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ABSTRACT

A general hydrodynamic solution is derived for arbitrary gravity-wave fields on the ocean surface by
extending Stokes’ (1847) original perturbational analysis. The solution to the nonlinear equations of motion
is made possible by assuming that the surface height is periodic in both space and time and thus can be
described by a Fourier series. The assumption of periodicity does not limit the generality of the result
because the series can be made to approach an integral representation by taking arbitrarily large funda-
mental periods with respect to periods of the dominant ocean waves actually present on the surface. The
observation areas and times over which this analysis applies are assumed small, however, compared to
the periods required for energy exchange processes; hence an “energy balance” (or steady-state) condition
is assumed to exist within the observed space-time intervals. This in turn implies the condition of statistical
stationarity of the Fourier height coefficients when one generalizes to a random surface. Part I confines
itself to the formulation of a perturbation solution (valid to all orders) for the higher order terms resulting
from a two-dimensional arbitrary periodic description of the surface height. The method is demonstrated
by deriving (to second order) the height correction to the sea and (to third order) the first nonzero correc-
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tion to the lowest order gravity-wave dispersion relation.

1. Introduction

In recent years, it has become evident that radio
waves can be used to measure an appreciable portion
of the directional ocean wave-height spectrum. Barrick
(1972) has presented a theory that relates this spec-
trum to the radar Doppler spectrum, which is observed
when radio waves are scattered from the sea surface.

The purpose of this paper is 1) to derive the hydro-
dynamic part'! of Barrick’s theoretical results and
2) to derive the general correction term for the deep-
water gravity-wave dispersion relation.

The approach taken here to solve the nonlinear
hydrodynamic equations for ocean waves is similar to
the approach that was used by Stokes (1847). That is,
the general form of the solution is first postulated and
then the details of this solution are performed starting
with the equations of motion. In his classic work,
Stokes sought a solution for a single gravity wave that
propagates with a rigid, periodic profile and a constant
velocity. He found that the wave height contained
higher spatial frequency components in addition to
the fundamental sinusoid predicted by the linear solu-

1 The electromagnetic scattering part of the theory will be
derived in another paper.

tion and that the higher order correction to the wave
velocity depended upon the wave height.

The present problem is to find a general periodic wave
train (consisting of an arbitrary number of individually
distinct gravity waves) whose profile need not be
rigid and whose spectral components need not all have
the same phase velocity. The condition that the wave
train is periodic allows the wave height to be expanded
in a spatial and temporal Fourier series, which greatly
simplifies the solution. The assumption of periodicity
is a mathematical device that does not limit the gen-
erality of the solution because the fundamental spatial
and temporal periods of the series can be made large
compared with the physical area and time interval
over which observations are made. In fact when these
periods become very large—approaching infinity—we
intend to use the fact that the series converge to in-
tegrals in the Riemann sense. It is assumed that such
a periodic wave train can be used to give an approximate
description of real ocean waves. The apparent sto-
chastic character of these waves can then be included,
if desired, by allowing the wave heights to be random
variables.

It is more common to use a spatial and temporal
Fourier-Stieltjes representation for analyzing ocean
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waves. For example, Tick (1959) and Huang (1971) ob-
tained straightforward nonlinear solutions by using
this approach, but they also neglected the wave-height
dependence in the dispersion relation. Tick’s first and
second-order perturbation derivations are essentially
the same as those presented here, although Tick con-
fined himself to one-dimensional ocean waves. Huang
obtained a Fourier-Stieltjes integral equation relating
wave height to velocity potential (to all orders); this
expression could have been expanded in a perturbation
series to solve for wave height correctly to second order,
but that result was not pursued in Huang’s treatment.
Huang and Tung (1976) derived a general dispersion
relation which was a function of wave height but which
was also a function of space and time. However, their
derivation appears inconsistent because they did not
treat the wave frequency as a function of space and
time throughout the entire derivation.

