx�ot, (29)

the real parts of ~z and ~u can be written to sufficient accuracy as

~z ¼ a exp �
r

2C
x

� �
cos j,

~u ¼
g

o
exp �

r

2C
x

� �
ka cos jþ m da

dx
þ

r

2C
a

� �
sin j

� �
. (30)

Dolata and Rosenthal (1984) neglect the effect of viscosity on
the linear wave field in their analysis of wave setup, and introduce
spatial damping in their analysis through an empirical damping
coefficient in the expression for the wave energy density.
This friction coefficient is not related to the eddy viscosity as in
our case, e.g., (12).
5. Non-linear analysis; the volume flux equations

We integrate the momentum balance in (2) from the bottom to
the undulating surface. Averaging over one wave period, we define
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the Lagrangian mean volume fluxes (e.g., Phillips, 1977)

UL
¼

Z z

�H
udz; VL

¼

Z z

�H
vdz, (31)

where the over-bar denotes the averaging process. Applying the
appropriate kinematic boundary conditions at the free surface and
the bottom, we obtain from (2) for the wave-induced Lagrangian
volume fluxes in the absence of surface forcing

UL
t � fVL

¼ �

Z z

�H
uu dz

 !
x

�

Z z

�H
vu dz

 !
y

� gðzþ HÞzx � t
ðxÞ
B =r,

VL
t þ fUL

¼ �

Z z

�H
uv dz

 !
x

�

Z z

�H
vv dz

 !
y

� gðzþ HÞzy � t
ðyÞ
B =r,

z̄t ¼ �UL
x � VL

y. (32)

Here (tB
(x),tB

(y)) are the frictional bottom stress components.
Neglecting the small contribution from the viscous bottom layers
to the integrals on the right-hand side of (32), we obtain to second
order in wave amplitude

UL
t � fVL

þ gHhx ¼ tðxÞw =r� t
ðxÞ
B =r,

VL
t þ fUL

¼ �tðyÞB =r,

ht ¼ �UL
x, (33)

where we have defined the Eulerian mean sea level h � z̄. The
wave-induced part of the forcing tw

(x) has been defined as

tðxÞw =r ¼ � H ~u2
þ

1

2
g ~z

2
� �

x

. (34)

The equations in (33) are the conventional surge equations, here
forced by waves along the x-axis.

It is a simple exercise to show that for constant depth, the
right-hand sides of (33) are zero when we neglect the effect of
friction. For horizontally uniform conditions, we thus reproduce
Hasselmann’s (1970) result for an inviscid fluid that individual
particles (here vertical fluid columns) in a wave field on average
move in closed inertial circles. Accordingly, there is no net mass
transport when averaged over the inertial period. When friction
and bottom slope are taken into account, the forcing terms are
generally non-zero and we may have a wave-induced mean drift.
6. Wave forcing

Inserting from (30) into (34), we obtain to O(a2)

tðxÞw =r ¼ �
d

dx

3

4
ga2 exp �

r

C
x

� �� �

�
1

2
ga2 exp �

r

C
x

� � 1

H

dH

dx
þ

1

k2

dk2

dx

 !
. (35)

Since the frequency here is constant (e.g., (27)), we realize that
the last term on the right-hand side is identically zero. For surface
gravity waves, the wave energy density E can be written in the
present notation as

E ¼
1

2
r g a2 exp �

r

C
x

� �
. (36)

The radiation stress component S11 of Longuet-Higgins and
Stewart (1962) for shallow-water waves is

S11 ¼
3

2
E ¼

3

4
r g a2 exp �

r

C
x

� �
. (37)

We note that the divergence of this quantity is just the non-zero
term on the right-hand side of the wave forcing (35). Longuet-
Higgins and Stewart’s result that �@(S11/r)/@x constitutes the
wave forcing of the volume fluxes was derived using wave
solutions valid locally for constant depth. Here we have derived
this result more rigorously by applying wave solutions that are
valid for a sloping bottom.

