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ABSTRACT N

Surface gravity waves in a viscous rotating ocean are studied theoretically when they penetrate an area covered
by highly concentrated brashlike ice. The motion is described by a Lagrangian formulation, and the brash is
modeled by a viscous Newtonian fluid. Results for wave attenuation and wave drift are obtained in the asymptotic
limit of a thin, very viscous upper layer. The derived damping rate compares favorably with field data from the
marginal ice zone (MIZ). The drift velocity in the ocean exhibits a marked maximum in the viscous boundary
layer near the ice-ocean interface. At the outer edge of the boundary layer it exceeds the inviscid Stokes drift
by a factor of 7/4. Computed values for the mean viscous drag on the ice induced by the wave motion show
that this effect may compete with the frictional effect of the wind in packing the ice. Finally it is demonstrated
that the integrated horizontal mass transports in the open ocean and under the ice do not match, which leads

to upwelling in the vicinity of the ice edge.

1. Introduction

The fact that ocean waves attenuate when they pen-
etrate areas covered by ice floes is well established. The
loss of wave energy is attributed to the presence of the
ice and depends on ice concentration, floe size, etc.
These parameters, in turn, depend on the energy and
characteristics of the incident wave field, because floes
tend to break up if they are too large to exist in the
local wave climate. The area in which this complicated
wave~-ice interaction occurs is known as the marginal
ice zone (MIZ). Ice conditions are not uniform within
the MIZ, and it is often divided into three subzones:
the edge zone, the transition zone and the interior zone
(Squire and Moore, 1980; Squire, 1983a). Each zone
is characterized by ice floes of a certain size; the size
increases moving inward from the ice edge.

Constructing a general model for wave attenuation
in the MIZ is a formidable task, due to the rather in-
homogeneous conditions encountered by the waves as
they penetrate the ice-covered area. Furthermore,
within the previously defined subzones, the ice con-
ditions may vary with geographical location and local
meteorological conditions. This is particularly evident
in the edge zone, often taken to be part of the MIZ
within 5 km or so off the ice edge. Here the ice is most
directly exposed to the action of the waves, and the
floe size and ice configuration may vary considerably.

The only theories so far to explain the loss of wave
energy in the ice are wave scattering by individual ice
floes (Wadhams, 1973a, 1975) and inelastic bending
of the ice sheet (Wadhams, 1973b; Squire, 1978). Single
scattering theory requires that the reflected energy is
dissipated before reaching the preceding floe, i.e., it
assumes that the ice floes are rather far apart. Multiple
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scattering allows a wave vector to be reflected twice
before dissipating, and is therefore a better approxi-
mation for higher ice concentrations. Inelastic bending
is probably only important for very large ice floes or
fast ice. However, it is not uncommon to find situations
in the MIZ where the ice floes are quite small and rather
densely packed. The occurrence of brash ice at the ex-
treme ice edge is such an example (Squire, 1984). Here
the ice floes have been broken down to a highly con-
centrated brashlike viscous soup of small ice cakes.
Grease ice is a second example. It is formed from frazil
ice in the presence of wind (Martin and Kauffman,
1981) and constitutes a soupy agglomeration layer of
thickness up to one meter.

Until now the effect of viscosity has been neglected
in the various attempts to explain the attenuation of
surface waves in the pack ice. However, it seems rather
unlikely that this effect should not play an important
role in determining the high attenuation rates observed
in ice configurations like those mentioned above. To
simplify the problem, we assume that the “soupy” ice-
agglomeration behaves like a Newtonian fluid. Physi-
cally, the problem is then reduced to that of analyzing
the propagation of gravity waves in a rotating, slightly
viscous ocean covered by a thin layer of very viscous
fluid. Since most ocean waves have wavelengths A
much larger than the thickness % of the ice-agglomer-
ation layer, results will be obtained only in the asymp-
totic limit 2/A < 1.

Although our theoretical analysis is based on a spe-
cial type of ice, we find that our model in fact does
apply to more general conditions encountered within
the MIZ. This is evident from a good fit between the
theory and observational data from various attenuation
measurements in the pack ice.
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A nonlinear analysis is performed to second order
in wave amplitude, and the wave-induced drift current
(the mean mass transport) below the ice layer is deter-
mined, which enables us to calculate the mean viscous
stresses exerted on the ice. The importance of this
mechanism in packing the ice is discussed. Finally, we
demonstrate that the integrated wave-induced mass
transport attains different values in the open ocean and
under the ice. This must inevitably lead to upwelling
near the ice edge.

2. Mathematical formulation

We consider an unlimited ocean of infinite depth

partly covered by a thin, very viscous fluid layer of
thickness 4. The system rotates about the vertical axis
with a constant angular velocity f72, where fis the Co-
riolis parameter. A Cartesian right-handed coordinate
system is defined such that the x, y-axes are situated
at the undisturbed interface between the two fluids.
The z-axis is directed vertically upwards. We consider
only positive values of x, i.e. we place the ice edge at
x = 0; see the sketch in Fig. 1. The ice-agglomeration
layer and the ocean, labeled 1 and 2 respectively, are
both taken to be homogeneous, incompressible New-
tonian fluids.

