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ABSTRACT

The steady Ekman boundary-layer current is studied theoretically for the case when the eddy
viscosity is proportional to the shear of the wave orbital velocity in a turbulent wave, times the square
of a mixing length (Kitaigorodsky, 1961). Assuming a fully developed sea, the wave characteristics,
and hence the eddy viscosity distribution with depth, are determined by the wind. The momentum
equation is solved numerically to yield the Ekman current as a function of the wind speed. The
results show that the magnitude of the Ekman surface current lies between 2.1 and 3% of the wind speed
at 10 m height. The deflection angle away from the wind direction is a monotonic decreasing function
of wind speed. It varies from 36 to 25° for winds between 5 and 30 m s~'.

1. Introduction

It appears from the literature to be some disagree-
ment concerning various aspects of Ekman currents
in the open ocean. One particular matter of dis-
cussion is the value of the deflection angle of the
surface current away from the wind direction.
Basically, this problem arises because we Kknow
little about the turbulent downward flux of horizontal
momentum in the ocean. By relegating the problem
into an eddy viscosity coefficient as is often done,
one is faced with the difficulty of predicting the size
and variation with depth of the latter.

According to Ekman (1905), the surface current
and the volume flux in an infinitely deep ocean
should be deflected 45 and 90°, respectively, to the
right of the wind (on the Northern Hemisphere). The
latter result is independent of the vertical variation
of the eddy viscosity, while the result for the surface
current is based on a constant eddy viscosity with
depth. This assumption, however, is not very realistic
and several attempts have been made to improve the
theory by assuming various forms for the eddy
viscosity. Dobroklonskiy (1969) considers the turbu-
lent mixing due to surface waves, and assumes an

eddy coefficient which decreases exponentially from.

the surface. The fact that the eddy viscosity is
largest near the surface and decreases downward,
also seems to be supported by measurements of the
distribution of radon in the sea (Klug, 1974). Lai
and Rao (1976) consider essentially the same model
as Dobroklonskiy (1969), except that they first let the
eddy viscosity increase as the square of depth before
it starts to fall off exponentially. Both Dobroklonskiy
(1969) and Lai and Rao (1976) obtain large deflection
angles of the surface current away from the wind;
~70° in both cases. On the other hand, Madsen
(1977) takes, by analogy with shear-generated turbu-
lence in pipes, etc., the eddy coefficient to increase
linearly with depth in the whole water column.
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This model results in a deflection angle of the steady
surface current of ~10°.

In the present paper we shall investigate the
Ekman current using Kitaigorodsky’s (1961) model
for the eddy viscosity. This model takes into account
the mixing effects due to surface gravity waves,
which is the same starting point as that of Dobro-
klonskiy (1969) and Lai and Rao (1976). According
to Kitaigorodskiy (1961) the distribution of eddy
viscosity with depth may be obtained by assuming
that the eddy coefficients are proportional to the
shear of the wave orbital velocity in a turbulent
wave, times the square of a mixing length. The
latter is assumed to vary linearly with depth. This
model implies that the production of turbulence by
mean shear and wave breaking is negligible, and
that the small-scale turbulence has a characteristic
time scale much smaller than the period of the
dominant waves. Jacobs (1978) used Kitaigorodsky’s
model, among several other models, in a numerical
simulation of air-sea interaction, and this particular
model succeeded quite well in reproducing the ob-
served vertical distributions of temperature during
Period I of BOMEX. It seems therefore that
turbulent mixing due to surface gravity waves is
of importance in the upper ocean. The purpose of
the present note is to investigate how this process,
modeled through a variable eddy viscosity, influ-
ences the stress-driven current.

2. Model and method of solution

Consider two-dimensional horizontal steady mo-
tion in a homogeneous ocean of constant depth H
and of infinite lateral extent. Let the x, y, z axes
form a right-handed system with the z-axis positive
downward and the origin at the surface. There is no
surface elevation or horizontal pressure gradients.
Introducing a complex velocity W = u + iv, where
u and v are the mean turbulent velocity components
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in the x and y direction, respectively, the horizontal
momentum equation may be written

(AW")Y +ifw =0, (1)

where the prime denote differentiation with respect
to z. Furthermore, A is the eddy viscosity in the
vertical direction and f the constant Coriolis
parameter.