Phillips (1957, 1960) and Hasselmann (1962, 1963a,b)
used a Fourier-Stieltjes integral for the spatial coordi-
nates alone, leaving the wave height a general function
of time. In this way, the original equations of motion,
which contain both space and time derivatives, are
replaced by differential equations with time derivatives
only. Longuet-Higgins and Phillips (1962) and Benney
(1962) used this general formulation to study the wave
height dependence of wave velocity for the simpler
case of one-dimensional wave trains. They used formal
expressions for wave height that are essentially Fourier
series, where the Fourier coefficients are slowly varying
functions of time. This approach leads to a number
(equal to the number of terms in the Fourier series) of
coupled differential equations. Therefore, it is under-
standable why these studies were restricted to cases
with small numbers of waves. The approach used in the
present paper allows for an arbitrary number of waves
(of different spatial periods and directions) by requiring
that the sea surface be periodic.

Although we have neglected the energy transfer due
to wind-wave interactions, wave-wave interactions,
viscous damping, etc., the present problem is well-
defined and soluble. The perturbation approach used
by Stokes is valid mathematically (see, Lamb, 1932,
p. 420); thus, we believe that the present generaliza-
tion of Stokes’ solution is also valid. In addition, since
the energy transfer rates are relatively low compared
with the periods of gravity waves, we expect the
present description of these waves to give an accurate
physical picture of the sea surface just as Stokes’ waves
closely resemble simple wave trains such as swells.
The various energy transfer mechanisms are discussed
in detail elsewhere by Phillips (1966), Hasselmann
(1966), Miles (1967), Willebrand (1975) and Whitham
(1967), just to name a few. Our main concern here is the
correct description of the sea surface over times and
areas such that energy transfer is not a dominant
feature in the propagation of the gravity waves on
the surface.
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This paper confines itself to the derivational details
and their justification. Fourier-series forms are used in
this paper. A companion paper shows that this gen-
eralized two-dimentional solution checks, in the appro-
priate limiting cases, with the simpler but well-estab-
lished results of Stokes (1847) for wave velocity and
height corrections for a single wave; with Longuet-
Higgins and Phillips’ (1962) phase velocity correction
for one wave due to the presence of another colinear
wave; and with Tick’s (1959) result for the second-
order wave height of a one-dimensional wave-train
profile. It is shown how the Fourier series approach can
be converted to integral form suitable for statistical
averaging processes. Finally, that paper gives several
applications of these derivations to physical situations,
which provide some appreciation for the utility of the
results. Thus we believe that this work represents the
first truly complete generalization of Stokes’ technique
which stands up to comparisons with all of the pre-
viously accepted specialized cases.

2. The generalization of Stokes’ problem

The problem to be $olved here is a generalization of
the problem that was solved earlier by Stokes (1847).
In that problem, Stokes sought a periodic wave train
which propagates with a rigid profile and a constant
velocity. The present. problem is to find a general
periodic wave train whose profile need not be rigid and
whose spectral components need.not all have the same
phase velocity. The method of solution is based upon
the perturbation technique used by Stokes. Also, the
equations of motion are essentially the same simplified
hydrodynamic equations that Stokes employed.

To begin with, the ocean is assumed to be infinitely
deep and unbounded along its surface. Also, atmospheric
effects are taken to be absent so that the interface is a
free surface. Next, the water is treated as a homo-
geneous fluid that is incompressible, inviscid and with-
out surface tension. All of these restrictions are gen-
erally accepted as being approximately valid for the
description of the free propagation of gravity waves.
Phillips (1966), Lamb (1932) and Batchelor (1970) are
just a few who discussed these simplifying restrictions
in detail. These assumptions can now be used to
simplify the general hydrodynamic equations.

The first equation derives from the conservation of
mass equation, which reduces to ¥ -v=0, where v equals
the local velocity of the water. For an inviscid fluid,
initially irrotational motion will remain irrotational
(ie., VXv=0). In this case, a velocity potential ¢ can
be defined such that v= Vg, and the conservation of
mass is then expressed by

V2$=0. 1)

For these same conditions the Navier-Stokes equation
(or conservation of linear momentum equation) at the
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surface can be used to obtain

3 1
[——+—v¢- v¢] = —gn, )
a 2 o1

where 7 is the vertical displacement of the surface due
to waves. The coordinate system for this equation
was chosen so that the positive (vertical) z axis is up
and the x and y axes are in the plane (flat-earth ap-
proximation) of the undisturbed surface at z=0.