We describe the motion in each layer by using a
Lagrangian formulation. This proves very convenient
in problems involving freely undulating material sur-
faces (Weber, 1983a,b). Let a fluid particle have co-
ordinates (g, b, c) at time ¢ = 0. At later times it occupies
the position (x, y, z). The governing equations for mo-
mentum and mass in each layer may then be written:

16(p,y,z
— == 6((2 Z c;
1 a(x, p,z)
p d(a,b,c)
1 d(x, y,p)
p &a,b,c)
9x,y,2) _
Na,b,c)

Here p denotes the pressure, p the density, v the ki-
nematic viscosity and g the acceleration due to gravity.

~
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FG. 1. Model sketch.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

Subscripts denote partial differentiation and 9/d(a, b,
¢) is the Jacobian. For the explicit form of the Laplacian
V2 in Lagrangian form, the reader is referred to Pierson
(1962).

The displacements (x, y, z) and pressure p in each
layer will be, written as series expansions (Pierson,
1962):

r . |
x1,2=a+ex(.%+ezx(,;+

1 2
n2=b+ e+ &P+

zZpo=ct+ey+ &P+ ... L (2.3)
pi=-pglc—h+e"+epP+ ...
P2 =pigh— prgc+ P + EpP + - -

Here € is an ordering parameter proportional to the
amplitude of the wave. The position of the upper
boundary of the ice is given by ¢ = # for all times, while
the ice—ocean interface is given by ¢ = 0. Accordingly,
label ) refers to the domain 0 < ¢ < A, while label @

refersto ¢ < 0.

For future reference we state the horizontal and ver-
tical dynamic stresses P2 and P“? at a sloping ma-
terial surface ¢ = constant. We consider wave propa-
gation along the x-axis. Hence d/3b = 0 in the pertur-
bations. For reasons which become obvious in the next
section, we put y(,';)z = 0. Utilizing series expansions of
the type (2.3), we then obtain

P(XZ) G[J[X(l)‘}' Zﬁ,l,)] + € [p(l) (1)+ [L(X,Z)‘i' z(2)

1)_() 1 _m (1) (¢} n_(m (l) (1)
T Xg Xte — XigXe t ZigZe — Zg Zie — 2X4424 )]

+O()+ -+, c=const (2.4)
e[ - + 2z + €[ '
—p? + u2z2 + 2x 0
-2z + O + - - -,
c=const. (2.5)

Here u = pv is the dynamic viscosity coefficient. For
further details concerning the conditions above, see
Chang (1969) and Weber (1983a, 1985).

P(zz)
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3. Linear analysis for upper layer

The linear solution is obtained by inserting the ex-
pansions (2.3) into (2.1) and (2.2), collecting terms
proportional to e. We assume that the viscosity of the
upper layer is so large that the motion here essentially
results from a balance between pressure and fric-
tion (creepin motlon) Hence for motion in the x, z-
plane with yl = 0, the continuity equation (2.2) is

satisfied by a streamfunction 1[/(,') such that

xid=wd, 2=yl 3.
The momentum balance (2.1) thlen leads to the fa-
miliar biharmonic equation for gbl ).
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iV =0 (3.2)
where V

? = 8*/9a* + #*/dc*. We assume that the waves
propagate in the x-direction, and take

¥ = W(c)eaed (3.3)

where the wavenumber « and the frequency w in prin-
ciple may be complex. Equation (3.2) is satisfied by a
solution of the form

V= (Al +A2C)€Kc + (A3 +A4C)€—KC

where the As are constants.

We assume that the atmospheric pressure along the
surface of the upper layer is constant. Furthermore,
the stresses are taken to be zero here, i.e., we ignore any
viscous effects of the air. From (2.4) and (2.5) the re-
quirement of vanishing horizontal and vertical stresses
to O(e) at the free surface reduce to

Y, + 20 =0
Vo — 32¥,—263Q¥ =0

(3.4

}, c=h. 3.5)

Here Q is a dimensionless parameter defined by

o-—%_. (3.6)

2vwk

Utilizing (3.5), we may express A; and A, in (3.4) as
functions of 4; and A4,.

We have assumed that the viscosity of the ice-ag-
glomeration layer is very large. This means that we
take |Q| < 1. Furthermore, we assume that the upper
layer thickness 4 is small compared to the wavelength,
1.e. [kh| < 1, which proves to be a very reasonable ap-
proximation. Usually brash- or grease-ice layers have
thicknesses less than one meter, while the most ener-
getic ocean waves penetrating the ice may have periods
of 10 sec or more. This corresponds to wavelengths
well above 100 m.

To lowest order in the small parameters Q and «#,
the velocity components and stress distributions at the
bottom of the brash-ice layer may be written:

x1P = —kdo expli(ka — wt)]
2 ! ‘ )= —2ikA, expli(ka— wi)]
PP/ = 4xu,(xh)A, expli(ka — wi)]
P/e = 2ik*u,(xh)(kh — Q) Ao expli(ka — wi)]

o
[
L

3.7
where we have defined Ag = —2(A4, + Ay/x).