By expressing (35) in terms of the wave energy density, (33)
can be written as

UL
t � fVL

þ gHhx ¼ �
3

2r
Ex �

tðxÞB

r
,

VL
t þ fUL

¼ �
tðyÞB

r
,

ht þ UL
x ¼ 0. (38)

7. The bottom stress

In any vertically integrated approach, the assessment of the
principally unknown bottom stress (tB

(x),tB
(y)) in (38) poses a

problem. For the setup in the non-rotating case, Longuet-Higgins
(2005) calculated the bottom stress from his vertically varying
streaming solution (Longuet-Higgins, 1953). The same approach
was used by Dean and Bender (2006). This yields an on-shore-
directed bottom stress when the waves propagate towards the
shore.

However, the steady viscosity-modified wave-drift considered
by Longuet-Higgins (1953) is, strictly speaking, valid only for
laminar flow above a smooth bottom. The typical diffusion time ts

to establish a steady value in the fluid layer is ts�H2/nm, where nm

is the molecular viscosity (nmE10�6 m2 s�1). Depending on the
fluid depth, ts ranges from weeks to many months. Therefore,
the stress associated with Longuet-Higgins’ solution cannot
be applied in this problem. More principally, even by assuming
that the wave eddy viscosity could be applied to Longuet-Higgins’
streaming solution, this would imply that the redistribution of
mean momentum in turbulent flows was related to the viscous
damping of the wave field, which has been opposed from a
physical point of view (Jenkins, 1989; Weber and Melsom, 1993;
Ardhuin and Jenkins, 2006). Since the Stokes drift has negligible
shear in shallow water, we assume that the mean stresses on the
water column depend on the shear of the mean Eulerian flow.
This in principle is unknown. According to the usual procedure in
ocean modelling, we take that these stresses are given by the
square of the mean Eulerian velocity with a drag coefficient that
depends on the bottom conditions.

In the present problem, the Lagrangian mean transport can be
written as a sum of an Eulerian flux (UE,VE) plus a Stokes transport
(US,VS)

UL
¼ UE

þ US,

VL
¼ VE

þ VS. (39)

Here, for shallow-water waves along the x-axis the Stokes
transport (Stokes, 1847) is

US
¼
oa2

2kH
exp �

r

C
x

� �
; VS

¼ 0. (40)

According to the discussion above, we parameterize the bottom
stresses as

tðxÞB ¼ rcBWUE=H2; tðyÞB ¼ rcBWVE=H2, (41)

where W ¼ ((UE)2+(VE)2)1/2 and cB is the bottom drag coefficient.
This coefficient depends on the bottom conditions. Very close
to the bottom, the mean horizontal stresses are partly used to
accelerate sediment particles that are kept in suspension by the
oscillating wave motion. This part of the mean stress is not felt
by the water column just above the rippled bed, and the effect of
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sediment transport must be reflected in the value of bottom drag
coefficient. For a corrugated bed an appropriate value appears to
be cB ¼ 0.1 (Longuet-Higgins, 2005). However, values of cB (and n)
reported in the literature varies by more than one order of
magnitude. For a more thorough discussion of friction coefficients
and eddy viscosities relevant for this problem we refer to Apotsos
et al. (2007) and references therein.

Utilizing that the Stokes flux is independent of time, the
horizontal flux equation reduces in the non-rotating case (VE

¼ 0)
to

UE
t ¼ �gHhx �

3

2r
Ex �

cB

H2
UE
��� ���UE. (42)

This is the traditional surge equation for flow in a channel,
except that the wind stress is replaced by the divergence of the
wave-induced radiation stress. This result lends support to our
formulation (41) of the bottom stress in terms of the Eulerian
mean velocity.