The third and final equation comes from the require-
ment that the surface remain intact. Then the vertical
velocity v,=d¢/dz of the water at the surface must
equal the vertical velocity dn/d¢ of the surface. That is,

¢

dn
[_] = V0 [Vl ®
0zd.—y Ot

Now a periodic waveform for 5 is sought. Therefore,
7 is expanded in spatial and temporal Fourier series as
follows:

() =2 n(kw) expli(k-r—wt)] @)

where r=£x-4 9y gives the position in the x, y plane. All
of the spatial and temporal frequencies are harmonics
of the fundamental frequencies, which may be taken
to be infinitesimal.

It is obvious from (4) that 5 is a function of only the
x and y spatial coordinates and time ¢ However, the
velocity potential ¢ depends upon the z coordinate
also. The form of the z dependence in ¢ is determined
by (1) and the condition that ¢ —0 as z— —o.
Therefore,

o(r,z,l)= E_‘, o(kw) explhztitk-r—ot) ] (5)

These expressions (4) and (5) give a general form for a
periodic wavetrain. The fact that g(r,t) and ¢(r,3,)
are real physical quantities requires that the conditions
7* (k,w)=n(—k, —w) and ¢*(k,w) =¢(—k, —w) be satis-
fied by the series (4) and (5), respectively.

The fact that (2) and (3) are nonlinear suggests a
perturbation approach. Stoker (1957), Tick (1959) and
others preferred to make the perturbation expansions
on 7(r) and ¢(r,3,t). However, Whitham (1974) and
Cole (1968) pointed out that such an approach may
omit the amplitude dependence in the dispersion rela-
tion. On the other hand, Stokes’ perturbation method
does produce an amplitude dependence for the disper-
sion relation, and thus it is believed to be more general.

Therefore, the Fourier coefficients for wave height
7(k,w), velocity potential ¢ (k,w) and the frequency w
are expanded in perturbation series as follows:

" plkw)=mnkw)+r ko)t -, (6)
¢ (k,w)= o1 (k,w)+ 2 k)4 - -, (M
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w=wotwrtwrt -, (®)

where the subscripts give the perturbation order. For
example, no~nmm, é1~m, ¢e~qu, etc. Similarly,
wr~nL,ee~n1, but wo 1s independent of wave height.
Thus 7, is considered an independent parameter and k
is the independent variable of the present problem.
The perturbation approach is valid if the wave heights
are sufficiently small such that

2 [n(kw)| XE<1. 9

This condition limits the slope of the surface to small
values so that the perturbation expansion will converge.

Later, it will become evident that the wave heights of
various orders in (6) do not all exist in the same domains
of wave vector frequency space. In other words, the
dispersion relation is in general different for each order
of the ocean wave. For example, the first- and second-
order wave-height spectra do not overlap in wave
vector frequency space. Therefore, it will become con-
venient to use different notation for the wavevectors
and frequencies of different orders of ocean waves.

3. The first-order solution

The perturbation expansions (6), (7) and (8) can
be used along with the Fourier series (4) and (5) in
order to solve the equations of motion for a periodic
wave train. In this solution, the first-order wave heights
m(Kw) are arbitrary and all of the other variables are
expressed in terms of them. The solution begins by
substituting the Fourier series (4) and (5) into the
equations of motion (2) and (3).

When the Fourier series are substituted into the
equations of motion, the exponential exp(kz) in (5)
becomes exp[kn(r,t)] because these equations are
evaluated at the surface z=7(r,f). Then the exponential
is represented by its power series, and the wave height
in each term is replaced by its Fourier series (4).
Finally, the resulting equations are integrated over the
spatial and temporal periods of the wave train. Because
of the orthogonality of the Fourier components, (2)
becomes

—twp(kw)+ 3 [—io'boK o )nk—kK, w—o’)
ko
+3[% k=K | —K - (k—k")Jo (k' ,0" )¢ (k—k', 0—u’)]
%
+E 5 [t
ko' k' o' 2
Xn(k—k —k”, 0—a'—")+3 &R —Kk - k") (B +E")
Xd)(k’,w')d)(k",w”)n (k=K —K', w—c' _wll)]

+0(@)=—gn(kw). (10)
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F16. 1. Gravity-wave dispersion relationship diagram. First-order waves exist in heavily
shaded region centered on wy= Vgk. Second-order waves exist in remainder of diagram.