4. Linear analysis for lower layer

We consider high-frequency gravity waves, i.e. ||
> f. The effect of rotation can be neglected to O(e) for
the ocean wave problem (Weber, 1986). For waves
propagating in the x-direction, y(zl) = 0 in the solutions.
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The ocean is assumed to be only slightly viscous, and
a solution to the wave problem may be obtained along
the lines of Lamb (1932). Defining
x(zll) =~ — ¥ ] @
D = g+ il2, |

the linearized versions of (2.1) and (2.2) reduce to

Vg3 =0
4.2)
)y, Vi = }
The pressure p(zl is obtained from
P = paly) — p2gz5. 4.3)
The solutions are:
(1) ¢ mcy ,i(ka—wi) 1
X3 ———[IKB e+ mbBye™ e
(1) xC mcY , i(ka—wi) L
Z5 ——[xBle —ikBye™ e 4.49)
[ (gx— Z)B exc+p2g B emclex(xa—wt)

J

where m2 = k? — jw/v,. Here we have assumed that
Re(x) > 0 in order that the solutions vanish as
c~> —00.

If », is small, one obtains approximately (Lamb,

1932): ,
R i .
m=(1 —1)[ e(‘”)] =(1—i)y. (4.5)
V2

We note that y~! defines the thickness of the viscous
boundary layer in the ocean below the interface ¢ = 0.
The velocities and dynamic stresses in the ocean at

the interface may then be written:

x5 =[—ixB —
250 = [—kB, + ixB,] expli(ka — wt)]

PS5/ =yl —2ix?B, — (m* + «)B;) expli(ka — wf)]

mB,] expli(ka — wt)]

P§e= [—("’ :g" ~ipyw+ 2u2x2)B, + (— P28x
+ Zipzxm)Bz] expli(ka — wi)]
c=0. (4.6)

In general, the dispersion relation and the integration
constants are determined from (3.7) and (4.6) by re-
quiring continuity of velocities and stresses at the in-
terface ¢ = 0. The solutions may be normalized by
taking B; = 1. Continuity of the horizontal velocities
leads to

Ao=i+mB,/. 4.7
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Hence the conditions for continuity of horizontal and
vertical stresses at ¢ = 0 may be written:

[(«* + M)y + dxmpikh)By = —2ik*(ua + 2uikh)  (4.8)

[§ (pax + pymuh) — 2ikmu, + 2ikmu2H? | By
)

= ipyw— "%"(p2 + puxh) — 2Py + 20U, (4.9)

Finally, the dispersion relation may be obtained by the
elimination of B, between (4.8) and (4.9).

Since the wave amplitude is observed to diminish
as the wave propagates inwards from the ice edge, the
decay here is most naturally described as a spatial one.
Accordingly, we take w to be real, place the ice edge at
x = 0 (Fig. 1) and restrict ourselves to the half-plane
x = (. Spatial attenuation then means that « is com-
plex and such that Im(x) > 0. Also, as mentioned be-
fore, Re(x) > 0, to ensure that our solutions vanish as
c— —o0. ‘

For the problem considered here, we assume that u,
is very large and u, small: The latter requirement means
that

Iml = (w/v2)"* > |«l. (4.10)
If we now assume that y, is so large that
sl < |drpy(Kh)l, (4.11)
we obtain from (4.8) that
By =~ —ix/m.

As seen from (4.6) this implies that x(zl,) ~Qatc=0,
i.e., the upper layer is so viscous that it effectively halts
the horizontal motion in the lower fluid at the interface.
This is the same result as given by Lamb (1932) for
the inextensible limit of a thin viscous surface film.
We then obtain from (4.9):

w?+ (1 +1i)ge*/(2y)— gk =0 (4.13)
where v = (w/2»,)'/? is connected to m by (4.5). Taking
k = k + ia, where the damping rate « is assumed to
be small, balance to O(»}?) in (4.13) yields for the real
and imaginary parts, respectively:

k
w? = w%(l - E) , wi=gk (4.14)
k2 Vé/2w7/2
= E = —2—]—/2? . (4.15)

The last result also follows from Lamb’s calculation if
we connect spatial decay o and temporal decay 8
through the group velocity ¢, such that a = 8/c, (Gas-
ter, 1962; Phillips, 1977).

The displacement field and pressure distribution in
the ocean may now be written:
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n_k _ a .
x5 == e~} ek cosac — — sinac
) k

a

— e cosyc+
( Tk

sinyc)] cos(ka — wt)

+ [—e"”(sinac + % cosac)

- e"c(sin'yc —-% cos'yc)] sin(ka — wt)} (4.16)

n_k _ a .
29 == e )| ek cosac — = sinac
w k

——]f—e"‘ l——2£ cosyc+ l+2—a in
2y k | €57 K | e

X sin(ka — wt) + [e"‘(sinac +% cosac)

k 2a 2a
—_ — pY( —_ — —_ 1
2 e ((1 + k ) cosyc (1 T ) smyc)]

X cos(tka — wt)} 4.17)

2
W .
py)= #z’yk(;g)e‘““{[—ek”(cosac + sinac)

+ e"(cosyc — sinyc)] cos(ka — wt)
+ [—e*(cosac — sinac) + e"(cosyc + sinyc)] _
Xsin(ka—wt)}. (4.18)

The results presented here rest upon the assumption
that the thickness of the viscous boundary layer in the
ocean at the ice/ocean interface is much smaller than
the wavelength, i.e. k/y < 1. For waves of interest here,
a typical period will be about 10 sec. Assuming a (tur-
bulent) eddy viscosity of order 1 cm?/s, we obtain k/y
= 2a/k ~ 1073, Hence the condition k/y < 1 is seen
to be very well fulfilled. For a wave component {
= {o exp[—aa + i(ka — wt)] at the interface ¢ = 0, we
obtain from (2.3) and (4.17) that ¢ = {yw/k as in earlier
works (Weber, 1983a,b).

