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ABSTRACT

A theoretical nonlinear model for wind- and wave-induced currents in a viscous, rotating ocean is developed.
The analysis is based on a Lagrangian description of motion. The nonlinear drift problem is formulated such
that the solution depends on a linearly increasing eddy viscosity in the water, the wave-growth rate, and the
periodic normal (or tangential ) wind stress at the sea surface. Particular calculations are performed for surface-
stress distributions and growth rates obtained from asymptotic analysis of turbulent atmospheric flow, where
the Reynolds stress is modeled by an eddy-viscosity assumption. For growing waves the wave-induced current
develops in time. The calculations are terminated when the steepness of the fastest-growing waves reach that
of a saturated sea. At this point, the magnitude of the wave-induced surface current is 8-9 times larger than
the friction velocity in the water, and the direction of the current is deflected 2°~10° to the right of the wave-

propagation direction.

1. Introduction

The theory of mean currents induced by interfacial
waves has attained surprisingly little interest in the lit-
erature. For the particular case of water waves propa-
gating along the sea surface, Dore (1978a,b) appears
to be the first to point out the importance of the vis-
cosity of the air for the mean-drift calculations. In doing
so, he modified the well-known result of Longuet-Hig-
gins (1953), obtained by essentially assuming that a

vacuum exists (zero shear stress) above the water, Using -

a Lagrangian description of motion and taking the
earth’s rotation into account, this problem was elab-
orated further by Weber and Ferland (1990).

In the cited papers, the upper fluid (the air) had no
mean motion apart from that associated with the waves
themselves. The most interesting (and intriguing)
problem from a geophysical point of view, however, is
when a wind is blowing over the sea. This is because
the wind is the source of energy for most high-frequency
ocean surface waves. The linear problem of wave gen-
eration by the wind has received extensive attention
during the past three decades, or so. It has been dem-
onstrated that energy and momentum may be trans-
ferred to water waves through resonance with wind-
advected pressure perturbations (Phillips 1957) or by
shear instability depending on the curvature of the wind
profile (Miles 1957). More recently, explicit models
for air turbulence have shown that turbulent Reynolds
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stresses are also effective in generating water waves
(Jackson and Hunt 1975; Knight 1977; Jacobs 1987).

Little has been done to investigate the mean drift
current associated with wind-influenced waves, al-
though attempts have been made. In that respect we
mention the works by Weber (1983) and Jenkins
(1986). In the former work one particular form of the
variable surface stress was considered. This form was
chosen in such a way as to prevent the wave amplitude
from decaying (or growing) in time. The aim of the
present paper is to generalize this theory. We allow for
arbitrary variable surface wind stresses and growth/
decay rates in the nonlinear solution for the drift ve-
locity. These stresses and growth/decay rates cannot,
of course, be determined explicitly unless a model for
the physical processes in the air above the water is con-
sidered. As an example we use the results from the
asymptotic analyses of Knight (1977) and Jacobs
(1987) for turbulent flow, where the turbulent Reyn-
olds stress is modeled by an eddy-viscosity assumption.
This yields a fairly robust model for wave growth, which
is not so sensitive to the coupling between phase speed
and wind friction velocity as Miles’ shear mechanism
appears to be; see the discussion by Phillips (1977,
p- 129).

2. Mathematical formulation

The formulation of the problem follows closely that
of Weber (1983) and Weber and Ferland (1990). We
consider monochromatic waves propagating along an
uncontaminated sea surface. The water and the air are
taken to be semi-infinite, homogeneous, incompres-
sible fluids. The whole system rotates about the vertical
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axis with constant angular velocity 1 f, where f'is the
Coriolis parameter.

The mathematical description of the fluid motion
will be Lagrangian, and the dependent variables of the
problem are expressed as functions of the Lagrangian
coordinates a, b, and ¢ and time ¢. A Cartesian right-
handed coordinate system is defined such that the x,
y axes are situated at the undisturbed sea surface. The
z axis is directed vertically upward, and the position
of the surface is governed by ¢ = 0 for all times. The
displacements x, y, and z and pressure p are written
as series expansions after an ordering parameter e,
which essentially is proportional to the wave slope
(Pierson 1962).

We look at wind-generated gravity waves propagat-
ing along the x axis with frequency w and wavenumber
k. For the waves considered here, w > f. Hence, the
effect of rotation can be neglected in the calculation of
the primary wave field (Weber 1990).

Turbulence is taken to exist in the air as well as in
the water. The turbulent Reynolds stress is modeled
by an eddy-viscosity assumption. Specific results for
the airflow can be obtained directly from the asymp-
totic analyses by Knight (1977) and Jacobs (1987).
These will be used in section 5.

In the water (like in the air) the generation of tur-
bulence is mainly associated with the action of the
mean flow, where the mean is taken over one wave
cycle for a single wave or as an ensemble average for
a continuous spectrum. The waves themselves are only
weakly affected by turbulence, manifested through a
somewhat larger dissipation of wave energy. This may
adequately be accounted for by introducing a small
constant eddy viscosity vy, which, however, is larger
‘than the molecular value.

The larger part of the turbulent eddy viscosity, that
is, that part connected with the mean motion, is taken
to vary linearly with depth (Madsen 1977), analogous
to the classic result for turbulent flow over a flat plate.
The eddy viscosity » may then be written

V= Yy — KlUsC. (2.1)
Here « is Von Karman’s constant (~0.4) and u, is
the friction velocity in the water. The form (2.1) for
the near-surface eddy-viscosity variation seems to be
consistent with various observational results (Shemdin
1972; Wu 1975; McLeish and Putland 1975; Thorpe
1986; Cheung and Street 1988).

In the present analysis we disregard the (possible)
existence of an extremely thin (of order millimeter)
laminar sublayer at the surface. By taking u, = 0, how-
ever, and letting », represent the molecular value of
the viscosity coefficient, results for a laminar, viscous
ocean follow immediately from our analysis.

According to our adopted approach, the divergence
of the turbulent Reynolds stress tensor in the ocean,
P& may be written in Eulerian form:
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where u; are the velocity components and the subscripts
i, j range from 1 to 3, with the usual summation con-
vention for repeated subscripts. Here variables with a
tilde represent high-frequency wave motion, while the
overbarred quantities are the mean flow. In (2.2) Ky
is the kinetic energy per unit mass of the turbulent
fluctuations. In the forthcoming analysis this term will,
according to common practice, be incorporated into
the isotropic pressure without further comments. In
our Lagrangian formulation #; will essentially be re-
placed by ex'’’, and #; by €25\, where the sub-
script ¢ denotes partial differentiation with respect to
time.