At the surface the boundary condition is

W =-T, z=0, 2)

where T = [v§® + i7{Y]/A,. Here 7@ and 7§V
are the wind stresses per unit density of sea water
in the x and y directions and the subscript zero
denotes surface value (z = 0). The wind stress 7, is
related to the wind velocity V,, at 10 m above the
sea level by 7, = (pa/p)c10V10|V10|, where p and p,
are the densities of sea water and air, respectively.
The drag coefficient ¢, depends on the wind velocity
as well as on the vertical stability of the air.

The purely wind-driven current effectively van-
ishes below the Ekman depth Dy ~ (A/f)"?, where
A is some suitably vertically averaged eddy viscosity.
In shallow water where Dy > H, the frictional
influence of the bottom, in general, can not be
neglected. Since the motion usually is turbulent,
a no-slip condition (¢« = v = 0) would constrain the
motion too much and therefore be unrealistic. The
presence of turbulence then leads to a bottom
stress proportional to the square of the fluid velocity.
However, if the depth H is much larger than Dy,
the bottom is really never “‘felt,”” andu = v = O are
appropriate boundary conditions at the bottom. It is
this latter case which will be considered here,
so we take '

W=0 at z=H. 3)

For given vertical variation of the eddy viscosity,
Eq. (1), subject to the boundary conditions (2) and
(3), was solved numerically by a standard **shooting”’
method for solving boundary-value problems; see,
e.g., Conte (1966). To obtain solutions for an ‘‘in-
finitely’’ deep ocean, the value of H, for given wind
stress, was increased systematically, until no notice-
able change of the results was achieved.

Numerically problems arise when the Ekman
depth becomes much smaller than the fluid depth.
Then initially independent solutions in the integra-
tion procedure become dependent due to insufficient
accuracy of the computer. To handle this problem,
the original integration interval had to be divided
into subintervals, in which the solutions were ortho-
normalized before continued integration.

3. Ekman flow resuits

As stated in the introduction, we shall apply a
model for the eddy viscosity which essentially is that
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developed by Kitaigorodsky (1961). Here it is
assumed that the eddy coefficients are proportional
to the shear of the wave orbital velocity in a
turbulent wave, times the square of a mixing length,
which varies linearly with depth. Any effects on
wave frequency due to mean drift currents are
disregarded. This is a reasonable assumption since
mean drift velocities only amount to a few percent
of the wind speed, which is much less than the wave
orbital velocities. Also, since the frequencies of the
dominant waves are typically of order 1 s~! which
is much larger than the inertial frequency, the effect
of rotation on wave frequency can safely be neg-
lected. We then may write for the eddy viscosity
distribution (see also Jacobs, 1978; Delnore, 1980)

A = a(z + b)e ¢, 4)
where

a = K8Qwug/\)'"?, b = SN2, (5)

The empirical constant K in (5) was taken by Kitai-
gorodsky to be 0.02 in the case of heat diffusion.
This value also was used for the eddy momentum
coefficient in Jacobs’ (1978) numerical simulation,
and will be adopted here. Furthermore, 6 in (5) is the
steepness of fully developed waves (=0.055) and g is
the acceleration due to gravity. A is the dominant
wavelength for surface waves in a well-developed
sea. It is connected with the wind at 19.5 m above
sea level by

A= (2.803 x 103U 95?2 82 cm™2) cm (6)

(Jacobs, 1978; Delnore, 1980), where we for sim-
plicity have directed the x axis along the wind. The
theory rests on the assumption of deep water.
Hence, we must require H > \.

By specifying the drag coefficient ¢, and assuming
that the velocity profile in the air above the sea
surface is logarithmic, i.e.,

U19_5 = U10[1 + (Cl()l/z/K) ln(19.5/10)],

¢ = 2m/\.

(M

where k = 0.4 (Pierson, 1964), all the parameters
of the Ekman problem are determined by the wind
speed at 10 m height. There have been many attempts
to determine c,,, and the results have considerable
scatter; see, for example, the discussions and com-
parisons by Pierson (1964) and Timmerman (1977).

.For the present purpose, we take ¢y = 1.8 X 1072

when U, , < 15ms™ and ¢,y = 2.7 X 1072 when
U,o,>20ms™!, with a linear interpolation in
between. This choice has been shown to yield
excellent agreement between computed wind surge
and observed surface .elevation in the North Sea
(Timmerman, 1977). -

A typical eddy viscosity distribution with depth
is shown in Fig. la for U,, = 10 m s~. The depth
d at which the eddy viscosity maximum occurs is
givenby d = 2/c — b from (4), which is 9.3 m in this
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FiG. la. Kinematic eddy viscosity A versus depth for U,
= 10 m s~'. The wavelength A of dominant surface waves is given
by (6).