5. Comparison with observational results

During recent years quite a few field studies have
been aimed at determining the attenuation rate of
waves in the MIZ; see the data summary by Wadhams
et al. (1987). The attenuation coefficients are calculated
from wave spectra obtained from wave buoys placed
between the ice floes at various distances from the ice
edge. All data indicate that the attenuation is larger for
higher frequencies. Hence the ice pack acts as a filter
yielding a systematic shift towards lower frequencies
of the spectral peak as one moves inwards from the ice
edge. The calculated attenuation rate (4.15) exhibits
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qualitatively this increase for higher frequencies. How-
ever, in order to compare with observational results, a
value for the viscosity coefficient must be assessed. A
molecular value of »; clearly must be ruled out since
the motion in the ocean is turbulent. In the MIZ wind,
waves and tidal currents will be the main sources for
this turbulence. We recall that turbulent diffusion in
the interior of the ocean is associated with values of
the diffusion coefficients of about 1 cm? s™!. Near the
surface in the open ocean where wind mixing, wave
breaking and shear generated turbulence act together,
values of », could range from 10% to 10> cm?s™'. Below
the pack ice the conditions will be more calm, although
in areas with strong tidal currents the presence of an
ice covered surface may induce turbulence similar to
that near a rigid bottom.

In Fig. 2 we have plotted the energy attenuation rate
o versus wave period 7 from Wadhams et al. (1987).
The plot is based on data from the Bering Sea obtained
on 26 February 1983. The vertical error bars arise from
least-squares errors in the attempt to fit the data with
an exponential curve. The error bars along the period
axis represent the range of periods covered by the fre-
quency smoothing of each component. The valid range
on the plot (10-21 s) indicates that wave energy outside
this range was not measurable. The increase of decay
rates for long periods outside this range is probably an
artifact of the recording, e.g:, thermal drift or sustained
tilt of the wave buoy (Wadhams et al., 1987). The in-
crease for short periods is most likely due to waves
generated locally, either by wind or by floe movements.
On the plot we have depicted the energy attenuation
coefficient oy, = 2« (solid line) where « is given by
(4.15). Here we are taking v, = 4 cm? s~ The fit with
the results from the observational data is very good
within the valid range.

Valid range

Qe
16 3m ™)

FIG. 2. Energy attenuation rate a, versus wave period T. The ob-
servational data are based on measurements from the Bering Sea on
26 February 1983; see Wadhams et al. (1987). The full and dotted
lines are theoretical decay rates a, = 2a, where a is given by (4.15)
and (5.1) respectively, using an eddy viscosity v, = 4 cm? s7!,
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To illustrate the effectiveness of a horizontal no-slip
surface condition on wave damping, we may compare
with the case of a free surface. Then the requirement
of a vanishing horizontal stress [P*® = 0] replaces
x(zl,) =0 at ¢ = 0, leading to

5.1

see Phillips (1977). With v, = 4 cm? s~ as before, this
relation is plotted in Fig. 2 as a dotted curve. The ob-
tained damping rates are much too small to account
for the observed damping. In order to yield an atten-
uation rate at the spectral peak period (here 14 s) of
the required size, one would have to assume an un-
realistically high value of about 1300 cm? s™! for the
eddy viscosity.

In Fig. 3 we have displayed the results from Wad-
hams et al. (1987) based on data from the Greenland
Sea (Kong Oscars Fjord) on 4 September 1979. Ac-
cording to the authors, the experimental conditions
during this series of measurements were nearly ideal.
The incident wave spectrum was narrow, with a peak
period at 10.5 s. The valid range (energy density greater
than 0.01 m? s) extends from about 8 to 14 s. The
broken lines on the plot are decay rates from the single
and multiple scattering theory of Wadhams (1973a,
1975). The solid line is the attenuation coefficient o,
= 2a obtained from (4.15) with », = 20 cm? s~

Finally, in Fig. 4, we compare with results from the
Bering Sea, obtained in March 1979 and reported ear-
lier by Squire and Moore (1980). With a value of »,
=1 cm? s}, we note that within the valid range, our
theory (solid line) gives a better fit with the data than
the scattering theory of Wadhams et al. (1987) (broken
lines).

When making the comparisons above, one should
bear in mind that the attenuation rate (4.15) for a single
wave component is obtained for a rather idealized sit-
uation, i.e., a thin, very viscous homogeneous fluid
layer overlaying a slightly viscous ocean. The atten-
uation rates reported by Wadhams et al. (1987) are
based on observational data from various places within
the MIZ and cover a variety of ice conditions. They
constitute, more or less, average values for the entire
region. So why this apparently good fit between our
theory and the observational data? It seems to be related
to the more general behavior of ice floes in ocean waves.
For single, thin ice floes in an inviscid ocean, Squire
(1983b) has demonstrated that horizontal sway may
be considerably smaller than vertical heave. This occurs
for floe diameters and ocean wavelengths which typi-
cally may be found in the transition zone of the MIZ.
In addition, for high ice concentrations, frequent col-
lisions between neighboring floes will reduce the hor-
izontal motion, so that the horizontal velocity of the
ice floes in a wave field may be negligible, or at least
small compared to the orbital particle velocities in the
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FIG. 3. Energy attenuation rate a, versus wave period 7. The ob-
servational data are based on measurements from the Greenland Sea
on 4 September 1979; see Wadhams et al. (1987). The broken lines
are decay rates from single and multiple scattering (Wadhams et al.).
The full line represents the decay rate o, = 2 from (4.15) with »,
=20cm?s\.