Similarly, the other equation of motion [ (3)] becomes
ko (kw)+ 3 Kk w)n(k—K, w—u’)
k0’

ks

+3 2 ?(k’,w’)n(k",w")

kl'ul kll,wll
Xn(k—Kk' —k”, v—w'—0)+04) = —iwy (k,w)
+ ¥ K- (k-k)ok o)mk-k' v—v)

k@'

2 2

7z 17
ko k' @’

Xnk—kK -k’ o—w' —a")+0(4).

_kl . kllkl¢ (kl’wl)n (k”,(l)”)

(11)

Next, the perturbation expansions will be used in
(10) and (11) in order to separate the various orders of
perturbation solution. The first-order terms in (10)
are equated to give

—iwo¢1 (kyw) = _gnl(k:w)y (12)
while the corresponding terms in (11) are
k1 (k,w) = —iwgn: (k,w). (13)
Hence
(we —gk)m (k,w)=0. (14)

This equation can be satisfied if either the wave height
m(k,w) vanishes or
(13)

Therefore, for finite wave heights (15) becomes a
dispersion relation which must be satisfied. It is im-
portant to note, however, that this condition (15) puts
a restriction only upon the value of the first term w, of

(.002= gk

the perturbation expansion of the frequency w. The
higher order terms in (8) are determined by the higher
order terms in (10) and (11). Also, it is the total fre-
quency w, and not just we, which must be a harmonic
frequency of the fundamental frequency. In Stokes’
case of a rigid profile, the frequency of the first-order
wave is the fundamental frequency. In the general case
with many first-order waves present, the fundamental
frequency need not be equal to the frequency of any
of these waves.

4. The seéond-order solution

The second-order solution to (10) is

—twops (k,w) i1 (Kw)+ 2 { —wd'k ¢ (K0’
k! o' '

Xm k=K, o —)+3[F | k—K'| -k (k—K)]
X¢1(k' )1 (k—k', 0—o')} = —gna(kw). (16)

Likewise, the second-order solution to (11) can be
written ,

kg2 (kw)+ 3 k' kpy (k0" )m (k—k', w—a)

kw0’

an

where terms on both sides of (11) have been combined.

There are two ways of attempting to satisfy (16)
and (17) and solving for the desired second-order wave
height n, and/or velocity potential ¢,. These can best
be explained by dividing the frequency wavenumber
(w—%) domain into two distinct regions as illustrated
in Fig. 1. The heavily shaded ridge is the region, for a
given k, where the lowest order solution (zero-order)

= —1:@01)2 (k,w) _7:0)17)1 (kjw)?
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for w must satisfy the dispersion equation (15) given
in the preceding section, viz., we= +v gk. Since we have
expanded « in' a perturbation series about wp, then
w1, W2, ... should be increasingly small corrections to
wo by the very nature of the perturbation expansions.
The center of the deep-shaded ridge is therefore defined
by wo= \{g_k, and the width of the ridge (within which
w1, Wy, ... must lie), defining the complete w, is kept
small. We call the region within this ridge the region
of first-order waves ; we continue to denote the temporal
frequencies in this region by w, wo, wi, etc., i.e., lower
case. Over the remainder of the diagram, no such re-
striction is required on the lowest order temporal fre-
quency ; to avoid confusion, we henceforth redefine the
frequencies and wavenumbers corresponding to this
region as k=K and «w=0, with K as before being the
independent variable. Just as with w, we expand Q@ in a
perturbation series, @=Q¢+ Q1+ Q-+ - - - ; but here we
do #ot require that Qo=\[g7( . It will be shown that
second-order ocean waves lie in this lightly shaded

region exclusive of the ridge around wo= \/g_k and that
the two regions are in fact nonoverlapping. In other
words, second-order waves cannot even approximately
satisfy the first-order dispersion relationship normally
identified with freely propagating ocean waves.