F1G. 1b. Variations with depth of the steady Ekman current
whenU, = 10 m s, The viscosity distribution is that of Fig. 1a.

example. The dominant wavelength A of surface
waves in a well developed sea is here 32 m. In Fig. 1b
we have displayed the steady vertical variation of
the horizontal velocity with depth for this case. In
the computations the depth H was taken to be 100 m,
and we note that the velocity variations essentially
take place in the upper 50 m. We also find that the
velocity shear in the y direction tends to zero only
in the upper meters. This is not very clear from
Fig. 1b, however, due to the poor vertical resolution.

A suitably average eddy viscosity A for this prob-
lem may be defined by

- 1 r=
A=— J Adz. ®)
Ao
The Ekman depth is then given by
Dy o« (A/f)"2, &)

where the coefficient of proportionality is of order
unity.

In Fig. 2 we have plotted the steady Ekman
surface current as function of wind speed at 10 m
height. The displayed curve consists of three line
segments, each of which is close to a straight line.
The steepening of the curve for U,, between 15 and
20 m s~! is due to the linearly increasing drag
coefficient in this region. In the displayed domain
the steady surface current has a value which lies
between 2.1 and 3% of the wind speed.

The deflection of the steady surface current to the
right of the wind direction (on the Northern Hem-
isphere) is displayed in Fig. 3, where the deflection
angle is plotted as a function of the wind speed.
We note the interesting result that the deflection
angle decreases monotonically with increasing wind
speed. The decrease is most pronounced for light
winds, while for U,, between 10 and 30 m s™! «,
decreases from about 29 to 25°.
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Recalling that the wind speed determines the
distribution of eddy viscosity with depth, it is easy
to understand why the deflection angle should
depend on the wind speed. When the wind is weak,
the viscosity maximum is close to the surface. The
ratio of the depth d of the viscosity maximum to the
Ekman depth Dg is small (d/Dy ~ U,'? and the
viscosity distribution is basically a decreasing one.
This is analogous to the situation considered by
Dobroklonskiy (1969) and Lai and Rao (1976), and
leads to deflection angles which are larger than 45°,
When the wind is stronger, the ratio d/Dy is larger
and the viscosity is essentially increasing with depth.
This is similar to the situation studied by Madsen
(1977) (where the eddy viscosity was increasing for
different reasons). The deflection angles now be-
came <45°.

The fact that increasing eddy viscosity with depth
leads to decreasing deflection angles and vice versa
can be demonstrated analytically, also. Take, for
simplicity, a linear eddy distribution, i.e.,

A=A, + ez, 10)

where A, is constant and € is a small constant
parameter which can be positive or negative. Since
the real length scale of the problem is proportional

100~
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Fi1G. 2. Surface speed of the Ekman current versus wind speed
at 10 m height.



1434

90 F

a, (deg)

1 | L | { 1
0 5 v 15 20 25 30

Uy (m/s)

F1G. 3. Deflection angle of the Ekman surface current versus
. wind speed at 10 m height.

to (Ay/f)Y2, the requirement that € must be small
can be stated more precisely as |e[ < (Aof)Y%. The
ocean is taken to be deep, i.e., H > (A,/f)">. Hence
we assume that W — 0, z — o, The wind stress is
constant and directed along the x axis. Solutions of
(1) will be obtained by expanding W in a series after

€ as a small parameter, i.e.,
W =W 4+ WP + &W? + (11a)

The boundary conditions are

Wi — _'T()/Ao, n=20 (llb)
0, n=12,3--:
at z = 0, while we assume
w® -0, n=0,1,2,3"--- (11¢)

when z — .

The zeroth-order solution is just the ordinary
Ekman solution for constant eddy viscosity. To O(e)
.we obtain

W = —

(1 + yz —2z%le ™, (12)

4A o f
where
1—i
QA2
For the deflection angle at the surface we then find
to O(e)

oy = tan Y(vy/u,y) = tan'[1 — €e/(8A,f)'?].

'y:

(13)
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Hence, we see for € > 0 (increasing eddy viscosity)
that «, < 45°, while for € < 0 (decreasing eddy
viscosity) we obtain that «, > 45°.

4. Summary and concluding remarks

The main difficulty in determining the vertical
structure of the oceanic Ekman boundary-layer
current comes from the problem of relating the
value of the eddy viscosity coefficient to the other
parameters of the system. This difficulty is over-
come in the present paper by assuming that the
turbulent mixing is due to surface gravity waves.
Hence the eddy viscosity distribution with depth for
a fully developed sea can be assessed as function of
the wind speed. In turn, this means that the Ekman
current at any level is completely determined by
the wind at 10 m height.