By utilizing (2.2) for the turbulent Reynolds stress
and converting to Lagrangian coordinates a, b, ¢ the
equations of motion become similar to those given by
Jenkins (1987) except that now the variation of the
eddy viscosity is related directly to the mean flow. For
a further discussion of the eddy-viscosity assumption,
reference is made to section 6.

Following Lamb (1932) or Weber and Ferland
(1990), the solutions in the water to O( ¢), representing
the primary wave field, are readily obtained as

.k . X ’

x(l) = — l_n_ [ekc - % Bemc]erkaﬂu’ (23)
k .

Z(l) = _ ;l [ekc — iBemC]ezka+m’ (24)

p» = % [(n? + gk)e* — igkBe™]e™ ™. (2.5)

Here g is the acceleration due to gravity, and

m? = k*+ n/v. (2.6)

The wavenumber k is here taken to be real. For the
time dependence we assume

n=—iw+f, (2.7)

where the frequency w and the growth rate 8 are both
real. If g is small, we obtain approximately
m=(1-1i), (2.8)
where v = (w/2w0)"/?. For a given value of the wave-
number, the complex quantities n and B (=B, + iB;)
are determined from the boundary conditions at the
sea surface.
We denote the periodic parts of the normal and tan-

gential wind stresses at the sea surface by o and 7, re-
spectively. Utilizing the same series expansions in e for
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these quantities as for the other dependent variables of
the problem, we find

M= —p®W 4+ 2pp0zi, =0 (2.9)
¢ =0. (2.10)

Here we have neglected the effect of capillarity. Intro-
ducing

0 = pro(eld) + 2(0),

m ()
('a—p— ) TT) = (Ul, Tl)eika+ma (211)
we obtain from (2.10)
. k2
B=—:—;+:Y—2, (2.12)

where w3 = gk. Elimination of B between (2.9) and
(2.10) finally yields

2

2 _ 2
oy — ity = 1(9———‘59) - 2(3 + wp %) . (2.13)

wo

Equation (2.13) is a general relation (within linear
theory) between the periodic normal and tangential
wind stresses acting along the sea surface. The relation
is general in the sense that it does not depend on how
the motion in the air is modeled. The result (2.13)
may also be obtained from Miles’ calculations [1962,
Eq. (2.16) for the deep-water limit].

The results presented here have been derived under
the assumption that

18]/w < 1]

2.14
kiv <1 ( )

They are both, for most oceanographic problems, very
well fulfilled.

We denote the initial wave amplitude by {;. Insertion
to lowest order in the vertical displacement at the sur-
face then yields for the ordering parameter

e = {ow/k, (2.135)
as in Weber (1983). If the governing equations were
nondimensionalized, scaling the perturbation dis-
placements and velocities by { and {ow, respectively,
the equivalent nondimensional expansion parameter
would be the wave steepness {ok. This is assumed to
be a small quantity in our analysis, and we shall not
pursue the calculations beyond O({3k?).

From (2.13) we note that the wave growth rate is
determined by the real part of o, and the imaginary
part of 7,. Denoting the surface elevation by {, we
obtain to lowest order from (2.4)

¢ = e sin(ka — wt). (2.16)

Using (2.16), the normal and tangential wind stresses
to O(e) at the sea surface may be written from (2.11):
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oy = ?(_(: [al,g‘a - Ul,-kg-]
s (2.17)

T, = % [71,8a — 71,kE]

where subscripts » and i denote real and imaginary
parts. We recognize then, from (2.13) and (2.17), that
wave growth is associated with that part of the normal
wind stress that is in phase with the surface slope ¢,.
A similar role is played by that part of the tangential
wind stress that is in phase with the surface elevation
¢. These are, of course, well-known results. The im-
portant question, however, relates to which of these
stress contributions dominates the generation process.
Here it appears to be a widespread consensus in favor
of the normal stress contribution ( Phillips 1977; Chal-
ikov and Makin 1990). This means that usually

I71,] < loy,l. (2.18)
We shall return to this question later when motion in
the air is considered.
3. Equations for the mean current in the ocean

The problem to O(€?) is analogous to that described
in Weber (1983). With the adopted form (2.2) for the
Reynolds stress, we find for the mean horizontal flow
in the water

=(2 (2 =(2 =(2
(vo — kuy )X & — kXD —XP + f7 (P

1 1
= — = DIXED — = DI + w2 0xID

+ 2z0x + 220 + 2x P xy

+ XV + XDV

(3.1)
(vo — Kk OJ (& — kuay (P = §1P — fx(D = 0,
(32)

where the overbars, as before, denote average over one
wave cycle and VZ = 9%/da? + 3%/dc?. Furthermore,
we have assumed that the mean current and mean
pressure are independent of the coordinate a. Here,
and in the rest of the paper, real values are used for
the variables in the nonlinear terms.

Under these circumstances the dynamic boundary
condition involving the mean horizontal wind stress
7. (=27 (D) acting at the sea surface may be written
to O(€?):

7= pWzD + pro[x @ + xDxfD — xPxD
+22(" — z({D2{V - 2x{Dz{],
c=0. (3.3)

It sometimes proves convenient to separate 7, into two
parts ( Weber and Ferland 1989):

c=0,

T.=7T— oz,

(3.4)
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correct to O(e?). Here 7 is the mean tangential shear
stress along the sea surface. The quantity —oz, is often
referred to as the form drag 7. It represents the mo-
mentum flux from the wind to ocean waves. In the
form drag, the fluctuating air pressure will usually con-
stitute the dominating part of the normal stress, so ap-
proximately, 7,, ~ pz,.