In Dean and Bender (2006), the mean stress due to vegetation
elements is accounted for by introducing a stress term propor-
tional to �

R z
�H

~u ~u
�� ��dz in our notation, where the linear, non-

damped solution for ~u is applied. To O(a2) in wave amplitude, this
expression is zero, and Dean and Bender conclude that linear
waves do not induce any setup. This is clearly wrong, since the
damping coefficient (12) of linear waves must be a part of E as
shown here (see (36)), and hence affect the setup. This is seen
straight away from the steady part of (42).
8. Wave-induced setup

The solutions to the homogenous part of (38) yield the
transient part of this problem. It consists of long, damped surface
waves in a rotating ocean of variable depth. This fact is important
for the numerical solution of (38). However, in our simple study
we shall not discuss the early, time-dependent development of
the solutions. We focus on the steady, adjusted state, so we take
the time derivative in (38) to be zero. Hence, for momentum

gH
dh

dx
¼ �

3

2r
dE

dx
�
tðxÞB

r þ fVL,

fUL
¼ �

tðyÞB

r
, (43)

where (tB
(x),tB

(y)) is given by (41).
The steady solution depends on the lateral boundary condi-

tions. This is seen from the continuity equation in (38), which
yields

dUL

dx
¼ 0. (44)

Dolata and Rosenthal (1984) point out from (44), by using (39),
that a spatially decaying wave field acts as a source for the
divergence of the Eulerian fluxes.

In our case, the slope extends to the beach but we must end
our domain at the beginning of the surf zone, where our regular
waves cease to exist. Inside the surf zone, the waves finally break
and disappear according to our assumption. From a mass
transport point of view, we must have UL

¼ 0 just outside this
zone. Since we have a Stokes flux US in the x-direction given by
(40), the result UL

¼ 0 implies that we have a compensating
Eulerian flux UE

¼ �US outside the surf zone (e.g., Dolata and
Rosenthal, 1984). It now follows from (43) that VE

¼ 0 and hence
VL
¼ 0. Then (43) reduces to

gH
dh

dx
¼ �

3

2r
dE

dx
þ

cBðU
S
Þ
2

H2
. (45)
As mentioned earlier, for steady flow in the absence of rotation
Longuet-Higgins (2005) calculated the bottom stress in the
momentum balance (45) from the viscous no-slip streaming
velocity (Longuet-Higgins, 1953). This would yield an opposite
sign in the last term of (45), implying that frictional effects on the
mean flow should promote a setdown, instead of a setup.
As recalled, we have in Section 7 discarded this bottom stress as
unrealistic.

Inserting our previous results for the wave number variation
(27) and the wave amplitude variation (28) with depth, (45)
finally reduces to

dh

dx
¼

3H1=2
0 A2

0

8H5=2

dH

dx
þ

2Hr

C
þ

2cBH1=2
0 A2

0

3H5=2
exp �

r

C
x

� �" #
exp �

r

C
x

� �
,

(46)

where again C ¼ (gH)1/2.
9. Discussion of results

Since the steady mean water level associated with non-linear
water waves is not uniquely determined, but has an arbitrariness
of O(a2), (e.g., Whitham, 1962), we shall define wave setup by the
sign of the surface slope. By this definition, we realize from (46)
that the question of whether we have a setdown (dh/dxo0) or a
setup (dh/dx40) is not easily answered. We note that an up-
sloping beach (dH/dxo0) always favours a wave setdown
(e.g., Longuet-Higgins and Stewart, 1962). Since r40, the effect
of frictional damping of the wave field itself favours a wave setup.
From a different approach, this was shown by Dolata and
Rosenthal (1984). We also note that the bottom drag on the mean
flow (last term on the right-hand side) promote a setup. Utilizing
(16) for the wave damping, we find that in (46) 2Hr/C ¼ Ka/H
which increases in shallow water. Accordingly, the frictional
damping of the waves, promoting a setup, will be increasingly
important when the mean depth becomes smaller.

From the observations by Herbers et al. (2000), their station B
on the shelf of North Carolina, we find a typical mean gradient of
the sea bed |dH/dx|�1.3�10�3. With a mean depth of 20 m,
a typical swell amplitude a�0.65 m, and a wave frequency
o�0.44 s�1, the wave damping term in (46) becomes
2Hr/C�5�10�3, while for the bottom friction acting on the mean
flow we find 2cBa2/3H2

�7�10�5. Hence, in this particular case,
the strong damping of the swell overrides the effect of bottom
slope and causes a setup of the mean water level.