In order to eliminate the first possible way of solving
(16) and (17), let us attempt to solve for 7, and ¢, at
frequencies w which could lie in the first-order zone.
Since w, ' and '’ all appear as arguments of first-order
wave heights and velocity potentials, to lowest order we
saw that we must require that we= \[EI;, wy'= @ and
wo”’ (=wo—wy’)=Vg|k—k’|. If these three equations
cannot be satisfied, then in general zo solution can
exist within the ridge for w, since if the lowest perturba-
tion order wo fails to meet the requirement, then the
overall frequency w also fails (i.e., each perturbation
order must be satisfied separately).

To show this zero-order failure, the three separate
dispersion equations we®=gk, wo?=gk’ and w,?=_gk"”
can be combined to give

(G—b-5")

woP————wowo w2 =0,

which has real roots only if £-%/= —1. The solution in
this event is wo= —wy"’ (requiring also £=%"), which
leads to wy'=0 and k’=0. Thus of all the terms in the
series of (16) and (17), only one is permissible: that
with k’ and wo’=0. There cannot be any waves with
k'=0, however, because this would produce a change
in the mean level of the ocean, requiring the creation
or destruction of water. We already defined the x—y
plane to lie in the mean plane of the ocean, implying
that 71(0,w)=0. Hence, the summations in (16) and
(17) must vanish, leaving

- W(ﬂ”? (k,w) - 'iwld)l (k;w)+ 802 (k)w) = 0!
ks (k,w)+- twoms (Kyw)+dwms (k,w) = 0.

(18)
(19)
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Now if we multiply the first equation by &, multiply the
second by iwe, and add the two, then using the fact that
wiP=gk we obtain dwike; (kw)+ wewm (kw)=0. Upon
substitution of (13) into this, we have 2wowim (k,w)=0.
Since in general n1(k,w) is not equal to zero (i.e., 7y, k,
and hence wo, are the independent variables of the
problem), then w;=0. This leaves (18) and (19) for the
second-order wave height and velocity potential iden-
tial identical to (12) and (13) for the equivalent first-
order quantities. Hence, there is no unique second-
order solution for ; and ¢, (within the “ridge” of Fig. 1
where first-order waves can exist) which is dependent
upon and expressible in terms of %y and/or ¢;. Since
there is no difference between the ¢, and 5, remaining
in (18) and (19) and ¢; and 7, in (12) and (13), we can
define all quantities which lie in the ridge and satisfy
these required first-order equations as first order.

Therefore we have established the following facts
thus far in this section:

1) First-order waves—by definition—exist within the
narrow region in w centered about wy, with wy, we, ...
being higher order (perturbation) corrections which
are small compared to wo; 71, ¢1, and wg satisfy the first-
order relation given by (12), (13) and (15).

2) The first-order correction to wo (2., w) is
identically zero. Therefore, the first possible correction
to the lowest-order dispersion relation is second-order;
this fact might have been suspected from Stokes’
original derivations as well as later works (e.g., Lamb,
1932).

3) Second-order waves %, (and velocity potentials ¢,)
which are dependent upon and expressible in terms of
double products of #; and/or ¢, cannot exist within the
narrow region in w near wo which contain the first-
order waves (such that the lowest-order dispersion
equation we®= gk is satisfied). They can exist and will be
derived subsequently over the remainder of the tem-
poral frequency region.

We now go back to (16) and (17) and solve for 9, and
¢- in the region where they can in fact exist: that region
of Fig. 1 considerably away from the first-order ridge.
As mentioned before, we change wavenumber notation
to upper case (i.e., K,Q) to indicate that in this region
the first-order dispersion relation does not apply, i.e.,
Q2#gK. Thus whenever k and w appear, we change to
K and Q. However, k' and «’ remain, and all arguments
of 7 and ¢, are still required to satisfy the first-order
dispersion equation; i.e., wo?=gk’ and (Qo—wo)?
=g|K—K/|. Also, the second term on the left side of
(16) and the last term on the right side of (17) are zero,
because, as shown above, ¢; and #; cannot exist in
the second-order region (where k=K and w=). Thus
(16) can be rewritten as follows:

R O (R

Xni(kw)n (K—k @—o)=—gn(K,Q), (20)
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where (13) was used to replace the first-order potentials
inside the summation in (16). Similarly, (17) becomes

Kéo(K,Q)+ 3 —icwoh- Kny (kyw)ms (K—k, 2—a)
k.0
=—iQm:(K,2). (21)

These last two equations can be combined to obtain
an expression for 1:(K,2) and one for ¢.(K,Q).
The second-order wave height becomes

(K= 2 Akok w)nkw)nk )

ko k', 0

X ST sate’ (22)

where this expression has been written in a symmetrical
form with the help of the Kronecker delta functions,

and where
1 / K4Q¢%
—[/e+k'+w°w° (1—/€~k')<g d )]
A(kwk w)=12 g gK —Q¢?