By utilizing (2.9), that is, continuity of normal
stresses across the surface, the form drag in (3.4) may
be expressed in terms of water variables. Equations
(3.3) and (3.4) can then be combined to yield

7@

1 i 1 [
T X + XX
pYo

=(2) —
xl(c)_

—z0z0 +3xDz0, c¢=0. (3.5)

Assuming that there are no wind and no waves in the
y direction, we obtain

¥ =0, c=0. (3.6)
Defining a mean drift velocity (u, v) by
’ (ua v)= 62(‘-x-l(2)’ )71(2)) (37)

and introducing a complex drift velocity W = u + iv
(as usual in this kind of problem), Egs. (3.1)and (3.2)
reduce to

(vo — Kty CY)Wee — KU We — W, = if W = dvoGwk’

2 3 P
X [(l - %)ez"" - %5 e {(B, + B;) cosyc
@

— (B, — B;)sinyc} |e*', (3.8)

where higher-order terms in k/+ have been neglected.
Furthermore, we have assumed that

Y
X | Bl < 1. (3.9)

This assumption will be verified a posteriori. To the
same approximation, the boundary conditions (3.5)
and (3.6) can be written:

v

W.=T+ 2§‘(2,wk2(1 -

B,)ezﬁ’, c=0. (3.10)

Here we have defined T = 7/(pwy), where 7 is the
mean tangential shear stress to O(e?) from the air on
the water surface. Furthermore, we require

W->0, ¢—> —o0. (3.11)

The problem defined by Eqs. (3.8), (3.10), and
(3.11) yields the mean drift current induced by wind
and waves as a function of the eddy-viscosity distri-
bution in the water, the mean tangential wind stress,
the growth rate of the waves, and the normal (or tan-
gential) fluctuating wind stress along the surface.
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4. The mean flow

To illustrate the nature of the Lagrangian mean-drift
solution, it may conveniently be split into four different
parts:

W=wD+wS+ w4+ w®  (4.1)
By definition:
W current driven by the external, mean tangential

shear stress

W®  classic Stokes drift modified by wave growth
or decay

W™ vorticity layer correction

W quasi-Eulerian, wave-induced drift current.

This subdivision is made to make our results resemble
those usually obtained from the more traditional Eu-
lerian approach; for example, Jenkins (1986).
We denote the differential operator associated with
the left-hand side of (3.8) by L. Then, by definition,
9° d 93
L=y—+V————1f,
"o T ac &t ¥,
where ' = d/dc. The contribution W™ in (4.1) is
then obtained from

4.2)

L{w®™} =0, (4.3)
subject to :
wP=T, ¢c=0, t>0
. (4.4)
wM -0, ¢c> -
Additionally, we impose the initial condition
WM =0)=0. (4.5)

For constant eddy viscosity (4.3)-(4.5) reduce to the
classic Ekman problem solved by Fredholm (Ekman
1905). When »y = 0, that is, v = —xu,.c from (2.1),
analytical solutions of (4.3) have been obtained by
Madsen (1977). In the present paper (4.3) is solved
numerically. Some of the results will be presented later
in connection with the discussion of the wave-induced
current.

The friction velocity u, in the water is related to the
mean momentum flux from the air to the water by the
viscous shear stress. Hence, for purely temporally de-
caying surface waves in the absence of wind, the friction
velocity should be zero. Defining

uy = (7/p)'?, (4.6)
where 7 is the mean tangential shear stress acting at
the water surface, the nonlinear computations by We-
ber and Ferland (1990) for constant eddy viscosity in
fact show that 7 = 0 for such waves. In the forthcoming
analysis, with an imposed mean wind, we shall use the
definition (4.6) for the friction velocity in the water.
For the nonrotating Stokes part in (4.1), we take
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WS = Fwke 2, (4.7)

that is, the classic Stokes drift (Stokes 1847) for deep-
water waves modified by wave growth or wave atten-
uation.

The vorticity-layer correction W) in (4.1) is con-
fined to the thin boundary layer adjacent to the surface.
It is governed by the equation

L{W™M} = —dpifayie
X [(B, + B;) cosyc — (B, — B;) sinyc]e®'. (4.8)

Due to the rapid variation in the vertical, the effect of
time variation and rotation can be neglected in this
equation. From (4.8) we then easily obtain a first in-
tegral:

(vo — kux )W
= —4uo{3wye™] B, cosyc + B; sinyc]e®'. (4.9)

The equation for the quasi-Eulerian current W€ js
now readily obtained from (3.8). Utilizing (4.7) and
(4.8), we find

L{W®} = Bok[2kkuy(2ke + 1) + if]e* ",
(4.10)

Invoking (4.4), (4.7), and (4.9), the boundary con-
ditions (3.10) and (3.11) yield for W

W® =2¢3wv2B,e¥*, ¢c=0
WE > 0,

(4.11)

¢~ —w. (4.12)

Below the thin vorticity layer, W ¥ is equal to the total
wave-induced current minus the inviscid Stokes drift
[calculated for waves with amplitude { exp(Bt)].
Hence, W® corresponds closely to the Eulerian wave-
induced mean velocity, although still expressed in La-
grangian coordinates. Accordingly, if the wave field in
the (essentially) inviscid bulk of the fluid is equal to
the Stokes drift at the onset of wave motion, the initial
condition for W'E) can be written

w® i =0)=0. (4.13)

Further integration of (4.9) yields that the magnitude
of W™, even at the surface, will be much less than
unity. Hence, the wave-induced current is essentially
represented by W + W) Let us for a moment
neglect the variation of the eddy viscosity. The solution
for the total wave-induced drift current can then be
obtained directly from the results in Weber and Forland
(1990). Defining the wave-induced drift by W™
= WS + wE® we find

2
W = §'(2)wk[Fez'“+2‘3’ + 2kv(’)’2(1 —F+ % B,)
2 [ €XP((=28 — if)E — c*/(4not))dE
e fo (n§)'72
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+ 2kv§?(1 — F)e™

© exp(—£t) cos(ct'?/vd/*)dE
8 fo 7€ (¢ + 4k%) ] » (414
where
_ if B
F = [1 ST —ﬂ«,z/wkz)] . (4.15)

Here the growth rate 8 and the parameter B, are un-
specified. The only restrictions imposed on the solution
(4.14), apart from the assumption of a constant eddy
viscosity, are given by the inequalities (2.14) and (3.9).

It is also worth pointing out that our analysis for
growing/decaying waves yields a nonzero, net mass
transport even if the viscosity in the water is completely
neglected! Disregarding water viscosity altogether, we
obtain from (3.8) for the wave-drift current

W™+ W™ = 28¢3wke? 2 (4.16)

where 8 is obtained entirely from the wave-modulated
motion in the air. For 8 = 0, this result conforms to
those obtained earlier by Ursell (1950) and Hassel-
mann (1970) of no net transport in an inviscid, rotating
ocean.

We note from (4.16) that for large growth/decay
rates (| 8| & f) the solution essentially yields the classic
Stokes drift in the direction of the waves. For small
growth /decay rates the net drift is essentially perpen-
dicular to the wave propagation direction and propor-
tional to — 3/ f. The reason for this net mass transport
by growing/decaying waves in an inviscid, rotating
ocean is the work of the fluctuating air pressure at the
sea surface.