1 |

18 2

1
1% 16

waves near the surface. Mathematically this leads to a
no-slip condition for the horizontal velocity at the ice/
water boundary, which is exactly the same condition
obtained in the asymptotic limit of our theoretical
model. The ice floes move more or less freely in the
vertical direction. Hence a vanishing vertical stress
component seems to be a reasonable approximation
at the ice/water boundary. Accordingly, the mathe-
matical problem in the case of larger, densely packed
ice floes in ocean waves is identical to the asymptotic
model analyzed before. The same dispersion relation
and damping rate results. However, the effect of floe
collisions, i.e., energy loss due to inelastic deformations,
is incorporated in the parameterization of the eddy
coefficient », in the water. Since the number of colli-
sions depends on the ice concentration, this parameter
is also embedded in »,.

6. Mean drift currents

To obtain mean drift currents in the ocean below
the ice, the computations must be carried on to O(e?).
The “mean,” denoted by an overbar, is taken to rep-
resent time average over one wave period T = 27/w.
The equations governing the mean drift are given in
Pierson (1962) for a nonrotating fluid. However, since
they contain some inaccuracies, we state them here in
corrected form, including rotation. For the mean mo-
mentum we find:

_@ 2 _o_wo_ l-o-m_ l-oom
_xft)+f)7$ )+VViX£ )_Hfz)_;pa Xa _;pc Zq

1 1 1 1 1
+ V[fo,l)xﬁ,,f, + Zzi )xfcc) + 225, )xﬁaﬂ

+2x %D 4 x D2 x4 5 Og2, M) (6.1)
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D= X2+ wiiP =0 (6.2)

2 =@ n_a Do l-ma
P4 =T+ I - SO~ LD

[ oxe Q) D_a
—;pc Ze +V[2x(a>ztaa+2zi' )chc)'

+2z0200 + 2020 + 20w x4 20w (6.3)
Here we have defined II® = p@/p + gz®, which con-
stitutes the effective pressure per unit density. Fur-
thermore, we assume that there is no external hori-
zontal pressure gradient in the problem. Here and from °
now on, we drop the subscript 2; this should not lead
to any confusion, since hereafter we only need consider
the lower fluid (the ocean).

In the vertical the mean velocity and accelerations
are very small. The effective pressure II® is obtained
to the required accuracy from (6.3) by neglecting the
terms on the left-hand side.

As in Weber (1983a,b) we define horizontal mean
flow components

2(2)

2
u=ex?, v=ej?

v=e€y,, (64)
and a complex drift velocity W = y - -+-2 iv. By computing
the right-hand side of (6.1), where IIL is obtained from
(6.3), the mean drift equation finally reduces to

vWe—W,— lfW
4 2 . 3 2
= vg‘éwk3e_2°‘“(4e2"‘ + —klz € sinyc+ k—’);ez"‘) . (6.5)

Here we have utilized the fact that 8%/dc? > 8%/da>.

We assume that the ice is relatively closely packed
and has a negligible motion along the wave slope.
Hence, from a tangential no-slip condition the mean
horizontal drift current to O(¢?) at the ice/water inter-
face may be written

Valid range
15[-
1%H
12}
10
ng 8-
'e
T 6}
l._
2_
1 >I ] 1 1 1 1 1 1 "
07246 8 10 12 14 16 18 20 22 2
T(s)

FI1G. 4. Energy attenuation rate a, versus wave period 7. The ob-
servational data are based on measurements from the Bering Sea,
March 1979 (Squire and Moore, 1980). The broken and full lines
are as in Fig. 3 except with », = 1 cm? 57!,
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=(2) _ m_(m
Xy ==Zt Zg,

or, from (4.17) and (6.4)

7P=0 at ¢=0,

W= % Cwke 2@, ¢=0. (6.6)
In the deep ocean the drift current is assumed to vanish,
ie.

W—>0, (6.7)

The drift problem defined by (6.5)-(6.7) has much
in common with those studied by Madsen (1978), We-
ber (1983a,b) and Jenkins (1986) for a free surface.
However, due to the no-slip condition applied here at
the upper boundary, the viscous effects become much
more pronounced. For a discussion of the nonrotating
case, the reader is referred to Craik (1982). In that pa-
per, which considers waves on a contaminated surface,
the mean drift gradient is taken to vanish at the surface,
with important consequences for the development of
the drift solution, as will be discussed later.

Since the wave problem does not start from rest, it
is not obvious which initial condition should be applied
for the mean drift. For surface waves the wave drift
along the propagation direction will establish itself very
quickly, while the deflection due to the earth’s rotation
will occur on a much larger time scale. Therefore, we
take as initial condition:

W= hwke?koea),  1=0,

i.e., the spatially modulated classic Stokes drift.