It should be noted that in the present example, we have
kHE0.63, which only approximately fulfils the hydrostatic
approximation. This is due to the lack of reliable field measure-
ments satisfying kH51. Since our calculations are based on the
hydrostatic assumption, the numbers derived from the observa-
tions by Herbers et al. (2000) should only be regarded in
a qualitative sense. Returning to our previous assumptions,
the eddy viscosity (15) related to corrugations on the sea bed is
quite high in this example (6�10�3 m2 s�1). Although the result
that wave damping here leads to setup is basically owing to the
large eddy viscosity value, the effects of wave damping increase
with decreasing depth, and similar waves in shallower water
would lead to setup for smaller values of the viscosity.

Field observations in the Mediterranean sea (Gulf of Lions) are
reported in Denamiel (2006). In the south-west of this region
(the Têt inner shelf) sea-bed slopes are about 0.01. On 6th March
2004 there is virtually no wind, and the swell is propagating
normal to the isobaths. We compare wave measurements at two
stations (SODAT, SOPAT), which are separated by a cross-isobath
distance of about 1520 m. The local depths at the two stations
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are 11 and 28 m, respectively. The typical wave amplitude is 0.5 m,
the wave number is 0.15 m�1, and the wave period is about 5.2 s.
Hence these waves are deep water waves (kH ¼ 2.9 at mean
depth). From observed swell amplitude decay between the two
stations, we estimate a spatial attenuation coefficient
a�4�10�5 m�1. In deep water, the spatial decay coefficient is
related to the bulk eddy viscosity by n ¼ oa/(4k3) (Jenkins, 1986),
which here yields n ¼ 3.5�10�3 m2 s�1. This underestimates the
eddy viscosity in shallow water, but we use it in our calculation of
the amplitude (25) as the waves propagate into shallow water.
When H ¼ 3 m, (27) and (25) yield that k ¼ 0.29 m�1 and A ¼ 0.6
m in this case. From Longuet-Higgins formula (15) we then obtain
for the eddy viscosity in shallow water n ¼ 1.2�10�2 m2 s�1.
Finally, the dimensionless wave damping parameter in (46) then
becomes 2Hr/C�4.2�10�2. Since here typically |dH/dx|�10�2, we
realize that the effect of the bottom slope in the Gulf of Lions may
override the wave damping and promote a set-down.

In both the examples discussed above, the viscous boundary-
layer thickness d in (10) is much smaller than the fluid depth. We
find that d/H�0.01 for the first case and d/H�0.05 for the second
case, which renders our bottom boundary-layer considerations in
Section 3 valid. The real problem with waves in shoaling water is,
as pointed out already, the lack of observations outside the surf
zone where locally kH51.
10. Summary and concluding remarks

For shallow-water waves over a gently sloping bottom, the
wave amplitude and the wave number have been determined as
slowly varying functions of the coordinate in the direction of wave
propagation (here toward the shore). We have separated the slow
variation due to depth changes from the slow spatial variation due
to viscous dissipation in the calculation of the linear wave field.
In that way, for given wave amplitude, wave number and depth at
the start of our domain, all variables can be expressed in terms of
the local water depth.

From these results, we have computed the radiation stress
component for a sloping bottom that forces the mean Lagrangian
fluxes. We confirm Longuet-Higgins and Stewart’s (1962) result
that �@(S11/r)@x constitutes the wave forcing, where S11 takes the
shallow-water value (37). An objection to this wave forcing in
shallow water is found in Dolata and Rosenthal (1984). They argue
that in the analysis of momentum transport in shallow water one
must use the form of the radiation stress for deep water. However,
as shown here, Longuet-Higgins and Stewart’s result for shallow
water is indeed correct.

In the present investigation, we have introduced a novel
separation of the viscous effect on the wave field from the
frictional effect on the mean fluxes. This means that the
redistribution of mean momentum is allowed to occur at a
different rate than the damping rate of the waves (Jenkins, 1989;
Weber and Melsom, 1993; Ardhuin and Jenkins , 2006). In this
way, we find that both the wave dissipation and the bottom drag
on the mean flow promote a wave setup.

The next natural step in this type of investigation is to solve
numerically the surge Eq. (38) for obliquely propagating swell,
with the additional along-shore wave-forcing terms. We leave this
task for future research.
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