5. Estimation of the unknown parameters

The variable wind-stress distribution at the surface
and the growth rate 8 of the waves could in principle
be obtained from field measurements. This, however,
is an extremely difficult task. Apart from the purely
technical problems, observed growth rates are likely to
have been influenced by energy transfer between var-
ious components of the wave spectrum. This effect is
not included in the present theory. Also, for stronger
winds, the occurrence of whitecapping will influence
the surface-stress distribution (Banner 1990), as well
as convert mean momentum directly from the waves
to the mean current (Mitsuyasu 1985). For a further
discussion of this topic, the reader is referred to Phillips
(1977, 1985). Despite these difficulties, we shall, to
some extent, rely on empirical relations obtained from
observational data (Plant 1982; Mitsuyasu and Honda
1982) to quantify the wave growth.

Alternatively, the surface-stress distribution and the
wave growth may be determined theoretically. This is
by no means simpler, mainly owing to the turbulent
nature of the airflow above the water. Hence, we have
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to be content with simplified models for the flow struc-
ture. In Miles’ (1957) celebrated model for wave growth
due to shear instability, the presence of turbulence only
manifests itself through the shape of the wind profile.
Recent experience from ocean wave modeling, how-
ever, suggests that the turbulent Reynolds stress may
play a dominant part in the wave generation process
(Chalikov and Makin 1990). In that case we may apply
the results from the asymptotic analyses by Knight
(1977) and Jacobs (1987) to obtain the growth rate
and the turbulent stress at the surface. These studies
apply in essence an eddy assumption for the turbulent
Reynolds stress. This leads to a linearly increasing eddy
viscosity coefficient in the logarithmic wind regime, as
one would expect from mixing-length theory.

Although attacking the problem in somewhat dif-
ferent ways, the main results of the asymptotic analyses
by Knight (1977) and Jacobs (1987) are essentially the
same. In our notation, Knight’s growth rate may be
written:

U-C] wk?
,3=KU*kS|:—E,'—:|—?. (5.1)
Here U is the wind speed at height k™' and C = w/k
the phase speed of the waves. The frequency in this
approximation is given by w = wy = (gk)'/2. Further-
more, § = p,/p is the density of air p, relative to that
of water, and U, is the friction velocity in the air.

The real part of the amplitude of the normal stress,
valid outside the viscous sublayer in the air, may be
obtained from Knight’s and Jacobs’ analyses as

o1 = —2KU,,ks[ v- C] . (5.2)

C

We assume that the normal stress is continuous and
practically constant through the very thin sublayer.
Hence, the expression (5.2) can be applied at the air-
water interface, given by ¢ = 0. Utilizing the results
(5.1) and (5.2), Eq. (2.13) then yields that the imag-
inary part of the tangential stress amplitude =, at the
surface vanishes in this approximation. This result is
in accordance with (2.18). Hence, from (2.12), we
obtain for the real part of the parameter B, featuring
in the boundary condition (4.11) for the quasi-Eulerian
wave-drift current,

B, = k*/v? = 2k?v/ w. (5.3)

For the “background” turbulence associated with vy,

we use the result from Bye (1988) for the near-surface

viscosity:

_ l Kud
s 2Kg’

(5.4)

Yo

where u, is the friction velocity in the water and K
is obtained from the wave spectrum. Bye suggests X
= (0.35.
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From the logarithmic wind profile we obtain for the
wind speed at height k™', appearing in (5.1) and (5.2),

(5.5)

where z; is the roughness length in the air. For aero-
dynamically rough flow we may apply Charnock’s for-

‘mula for zy (Charnock 1955):

2

Zy = _/4_(1!— ’

g

where A = 0.0185 for a fully developed sea (Wu 1982).
Actually, the surface roughness is a function of the sea
state; see for example the review article by Donelan
(1990). The Charnock relation used here will only give
consistent results for a saturated sea, that is, for large
wave age. For young sea, the roughness is somewhat
larger than that given by (5.6), as seen from Fig. 3 in
the recent paper by Maat et al. (1991). For the rather
idealized situation considered in the present paper,
however, where we look at individual wave compo-
nents before they break, it is sufficient to use (5.6 ) for
parameterizing the roughness length.

As we now have formulated the problem, the various
parameters are, for a given wavenumber, only functions
of the friction velocities in the water and in the air.
The latter may, in turn, through the traditional intro-
duction of a drag coeflicient, be connected to the wind
speed at a prescribed height, usually taken to be 10 m.
Furthermore, from continuity of mean stresses at the
air-water interface, we must require U, = uy/s'/*. Of
particular interest here is the nondimensional growth
rate 8/w. For given U, this will vary with the wave-
number k or the wavelength A = 27 /k. Denoting the
wavelength that maximizes 8 by A,,, we may obtain
A and B = B(\,; Uy) numerically from (5.1), using
(5.4)-(5.6). The results are summarized in Table 1.
Utilizing the relations w = (27g/\)'/? and C = (g\,n/
2x)'/2, these results can be combined to yield

B _ L UL

- 1.2X10 ik
In his analysis of the wave-growth problem, Jacobs
(1987) finds that the meteorological data from the field
experiments by Snyder et al. (1981) do suggest a much
smaller value for the constant 4 in Charnock’s relation
(5.6). As an appropriate value for the initial phases of
wave growth, Jacobs assumes 4 = 0.0028 (in our no-
tation). This will, for a given value of k and U,, in-

(5.6)

(5.7)

TABLE 1. Maximum growth rate from (5.1) as function
of friction velocity in the air.

Ue(ms™) 0.1 0.2 0.3 0.5 1.
A (m) 0.4 1.7 3.7 10.4 41.6
B(10™*s™) 22 1.2 0.7 04 0.2
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crease the wind speed U and, hence, the growth rate
B. Using Jacobs’ value for 4, we find from (5.1), by
inserting for the fastest-growing wave, that the coeffi-
cient in (5.7) increases by a factor of 2.

In fact, analyses of experimental data indicate an
empirical relationship between the dimensionless
growth rate §/w, the phase speed C = w/k, and the
friction velocity U, of the form (5.7); that is,

UZ

B o F; . (5.8)
From Plant’s (1982) survey of field and laboratory ob-
servations we find a, = (2 = 1) X 10~2 in our notation.
Similarly, from the model tank experiments by Mit-
suyasu and Honda (1982 ), we obtain a,, = 2.7 X 1072,
It is worth noting that the values for «, stated here are
about one order of magnitude larger than those ob-
tained from the theoretical assessment (5.7). In this
context it is fair to mention that the value of a,, reported
by Jacobs (1987) actually was larger than twice that
of (5.7). This was due to the neglect of friction in the
water; that is, the last term on the right-hand side of
(5.1) is missing from Jacobs’ analysis.