We introduce Stokes and Ekman depths L = 1/(2k)
and D = (2v/f)'?, respectively, which naturally arise
in this kind of problem (Weber, 1983a,b). By Laplace
transforms a solution to (6.5)—(6.8) may be written:

1+2ig ,,  3+28¢°—8ig (1+0e/D

C—> —00.

(6.8)

w= g‘?,wke‘z"“’[

1+ 44> 4(1+4¢%
—ift oo .
~2e Bome &7 f ~(242a=D)
2e cosyct+ e+ = Jo I+ 4q°
1 3+284%—8ig\ 1 2¢
X —_
E+ak?y \ 4(1+4g) JE+if £+
3
+——Je ¥ 1/24,1/2 )
4(.E+2w)]e sin(cE'/“/v )dg] 6.9)

where g = L?/D? In this solution the four first terms
on the right-hand side represent the steady part. The
integral on the right tends to zero as ¢ = oo. It describes
the approach towards the steady state through damped
inertial oscillations.

We introduce a nondimensional drift velocity W,
and a nondimensional vertical coordinate ¢, by taking

W= wke 2 W,, (6.10)

In Fig. 5 we have displayed a hodograph of the steady
nondimensional solution W = W, (t > o) from

c=—Lc,.
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FG. 5. Hodograph of the steady nondimensional drift current de-
fined by (6.10). The crosses and numbers on the plot represent non-
dimensional depths. The waves propagate in the positive x-direction.
See the text for details.

(6.9) and (6.10). The crosses and numbers on the curve
represent nondimensional depths defined by (6.10). In
this example we have taken v = 10 cm? s™!, /= 1.38
107%s ' and T = 2w/w = 10 s, which are fairly typical
values for these parameters in the MIZ. This gives v
=0.06 m, D = 3.8 m and L = 12.4 m for the char-
acteristic length scales of the problem. The reader is
reminded of the fact that the waves propagate in the
positive x (or u,) direction. Having used the sign for f°
for the Northern Hemisphere, we note the characteristic
spiraling of the drift vector to the right with depth. Of
particular interest in this problem is the pronounced
velocity maximum in the viscous boundary layer just
below the ice (the effective dimensionless boundary-
layer thickness 6 = w(yL)™! is 0.014 in the present ex-
ample). In this thin layer the effect of rotation is very
small, as seen from the direction of the drift vector.
The maximum nondimensional mean drift velocity in
the wave direction is about 1.8, a substantial increase
as compared to the inviscid nondimensional Stokes
drift, which is very near 1 in this region. In general it
can be shown from (6.9) and (6.10) that the steady
solution W reduces to
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u$ =1+ Olk/, ()]
6.11)

v§) ~ Olk/v, (f1w)'"]

atc, = 9, i.e., at the outer edge of the surface boundary
layer. The parameters k/vy and f/w are very small, ac-
cording to earlier assumptions.

The increase in drift velocity discussed above is due
to diffusion of mean horizontal momentum from the
boundary ¢ = 0. Essentially it arises from the lack of
ability of the viscosity-modified Stokes drift to satisfy
the boundary condition (6.6) along the sloping surface.
This phenomenon is a surface parallel to the famous.
result of Longuet-Higgins (1953) for waves in a channel
of finite depth. He demonstrates the existence of a for-
ward bottom jet exceeding the inviscid Stokes drift just
outside the boundary layer by a factor of 5/2, when
the mean horizontal pressure gradient is set equal to
zero; see also Phillips (1977, Eqn. 3.4.27).

In Fig. 6 we have plotted the transient development
of the nondimensional mean drift current from (6.9)
and (6.10) at four different values of ¢,: 0.02, 0.1, 0.4
and 1.6. The values of the physical parameters are the
same as in Fig. 5. The dots and numbers on the plot
denote time in pendulum hours after the onset of
streaming motion. We notice the deflection to the right
of the initial drift direction,' and the characteristic
clockwise spiraling towards a steady state (marked by
a cross) at each particular depth. The period of half a
pendulum day is clearly seen for these damped inertial
oscillations.

At ¢, = 0.02, which is close to the outer edge of the
surface boundary layer, the influence of viscosity is
strong. The inertial motion is effectively suppressed
and the drift vector approaches its steady value quite
rapidly. At some larger depth, ¢, = 0.1, the presence
of the surface layer is still felt. This is obvious from the
small amplitude of the damped inertial oscillations at
that depth and the fact that the drift vector is fairly
close to its steady value after half a pendulum day or
so. At larger depths the damping is less pronounced,
and the situation is more like the one obtained for
wave drift when the upper surface is stress-free (Weber,
1983b; Jenkins, 1986). For ¢, = 0.4 the oscillating ad-
justment towards the steady state will continue for sev-
eral pendulum days. At even larger depths, here rep-
resented by ¢, = 1.6, the steady-state drift practically
vanishes, as also seen from Fig. 5. The initial nondi-
mensional Stokes drift of 0.2 at this depth will trigger
off inertial oscillations which will persist for a very long
time.

The development in time described here will be
qualitatively repeated for other choices of the physical
parameters. It should be mentioned, however, that the
speed of progress towards the steady state very much
depends on the value of the eddy viscosity (Weber,
1983b; Jenkins, 1986).