0 if I'=—k and o'=-—ow.

(23)

This last expression was simplified by taking advantage
of the lowest order dispersion relation.

Since it has been proven earlier that Q¢gK, the
denominator in (23) cannot vanish for any real values
of k, K, », o’ satisfying the Kronecker deltas. It can be
shown that the two terms on the left side of (21) vanish
for K=0. Because the velocity v= V¢, it is obvious that
v (k,w)=tke (k,w) for all perturbation orders. Now, it is
always possible to choose our coordinate system so that
the undisturbed ocean is stationary (i.e., there is no
current). Hence, v(k,w)=0 for k=0 to all perturbation
orders and the first term on the left side of (21) vanishes.
Similarly, the second term vanishes because K is a
multiplying factor. As a result, 4 (k,wk',w") in (23) is
defined to be identically zero when k+k’'=0.

Since second-order waves cannot satisfy the first-
order dispersion equation, these waves are not ‘“free”
in that they do not remove energy from the first-order
waves, and hence cannot propagate freely without the
two first-order waves with wavenumbers k, w and
k/, w’; they are said to be “trapped” or “evanescent”
ocean waves. By the same token, whenever the first-
order waves are present, the second-order waves will
always accompany them.

The second-order wave height (22) was used by
Barrick (1972) in order to calculate the theoretical radar
Doppler spectrum that is continuously distributed about
the first-order solution. The coefficient A (k,w,k’\w’),
which appears in this wave-height expression and is
given by (23), is equal to 'y in Barrick’s integral
expression for the Doppler spectrum. There is also
another quantity in this integral which accounts for
second-order electromagnetic contributions.

In a similar manner, (20) and (21) can be combined
to obtain an expression for the second-order velocity
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potential. Hence,

¢2 (K,Q) = Z Z B (k’w,k,’wl)ﬂl(k:w)"l(k,7w,)
k,w k/,w’
XSt (24)
—’iﬂowowo, (1 —é " é’)

(K —Q?)

where

Bkwk'w)= (25)

By using the same line of reasoning that followed (23),
it is clear that KB(k,wk ') — 0 for K — 0 because
the current velocity vanishes by definition.?

5. The third-order solution

The higher order equations from (10) and (11) can
in principle be solved to all perturbation orders. How-
ever, the complexity of these equations becomes pro-
hibitive for large orders. In general, the nth order
equations will have solutions for all orders of waves
from first order up to and including »nth order. That is,
there are » different solutions for the nth order equa-
tions. Each of these solutions uses all of the previous
solutions to all of the lower order equations.

The discussion here will be limited to the third-order
solution for first-order waves. In other words, just as
we did for second-order waves, we initially assume that
these third-order waves can exist over all k—w space,
both in the “ridge” region of Fig. 1 near which we*= gk
and over the remaining region where Q@%gK. We
proved in the preceding section that second-order
waves cannot exist in the first-order region near the
ridge. A similar argument can be presented for third-
and higher order waves. We will concern ourselves
here with only those solutions which exist within the
first-order wave region.

By following the pattern of the second-order solution
and by using the first- and second-order results, it is
possible to obtain the following simplified equations.
The third-order expression for (10) becomes

—dwops (k,w) —iwspr (Kw)+2 = —gns(kw).  (26)
1
Likewise, (11) leads to
ks (ko)X = —iwms (ko) —iwm(ke),  (27)
2 .

where the terms 3, and )., are abbreviations which
represent expressions that have the form of

2 (e )m w)mk" W)

k.o k',
Xmk—k —k", w—o'~ao").