For the wave speed corresponding to maximum
growth we find from the computations leading to (5.7)
that

C = 8.1U,. (5.9)

This fits quite well with observational data, which sug-
gest C ~ 10U, for the most rapidly growing waves
(Jacobs 1987). By combining the results (5.7) and
(5.9), we realize the fact that the ratio 8/w for the
fastest growing wave is constant.

The discrepancy displayed here between theoretical
and observed values of the growth rates leads one to
suspect that finite-amplitude effects may be important.
Hence, it may happen that a simple eddy-viscosity
model for the air turbulence is insufficient at modeling
the turbulent Reynolds stress in the flow over finite-
amplitude waves. In addition, as mentioned in the be-
ginning of this paragraph, it is difficult to exclude from
field data the wave growth due to the nonlinear transfer
of energy from various other components of the wave
spectrum.

6. Discussion of the eddy viscosity assumption

In the present approach we have chosen to use an
eddy viscosity assumption for the turbulent Reynolds
stress. This is, of course, a rather crude approximation,
but unfortunately difficult to avoid if one wishes to
obtain analytical solutions of problems involving tur-
bulent motion.

It is worth noting here that there is a fundamental
difference between the flow in the air and the flow in
the water. In the air, the turbulent wind dominates the
motion. The gravity waves that are generated at the
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air-sea interface induce motions that are small com-
pared to the mean wind. It may therefore be justified
to assume a complete analogy between the Newtonian
viscosity and the spatially varying eddy viscosity in
modeling the air stress tensor (Jacobs 1987). In the
water the situation is different. Here the waves consti-
tute the dominant contribution to the velocity field,
while the surface stress- and wave-induced mean cur-
rents are smaller by an order of magnitude, or so. The
nearly orbital motion associated with the primary wave
field is not really turbulent but superimposed on a tur-
bulent field generated by wind stress, wave breaking,
buoyancy-driven convection, etc. in the surface layer.
The waves themselves are only weakly influenced by
this turbulence. We have therefore chosen not to in-
clude the gradients of the pure wave motion in the
dominating parts of the turbulent Reynolds stress,
being proportional to the depth-varying eddy viscosity.
This led to a stress tensor whose divergence is given
by (2.2).

In this context it may be of interest to discuss some
consequences of applying a stress tensor in the water
similar to that in the air. In Eulerian form we may then
write
l-a—P,ﬂ:'f; =Wy + L4 [% +

duil 29
p 9X; ax; | ox;

0x;
(6.1)

where u; (i = 1, 2, 3) is the total water velocity (in-
cluding waves) averaged over a period that is large
compared with the typical period of the turbulent mo-
tion but much smaller than the wave period. As in
(2.2), Ky is the kinetic energy per unit mass of the
turbulent fluctuations.

When applying (6.1), it is quite simple to show that
the Lagrangian wave problem to O( ) may be separated
in the familiar way (Lamb 1932):

xl(l) = —@q — lAl/c]
Zt(l) =—@.+ Va

where V: ¢ = 0. For the particular case of a linearly

varying eddy viscosity, we find for the vorticity part of
the wave field,

(6.2)

W — vViy = 0. (6.3)

This is the same form as that obtained by Lamb for
constant viscosity. Here, however, v = yy — ku, c. Fur-
thermore, the fluctuating pressure may be written
p
= -z + g + 22(",
P

where we note the extra term on the right-hand side
owing to the variation of ». It should be emphasized
that (6.2)-(6.4) constitute an exact solution of the
nonrotating, linear system of equations in the water
when v, is constant.

(6.4)
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Utilizing the fact that the normal stress must be con-
tinuous across the surface, we find for the leading term
in the form drag, defined by (3.4):

c=0. (6.5)

Here p‘! is given by (6.4). We observe that the main
contribution to 7, is obtained from the turbulent
Reynolds stress part of the pressure. The leading term
can then be written

2..(1
r~ 20,

7w~ 200,20z | 0o = pxu*Céz, (6.6)
where the potential part of z{’ is obtained from (2.4)
and & = k{, exp(Bt) is the instantaneous wave slope.

Let us consider two different cases: (i) gently sloping,
growing waves (6 ~ 0.15) and (ii) a fully developed
sea (6 ~ 0.3). In the first case we assume that C
~ 10U, for the speed of the fastest-growing wave (Ja-
cobs 1987). For a fully developed sea the phase speed
corresponding to the peak of the wave spectrum is ap-
proximately equal to the wind speed U, at 10-m height
(Phillips 1977). Alternatively, C ~ U,cid’?, where cjo
is the drag coefficient at 10 m (¢;p ~ 1.5 X 1073).
From (6.6), with U2 = u2/s, we then obtain for the
cases (i) and (ii) that 7,,/7¢9 ~ 2.6 and 7,,/70 ~ 27,
respectively. Here 7o = p,U% is the total horizontal
momentum flux in the air. Since 7.,/ 7¢ never can ex-
ceed unity, the results derived here do not make sense.
Accordingly, the Reynolds stress in the ocean cannot
be modeled by a linearly increasing eddy viscosity
(proportional to xu, ) combined with the shear of the
primary wave field.

Let us now for a moment return to our model (2.2)
for the Reynolds stress. The form drag r,, may be ob-
tained from (2.4) and (2.9) as

T I¢] 1 k?
= — 2 (D, (D = =&
Tw e2a Uz ( + - > B, + 35
where again § = k{, exp(Bt). Utilizing the theoretical
values (5.1) and (5.2) from Knight’s (1977) analysis,
(6.7) reduces to '

Tw = pak Uy (U — C)62. (6.8)

From (5.1) and (5.4)-(5.6) we find U ~ 20U, and
C ~ 10U, for the fastest-growing waves. Hence, with
6 ~ 0.15, we obtain 7,,/79 ~ 0.1 from (6.8), which is
a perfectly reasonable result.

For a fully developed spectrum (old sea), Phillips
(1977) concludes that 7,, € 7. For younger, rougher
sea, however, 7,/7o may be close to unity (Janssen
1989). Similarly, from laboratory experiments, Banner
(1990) finds that most of the observed total stress en-
hancement associated with wave breaking is reflected
in a correspondingly large increase in the form drag.