Finally, we shall remark on the dynamic conditions
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F1G. 6. Hodograph of the transient nondimensional drift current
at dimensionless depths ¢, = 0.02, 0.1, 0.4, 1.6. The dots and numbers
on the plot denote time in pendulum hours. The choice of the physical
parameters is the same as in Fig. 5. See the text for details.

at the boundary ¢ = 0. If one assumes that the vertical
gradient of the mean drift velocity vanishes at ¢ = 0,
a large virtual wave stress is imposed at the upper
boundary, if the primary wave field, as here, is con-
strained by a vanishing horizontal velocity at ¢ = 0.
This may eventually result in a large increase of the
drift velocity also in the interior of the fluid; see Craik
(1982) for the nonrotating case. Craik’s boundary con-
dition, arising from the assumption of zero mean shear
stress at the interface, may be relevant for a surface
covered by a very thin layer of contaminating material
such as oil or a detergent. However, for an ice covered
ocean there certainly must exist a nonzero mean vis-
cous stress between the ocean and the ice. In this case
prescribed mean velocities at the boundary (here taken
to be zero in the tangential direction) will constitute
the relevant boundary condition.

7. Mean viscous drag on the ice

It is of considerable interest to assess the role of in-
coming waves in packing the ice. Observations indicate
that some reflection of waves always occurs at the ice
edge. This reversal of direction of wave momentum is
associated with a pressure force at the ice edge acting
in the direction of the wave propagation. Also wave
scattering within the ice, as reported by Wadhams et
al. (1986), will tend to push the ice floes together. Little
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effort has been made in calculating the mean viscous
drag from the waves on the ice.

We note from (6.5) and the full set of boundary con-
ditions in Weber (1985) that the dominating stress
component in the present case is along x. Denoting

the corresponding drag component by -rf"), we have -

P = —pxad =0 (7.1)

where P2 is obtained from (2.4). In this expression
nex2) is the leading term; the others are small or vanish
identically. We note from (6.5) that the boundary layer
terms proportional to exp(vyc) and exp(2vy¢) dominate
in the viscous boundary layer near the surface as far
as the mean stresses are concerned. Accordingly, to
leading order, we obtain

T = e oo = 27 pn 230k (1.2)
where we have put a = 0. This means, strictly speaking,
that we consider the drag at the ice edge. Since the
amplitude attenuation is rather weak, however, as seen
from section 5, the result (7.2) will be valid also quite
some distance inwards from the edge.

As seen from (7.2), the mean viscous drag depends
very much on the wave amplitude. In absence of direct
measurements of wave height, the wave amplitude may
be assessed from the energy spectrum. Consider the
case reported by Wadhams et al. (1987) from the
Greenland Sea on 4 September 1979 (displayed in their
Fig. 9a). An inspection of the energy spectrum at the
station nearest the ice edge reveals a significant wave
height of about 1.6 m. We take the effective amplitude
to be half this value. Furthermore, the peak period is
seen to be about 10.5 sec. The attenuation rate for this
case is plotted in our Fig. 3 and gives a good fit with
the measured values when » = 20 cm? s™!. Using the
values above for the amplitude, period and eddy vis-
cosity, we obtain from (7.2) that fo) = 1.7dyncm™2,

This result may be compared with the case of wind
forcing. The wind drag, based on turbulent air flow
above the ice, may be written

T4= paCpU>. (1.3)
Here p, is the air density, ¢, the drag coefficient and
U the wind speed at some specific height. The drag
coeflicient depends on the shape of the ice. However,
for drifting, flat ice the value of ¢p is not substantially
different from that for an open sea; a doubling of the
value is often quoted (Reed, 1983). For typical values
like p, = 1.2 X 1073 g cm™ and ¢p = 3.1072 we find
from (7.3) that a wind speed of about 7 m s™! produces
a wind stress 7, = 1.7 dyn cm™2, Hence, the mean
viscous stress on the ice from the waves in magnitude
may be comparable to the size of the wind stress in-
duced by moderate winds. On the basis of this it seems
as if waves alone have a considerable influence on the
ice concentration. Observations in the MIZ in cases of
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heavy incoming swell and negligible local winds are
highly desirable to test this result.

8. Upwelling near the ice edge

We consider steady wave drift and define a complex
volume flux M per unit width by
0 -
M= f Widc. 8.1)

~o
Since the drift current decays rather quickly with depth,
the transport M is confined to a relatively thin surface

layer.

In the open sea, far away from lateral boundaries,
it is straightforward to show for spatially attenuated
waves [Jenkins, 1986, Eqn. (4.6)], that

P2

i

M= M [ M , a= 0

4q
where again g = L*/D? = f](8vk?). Here, 1o is the wave
amplitude in the open sea. The result above is based
on the assumption of a stress-free ocean surface. We
note from (8.2) that M, is directed at right angles to
the wave propagation direction.