In particular we find that the value of the surface
current lies between 2 and 3% of the wind speed,
while the deflection angle away from the wind is a
monotonic decreasing function of wind speed. It
varies from 29 to 25° for winds between 10 and
30 m s~!. Although these values are not inconsistent
with drift data from the open sea (Haug, 1970),
direct comparison may not be quite relevant. This is
because the total drift current also must include a
wave-induced part. However, the role of the wave-
drift in a rotating ocean is by no means clear. On one
hand, the non-viscous calculations of Ursell (1950)
and Pollard (1970) lead to zero net mass transport.
On the other hand, Madsen (1978) finds that the
wave-drift at the surface for a viscous fluid is of the
same order of magnitude as the shear-induced cur-
rent, and directed approximately 45° to the right of
the wave propagation direction (on the Northern
Hemisphere). Furthermore, the effect of a variable
eddy viscosity complicates the wave-induced flow
problem even more. This topic therefore will be
left for future research.

Finally, it should be emphasized that there are
several uncertain points concerning the computation
of the stress-driven current in this paper. In par-
ticular, we have chosen a model for the eddy
viscosity, where not only the values of the different
coefficients in the formula (5) are somewhat uncer-
tain, but which also, and more seriously, excludes
turbulence generated by mean shear and wave-
breaking. On the other hand, Jacobs’ (1978) results
(see also, Delnore, 1980) indicate that turbulent
mixing due to surface gravity waves is important
in the sea. Therefore, we believe that the present
approach is a step in the right direction toward a
realistic description of the Ekman boundary-layer
current in the open ocean.
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Comments on ‘‘Signatures of Mixing from the Bermuda Slope,
the Sargasso Sea and the Guif Stream”’

T. M. DIiLLON AND D. R. CALDWELL

School of Oceanography, Oregon State University, Corvallis 97331
29 December 1980 and 6 February 1981

For some years now, practitioners of the art of
““microstructure’’ have been gathering wiggly lines,
records of temperature gradients encountered by a
freely falling instrument as it descends through the
oceanic water column. Most have suspected that
some of the wiggles are caused by turbulent over-
turns acting on a mean gradient. We have wondered:
1) which of the wiggles are caused by ‘‘turbulence,”
and 2) to what extent does this turbulence obey
laws similar to the ‘‘universal’” forms obeyed by the
homogeneous, isotropic turbulence of laboratory
fluid mechanics. Early observations with towed
sensors in a tidal channel showed considerable
agreement with the universal forms (Grant ef al.,
1968), but some later authors have perceived dis-
crepancies (Nasmyth, 1970; Elliott and Oakey,
1976). Our own results have been more encouraging
(Caldwell et al., 1980; Dillon and Caldwell, 1980;
Caldwell et al., 1981; Newberger and Caldwell, 1981),
so we were surprised to find a negative result in what
appeared to be a favorable situation for the presence
of classical turbulence (Gregg and Sanford, 1980).
Examination of Sections 4a and 6b of the paper by
Gregg and Sanford reveals some problems with their
arguments. In the following, these difficulties are
discussed and alternative interpretations are offered.
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Gregg and Sanford (1980, hereafter referred to
as GS) discuss the applicability of the theory of
universal turbulence spectra to one vertical tempera-
ture-gradient ‘‘microstructure’’ spectrum. In an
actively mixing surface layer in the Sargasso Sea, a
cast of the microstructure recorder was made close
in space and time to a profile of kinetic-energy
dissipation rate € obtained by Gargett et al. (1979).
Gargett et al. found the dissipation to be relatively
vertically homogeneous in a layer extending from
the surface to a depth of approximately 135 m, the
average value of e being 1.4-1.5 x 10-7 W kg!.
Using this value for e together with an estimate of
the dissipation rate of temperature variance, x
(5.42 x 1079 °C* s7'), determined by GS, quantita-
tive comparison between the vertical temperature-
gradient spectrum and the universal turbulence form
is possible, subject to uncertainty as to the value
of the universal constants (and to uncertainty as to
changes in the water column in the time-space inter-
val between the two casts). GS conclude that in the
convective subrange (which corresponds to the
inertial subrange in velocity spectra) the agreement
is excellent. At higher wavenumbers, in the pre-
sumed ‘‘viscous-convective’’ and ‘‘diffusive’” sub-
ranges where the universal spectrum takes on the