Applying empirical growth rates in our theoretical
results, the 8/w term will dominate in (6.7). Using the
empirical relation (5.8), we find in this case:

w = pagU%d%.

)Czaz, 6.7)

(6.9)
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Now taking 6 ~ 0.15 and ay, ~ 0.01, we obtain 7,,/
79 ~ 0.2. It is therefore reassuring to find that our
eddy viscosity assumption yields results that do not
violate the basic physics of the problem.

7. Volume fluxes in the upper ocean

Many classic results concerning the general ocean
circulation are formulated in terms of vertically inte-
grated currents, that is, volume fluxes per unit hori-
zontal length. As far as the upper, mixed layer of the
ocean is concerned, one might infer from earlier anal-
yses, like those of Bye (1967) and Kenyon (1969),
that the correct volume flux is obtained by adding the
wave-induced flux associated with the classic, steady
Stokes drift to that obtained from the wind stress (the
Ekman transport). As will be demonstrated here, this
is generally not the case. To prove this point, it is ad-
vantageous to use the previous partition (4.1) of the
total, Lagrangian mean current.

We define a complex volume flux per unit length
by

0
0= f Wdc. (7.1)
Integrating (4.3) and using (4.4), we obtain immedi-
ately that

d Ty o™= 2

EQ +ifO'" =7/p=us. (7.2)
This is the equation for the traditional Ekman trans-
port, driven by the mean tangential shear stress at the
surface.

The classic Stokes drift W‘s’ from (4.7) yields a
nonzero contribution in the direction of the waves

0 =3l

where we again have used { = { exp(Bt) for the in-
stantaneous wave amplitude.

For the quasi-Eulerian contribution, we find from
(4.10)-(4.12)

(7.3)

d
— 0B +ifQ® = - : ifw + w?B,|¢?
dt 2
= —ifQ® + W*B,{?,
where O is defined by (7.3).
The volume flux due to the vorticity-layer correction
W™ is negligibly small. Hence, the total wave-induced

transport Q'™ is given by 0™ = 0® + Q®_ Equations
(7.3) and (7.4) then yield

(7.4)

EQ(W)+ ifQ™ = (Br+§)w2§'2. (7.5)
dt w

We thus notice that the contribution (7.3) from the
classic Stokes drift to the total wave-induced flux is
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canceled by an equal, and opposite, quasi-Eulerian flux
term in (7.4). The only remaining Stokes drift contri-
bution to (7.5) is the second term on the right-hand
side, which is the time derivative of Q. This result
could also have been obtained directly by integrating
(3.8) and using the boundary condition (3.10). That
approach, however, would not have revealed explicitly
the fate of the disputed, steady Stokes-induced volume
flux. By integrating (7.5) we obtain

B/w + B, _
w) = |BLO T Br] 242 —ift
(0] [26+if]w§ + Qie™,  (7.6)
where the last term on the right-hand side represents
purely inertial motion. The amplitude Q; is determined
by the initial conditions. We notice from (7.6 ) that the
magnitude and direction of this wave-induced flux
crucially depend on the ratio |8]/f.

For slowly growing/decaying waves ({8| < f) we
find from (7.6) for the noninertial part Q, of the vol-
ume flux:

Qo ~ — gf’—ﬁ (1 + wB,/B)Q®.
This flux component is directed perpendicular to the
wind and wave direction. Furthermore, it is obvious
that Q is much smaller than the Ekman flux u2/f.

For rapidly growing/decaying waves (| 8| > f) the
situation is quite different. Now we obtain from (7.6)
that

(7.7)

Qo =~ (1 + wB,/B)O. (7.8)

In this case we see that the noninertial component of
the wave-induced flux is directed along the wind and
wave direction. Utilizing the empirical relationships
stated in section 5 for rapidly growing waves, we find
that the contribution (7.8) may be of the same order
of magnitude as the Ekman flux (but directed along
the wind ) when the waves are steep. One can speculate
about what will happen when the rapidly growing waves
become so steep that they break. Then, of course, our
calculations are no longer valid. Physically, however,
there must be some sort of balance between energy
input from the wind and energy loss due to repeated
wave breaking. How to model this process is far from
clear at the moment.

8. Numerical results and discussions

It is not the aim of the present paper to study the
complicated buildup of a certain sea state from infin-
itesimal, fast-growing wind waves. Instead, we focus
on the development of the nonlinear drift current in
the ocean. For this purpose we consider regular, finite-
amplitude monochromatic waves influenced by local
winds. From Knight’s and Jacobs’ simplified analyses
for the turbulent motion in the air, the modulated wave
amplitude is obtained; see Eq. (5.1). We consider drift
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currents associated with damped as well as growing
waves. This is obtained here by letting the waves travel
against or along the wind direction, respectively.

a. Wind-driven current

We first consider the wind-stress part W™ of the
mean current. For given friction velocity this contri-
bution is readily obtained by integrating (4.3) numer-
ically. The result for a suddenly imposed shear stress
in the x direction is presented in Fig. 1. We have taken
#, = 0.016 m s~' in this example, and the computed
current is nondimensionalized by u, . Here, and in all
the computations presented in section §, we have used
f=1.2X107*s~!. Hodographs are plotted at depths
0, 1, 5, 20, and 50 m, respectively (solid lines). The
black dots and numbers on the graphs denote time in
pendulum hours after the onset of motion, and the

20]
. 3
2 c=0
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FiG. 1. Hodographs of the dimensionless wind-driven current W™/
u, from (4.3) at depths 0, 1, 5, 20, and 50 m, respectively (solid
lines). Here, and in the following figures, the numbered black dots
denote evolution time in pendulum hours. The broken line depicts
the d?pth-varying steady-state solution. In this example u, = 0.016
ms~'.
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broken line represents the steady-state hodograph (the
Ekman spiral). The results are very similar to those
obtained by Madsen (1977) and Jenkins (1987). In
particular we note that the present eddy viscosity dis-
tribution with depth yields a surface current that is
aligned more closely along the wind direction than Ek-
man’s 45 deg. In this example the deflection angle is
about 14 deg. Furthermore, if we assume a drag coef-
ficient of 1.5 X 1073, the magnitude of the surface
current is here about 2% of the wind speed at 10-m
height. It is also obvious from the figure that an eddy-
viscosity distribution of the form (2.1) effectively en-
hances the damping of the inertial oscillations that are
part of the transient drift solution.

b. Temporally damped waves

Concerning the wave-induced part of the total drift
current, we first consider temporally damped waves.
From (5.1) damping occurs for all wavelengths when
U < 0, that is, when the waves travel against the wind.
In general, it is seen that the waves are damped very
efficiently by adverse winds. For a wavelength A = 100
m and a friction velocity #, = 0.016 m s™', (5.1) yields
B = —3 X 10"°s~!, The contribution to 8 from the
oceanic viscosity [second term in (5.1)] is here much
smaller than the wind term. Nonlinearly, this increased
damping will lead to smaller drift currents.