For the flux below an ice covered sea we obtain from
(6.9):

(8.2)

g—(Z) ve —2aa

M=M= 61 + 4

(4—iB) (8.3)

where
A=3+8q"2—8q+28q%

B=3+8q—16¢%*+28q%

It is a simple exercise to show that 4 > 0, B > 0 for
all possible values of g. Hence, the volume flux under
the ice has a positive component along the wave prop-
agation direction as well as a component at right angles
to this direction. Due to a possible reflection of waves
from the ice edge, we expect {, < 5. Also the eddy
viscosity » may attain different values in the open sea
and under the ice. However, the important point here
is that a difference exists in volume transports in the
direction normal to the ice edge. Since this flux com-
ponent vanishes in the open sea and is nonzero (and
positive) under the ice, upwelling of water from below
inevitably must occur near the ice edge. The vertical
velocity associated with this upwelling is difficult to
assess. It depends on the width of the area where this
process occurs and cannot be determined from the
present analysis.

It has been recognized for some time (Gammelsrod
etal., 1975) that upwelling may occur near the ice edge
due to discontinuity in the wind stress. Upwelling in
this region is also evident from field observations
(Buckley et al., 1979). Gammelsrod et al. considered
a stationary ice edge. In that problem wind forcing
may create an off-ice Ekman transport that is not met
by a similar transport below the ice-covered region.
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This divergence drives the upwelling. The present
problem is analogous, but here the (wave-induced)
transport under the ice is not met by a similar transport
in the open ocean. The result is the same, however; an
upwelling driven by the divergence in the horizontal
transport. The present result is also based on the as-
sumption that the motion of the ice is negligible, or at
least small compared to the mean drift velocity in the
water. Reed and O’Brien (1983) have demonstrated
that the ocean response at the ice edge, i.e., whether
upwelling or downwelling occurs, is linked to the mo-
tion of the ice edge under wind action. A moving ice
cover will probably also modify the present results. Qur
study indicates, however, that the effect of wave-in-
duced drift should be incorporated in more elaborate
ice~ocean interaction models.

Finally, a mean vertical drift always must occur when
the horizontal wave drift decays horizontally. Denoting
the vertical drift by w, we obtain from (2.2) that

(8.4)

where u is given by the real part of (6.9). However,
since the spatial attenuation coefficient « is so small,
the vertically induced flow obtained from (8.4) will in
most practical cases be negligible.

W,=—U,=2au

9. Summary and concluding remarks

When surface gravity waves penetrate an area cov-
ered by packed ice floes their amplitudes attenuate.
This attenuation has- been investigated theoretically
using a Lagrangian description of motion. The indi-
vidual ice floes are assumed to be very small and so
closely packed that they form a soupy ice-agglomera-
tion. This agglomeration is treated as a viscous New-
tonian fluid. The ocean is deep, viscous and rotating.
There is no wind in the problem, and the ice-agglom-
eration layer is assumed to be at rest. We show that in
the asymptotic limit of a very viscous, thin upper layer
the horizontal boundary condition at the ice-ocean
interface essentially reduces to that of a vanishing hor-
izontal velocity.

Reasonable values for the eddy viscosity in the pres-
ent theory give attenuation rates which fit well with
observations from more general ice conditions in the
MIZ. The reason for this appears to be that closely
packed larger ice floes to a good approximation act as
a horizontally motionless lid as far as incoming waves
are concerned. In applying the theory to more general
ice conditions, the effect of floe collisions, which again
depends on the ice concentration, is embedded in the
numerical value of the eddy coefficient.

From nonlinear theory we compute the drift current
under the ice and discuss its temporal and spatial vari-
ations. Of particular interest is the strong jetlike be-
havior in the viscous boundary layer near the ice-ocean
interface.

Furthermore, we compute the viscous drag on the
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ice induced by the wave motion. This drag acts essen-
tially in the wave propagation direction. It may, under
certain circumstances, be comparable in magnitude to
the frictional drag induced by the wind. This means
that the waves alone (e.g., swell) are capable of packing
the ice. Additional packing will result from reflection
of waves from the ice edge and scattering of waves
within the ice pack (Wadhams, 1973a, 1975).

A comparison between integrated horizontal trans-
ports in the open ocean and under the ice has been
made. It shows that the flux component in the wave
propagation direction is zero in the open ocean ‘and
nonzero (and positive) under the ice. This must lead
to upwelling of water in the vicinity of the ice edge.
The packing of the ice due to a mean viscous drag
develops rather quickly (on a time scale associated with
turbulent vertical diffusion of momentum). Upwelling,
as described here, will occur on a much larger time
scale; typically larger than the inertial period. This is
of importance, since the incoming wave field always
has a finite duration time.

The results here for a single wave component may
easily be extended to a random wave field. By averaging
over a period long enough to eliminate low-frequency
oscillations due to interference of wave components
closely spaced in frequency, the total mass transport
becomes the vector sum of the individual contributions
from each wavenumber (Chang, 1969; Jenkins, 1986).
Furthermore, a directional wave spectrum may,
through nonlinear interactions, give rise to interesting
spatial variations of the flow pattern in the surface layer
(Weber, 1985). The phenomenon is analogous to
acoustic streaming, and the strength of the circulation
of the roll motion will here be enhanced. This is due
to the increased influence of viscosity near the surface
in the present problem.

The MIZ is a very interesting area not only because
of its importance for the marine biological production
and its impact on the climate, but also because the
future increasing demand for oil will push offshore
drilling activity further into subpolar and polar regions.
An adequate understanding of the dynamics of the MIZ
is required for the planning and execution of such op-
erations. Most of the present dynamical models of the
MIZ are concerned with wind forcing only. The results
of this paper show that the effect of swell and wind sea
must be included in such models.
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