The total wave-induced current, W™ = w®)
+ W® is obtained by adding (4.7) to the numerical
solution of (4.10)-(4.12). The result for the surface
current, scaled by u,, is displayed in Fig. 2 (solid line).
The initial wave amplitude {; was taken to be 1 m. In
order to emphasize the effect of the variable eddy vis-
cosity, we have also depicted the equivalent wave drift
current from (4.14) for constant eddy viscosity (broken
line). The equivalent case (same 8) has a constant,
effective eddy viscosity ves = —8/(2k?). Furthermore,
B, = 2k?v.s/ w. We note from the figure that the present
eddy-viscosity variation leads to a more rapid decrease
of the surface current, as well as to a stronger suppres-
sion of the inertial part of the mean motion. Also, we
find that the surface current is more aligned along the
direction of applied forcing (here, the wave propagation
direction) than for constant eddy viscosity. This is quite
similar to what one finds for the wind-stress driven
part of the problem.

c¢. Spatially damped waves

One application of the present theory appears to be
the damping of swell. Swell consists of nearly mono-
chromatic waves propagating away from a distant gen-
eration (storm) area. Such waves may travel over large
distances without much loss of energy. When they enter
an area of local winds, however, a change of wave am-
plitude may occur. In the JONSWAP experiment,
Hasselmann et al. (1973) found a pronounced damping
of swell. Friction in the water, and in particular bottom
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FiG. 2. Hodographs of the dimensionless wave-induced surface
current W™ /y, from (4.7) and (4.10) (solid line) for temporally
damped waves caused by adverse winds. Here A = 100 m and u,
=0.016 ms~'. The broken line represents the equivalent surface
current when the eddy viscosity does not vary with depth; see the
text for details.
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friction, could not explain this decay in a consistent
manner.

The fractional loss of swell energy from the outer-
most station to the shore was reported to lie in the
range 0.7-0.2. Judging from the position of stations
measuring at times when the wind was offshore, this -
yields a typical exponential attenuation coefficient «
for the wave amplitude of order —10~> m™'. Theoret-
ically, the relation between temporal and spatial
growth/decay may be written

a=B/C,, (8.1)

where C, is the group velocity (Gaster 1962). From
the observations by Hasselmann et al. (1973), we find
a typical swell period of about 10 sec. Taking the av-
erage water depth to be 20 m, this yields phase and
group velocities of 12.2 and 9.1 m s, respectively. In
order to give attenuation rates comparable to those
derived from the experiments, the present theory re-
quires adverse winds of about 16 m s™' (u, = 0.025
m s~'). However, the wind speeds during the JON-
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SWAP experiment were usually much lower than this,
which may explain why the observed damping did not
correlate particularly well with the wind speed (Has-
selmann et al. 1973).

The current in the spatially attenuated case will be
obtained for deep-water waves only. We utilize the fact
that the vorticity-layer correction W) must be of the
form (4.8), with spatial decay substituted for temporal
decay. The governing equation for the wave drift will
now contain a nonzero mean pressure gradient in the
wave-propagation direction, plus a small vertical mean
velocity from the equation of continuity; see Weber
and Ferland (1990). For the wave-induced current
W™ = wS + WE we now obtain

L{ W(w)} = 4y0§-(2)wk3e2aa+2kc’ az= 0’ (8_2)
subject to
2
WM = 2§%wk2(1 +2 B,)e2"'“, c=0 (83)
and
W™ >0, ¢—> —0w. (8.4)

Here we have assumed that |3%/dc?| > |8%/da?| ev-
erywhere. Furthermore, the initial condition becomes

W™ (t = 0) = {Bwke? ke, (8.5)

As a theoretical example of pronounced wind damping
(a <0), we consider an extreme case where u, = 0.025
m s~} that is, an adverse wind U,y ~ 16 m s~!. For
incoming swell with a period of 10 sec and an initial
wave amplitude {, = I m, (8.2)-(8.5) are solved nu-
merically. The results for ¢ = 0 and ¢ = —15.6 m,
evaluated at ¢ = 0 and nondimensionalized by the cor-
responding u,, are displayed in Fig. 3. The develop-
ment of the wave-induced current is very similar to
that found in Fig. 2 for the temporally damped case.
Now, however, we obtain a steady-state solution as
t - oo. In this example the steady surface current is
about 6% of the initial Stokes drift and is directed nearly
in the same direction.

d. Growing waves

When the waves travel in the direction of the wind,
wave growth may occur; see Table 1. For the wind and
wave parameters u, = 0.025 ms~! and A = 100 m,
we now obtain 8 = 2.6 X 107%s~! from (5.1). This
represents slowly growing waves (e-folding time 1/
of about 41/ days). Figure 4 displays the development
of the wave-induced current W™ = WS + WwE from
(4.7) and (4.10) when { = 1 m. The results are scaled
by u,, and hodographs are depicted at ¢ = 0 and ¢
= —10 m. We again note a rather rapid decrease of the
current with time at the early stages of the motion.
This is quite similar to what was found for damped
waves; see Figs. 2 and 3. This is because the exponential
time dependence in the forcing term is close to unity

WEBER AND MELSOM

203

1. —
uWyu, —
0.5 c=0
N\ b
=-15.6m
viW/u,
8 0.1

F1G. 3. Hodographs of the dimensionless wave-induced current
W™y, from (8.2) at depths 0 and 15.6 m, respectively, for spatially
damped waves where the damping is caused by adverse winds. Here
the wave period T = 10 s and u, = 0.025 m s~!.

for small times whether 8 is positive or negative. The
quasi-Eulerian part of the solution is dominated by the
contribution from the variable eddy-viscosity term on
the right-hand side of (4.10). This yields a value for
W () that essentially opposes the Stokes drift (4.7) at
this stage of the motion. As time progresses, the Coriolis
force becomes increasingly important and halts further
decay of the drift current. At even larger times the in-
ertial oscillations tend to vanish. The drift current is
now dominated by the effect of growing wave ampli-
tude and a balance between Coriolis and frictional
forces. We note the pronounced veering with depth of
the current for larger times, as seen from the hodograph
at 10-m depth.

Rapidly growing waves are relatively short compared
to those that usually constitute the dominant part of
observed wave spectra. For growing waves we have
from (5.9) that C ~ 10U, while for the peak of the
spectrum one obtains approximately C ~ U,o ~ 30U,
(Phillips 1977). As these short waves continue to grow
the wave steepness & will ultimately reach a point where
breaking starts, and whitecaps may form. It is pertinent
here to remind ourselves of the fact that the present
approximation for the drift current presupposes a suf-
ficiently small value of 6. Furthermore, description of
the wave breaking process is definitely outside the scope
(and ability ) of the present approach. Despite this, we
shall use our results up to the point where breaking
may start. A single wave is assumed to break when ¢
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FIG. 4. Hodographs of the dimensionless wave-induced current
W™y, from (4.7) and (4.10) at depths 0 and 10 m, respectively,
for growing waves with wavelength X = 100 m. Here u, = 0.025
ms™.

> §.. We here take 6. = 0.3, corresponding to a fully
saturated sea. -

In Fig. 5 we have displayed the computed drift cur-
rent induced by a rapidly growing wave component.
We have chosen u, = 0.016 m s™!; that is, a wind U,
~ 11.5 m s~!. For this friction velocity, we find from
(5.1) that the fastest growing wave has a wavelength
of 8.5 m. The computation of the wave-induced current
has been continued until the wave steepness reaches
the critical value. Taking the initial wave amplitude to
be 1/19 of the amplitude at 6 = 6., the approximate
breaking condition is reached after about 13 hours in
this example. The plot shows hodographs of the non-
dimensional wave-induced current (1™ /u,, v/ uy)
at depths 0, 0.4, 1.7, and 8.5 m, respectively. We note
the fact that the rapid wave growth and the relatively
short time scale of this computation effectively prevents
inertial oscillations from appearing in the drift solution.
This can be seen by comparison with the current de-
picted in Fig. 4, which is induced by waves that grow
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more slowly. Also for rapidly growing waves, however,
the effect of the earth’s rotation is of importance for
the development of the drift current. This is clearly
seen from the veering to the right with depth of the
current depicted in Fig. 5.

It should also be noted that the variation of the drift
current at small times; that is, a decrease in the early
stages of motion, as seen in Fig. 4, is also present here.
Due to the velocity scaling in the plot, however, this
tendency is not visible in Fig. 5.

It is of considerable interest to investigate how the
wave-induced current varies with the friction velocity.
For all possible growing waves at a given value of u,,
our description of the problem will break down when
the steepness of a particular wave component reaches
the critical value 6.. We shall here assume that this
particular wave component is that of maximum growth
rate, although, depending on the initial conditions, the
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FIG. 5. Hodographs of the dimensionless wave-induced current
W™y, from (4.7) and (4.10) at depths 0, 0.4, 1.7, and 8.5 m,
respectively, for growing waves with wavelength A = 8.5 m. Here u,
=0.016 m s~'. The computations of the hodographs are terminated
after about 13 hours.
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condition é = 6, may theoretically be realized first for
waves with slower growth rates. We note from Table
1 that increasing friction velocity implies that the max-
imum growth rate decreases and that this maximum
occurs for increasingly longer waves.

In Fig. 6 we have plotted the wave-induced surface
current as function of u,. The displayed values are
those obtained at the time when 6 = 6. = 0.3 for the
fastest growing wave component. We note from the
figure that the magnitude of the nondimensional wave
drift current | W™|/u, varies little with u,. The de-
flection angle 8 to the right of the wind and wave di-
rection is small and lies between 2 and 10 deg. Typi-
cally, for u, = 0.016 m s~ we see that | W™| =0.14
m s~!. Together with the direct wind-induced surface
current displayed in Fig. 1, we find that the total wind-
and wave-induced surface drift current in this example
is about 3.5% of the wind speed at 10-m height and is
directed 11.4 deg to the right of the wind direction.
This result agrees very well with the usual “rule of the
thumb” for observed wind- and wave-driven ocean
surface currents. One should remember, however, that
the wave-induced current here is only computed for
the dominant wave component up to the point where
breaking is likely to occur. At later stages the wave
amplitude may equilibrate in an average sense. In this
regime the energy balance is basically between energy
input from the wind and dissipation due to wave
breaking. Formally, one cannot infer from the present
analysis what will really happen in the equilibrium
range. However, since the wave amplitude virtually
becomes constant when averaged over many breaking
events (and close to that first attained at 6 = §.) we
think that the results displayed in Fig. 6 may still have
some relevance. The present analysis is valid for con-
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F1G. 6. Dimensionless wave-induced surface current speed | W™|/
u, (solid line) and deflection angle 8 (dotted line) as functions of
u,, given at times when the fastest-growing wave component in
question has reached a critical steepness; see the text for details.
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stant wind. In a real situation the wind will vary in
strength as well as in direction. This will influence the
development of the induced ocean current.

9. Concluding remarks

In this study we have tried to formulate a theory for
wind-driven ocean currents where we emphasize the
dual role of the wind in transferring mean horizontal
momentum to the ocean, that is, through a viscous
drag at the sea surface in conjunction with the gener-
ation of surface waves. Qur analysis is consistent in
the way that air turbulence is responsible for the mean
wind profile as well as for the normal stress fluctuations
in phase with the wave slope that promote wave growth
[ for the wave-growth problem, see Knight (1977) and
Jacobs (1987)]. For finite-amplitude, steep waves the
secondary wave-induced mean motion in the air will
alter the near-surface wind profile (Janssen 1989), but
this effect is not taken into account here. Instead, our
results are expressed as functions of the friction velocity,
defined in terms of the mean tangential shear stress at
the surface.

The present paper is focussed on the mean currenis
induced by growing wind waves. As demonstrated here,
however, the viscous (eddy) dissipation in the ocean
is not sufficiently effective to prevent the wave steepness
of such waves from exceeding a critical limit. Accord-
ingly, wave breaking must occur. In a fully developed
sea state, the basic energy balance is between energy
input from the wind and dissipation due to wave
breaking. In addition, nonlinear wave-wave interac-
tions may be important in this equilibrium range
(Phillips 1985). A challenging future goal must be to
model the drift current induced by waves in this regime.
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