2 Expressions obtained by Hasselmann (1962) for the second-
order wave height and velocity potential coefficients can be shown
to reduce exactly to our (23) and (25). Because that approach
ignores corrections to the dispersion relation, however, wave
height and velocity potential solutions of order higher than third
will differ from those obtained with our formulation.
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Now, both 73 (k,w) and ¢;(k,w) can be simultaneously
eliminated from (26) and (27) by using the first-order
dispersion relation (15); thus, they are indeterminant
and can be taken to be identically zero because they
are physically indistinguishable from first-order waves.?
One then obtains an expression for the second-order
frequency term ws:

wam(k,w)=k2 > ComK ek w")

T

Xmk—k'—k", o —w’'—w"). (28)
At first, this equation seems to contain an inconsistency
because w, is real, while the first-order wave heights
m(k,w) are arbitrary complex parameters. However,
this equation also implies that there must be four waves
such that o’=w—w' —«"” and kK’’=k—-k'—k". As was
discussed in detail earlier with respect to the second-
order solution, this equality between the temporal
frequencies must and does hold for all perturbation
orders.

All of these equations of different perturbation order
(i.e., wn""=wn—w.'—w,") cannot be simultaneously
satisfied unless pairs of the frequencies are identically
equal. That is, w=w’ and '’'=—w'", or w=w" and
w'=—0"', or w=w""" and w'= —w". At the same time,
there must be the analogous equalities among the
spectral wavenumber vectors. In the case that w=u’
and w'’= —«'", for example, it is also true that k=k’
and k"= —k’”. Consequently, m(kw) is a factor in
every term on both sides of (28). Thus, (28) reduces to

we=wy ., Clkok )| mk w)|? (29)
k0!
where
1 wo’ k
C (o ) =- [k’2+—k- k’<2+——)]
2 wo k'

X [1—3888% ~Loa o™ 1+ A (kyw K ')
wo kK B (k;w’k,)wl)
x[ —E— ] -

kl

[k (ke
| k- (k)

Wy wo

wo’ k
—k| k4K | +— ;;k'- (k+k’)]. (30)
w .

0

The expressions for 4 (k,w,k’,w’) and B(kwk’,w’) are
given by (23) and (25), respectively. Since B (k,w,k’,w")
contains a factor of 4, the ¢ in (30) is cancelled so that
C(kwk'w’) is clearly real. Here we see one advantage

2 These waves are interesting in another context because, as
was shown in the works of Hasselmann (1963a,b) and Phillips
(1966), since these waves do satisfy the first-order dispersion
equation—and hence are indistinguishable physically from first-
order waves—they can and do carry energy (in contrast with
the evanescent or trapped second-order waves 7:(K,2)). Therefore,
nonlinear wave-wave energy redistribution of the original spec-
trum can and does occur via third-order waves.
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in retaining series formulations rather than integral
notation, at least to this point. The step from (28) to
(29) would be more difficult mathematically had we
been using integrals.

Higher order correction terms to the frequency w in
(8) can be computed in principle, but they are small
compared to ws. Thus, the dispersion relation for first-
order ocean waves is given (to second order) by
w=wotws, where wg is defined by (15) and w;, is defined
by (29). It is recalled that the first-order correction
term w; was shown to be zero for these waves. Once
the dispersion relation is known for first-order waves
it is also known for second-order waves because the
Kronecker-delta functions in (22) imply that Q=w+ o/,
where © is the frequency of a second-order wave and
w and o’ are the frequencies of first-order waves. Hence
to second-order = wy+wo'+wstw:'. Some interesting
numerical examples will be presented in a companion
paper.

6. Discussion and conclusions

The nonlinear solution presented here for a two-
dimensional deep-water surface of arbitrary profile—
periodic in space and time—can be evaluated to any
perturbation order following the technique presented
here. To second order, we determined expressions for
the wave height and velocity potential and showed that
those do not represent free waves, i.e., waves which
follow (approximately) the first-order dispersion equa-
tion wi=gk. We then casried the solution to third order
to solve for the first nonzero correction to the first-
order dispersion equation.

This solution gives a complete mathematical de-
scription (but only an approximate physical descrip-
tion) of the sea surface; it must be restricted in area
and time. The sizes of the observed area and time in-
tervals over which the solutions are valid are such that
they are large compared to the spatial periods 2/ |k|
and temporal periods 27/|w| of the dominant waves
present, but small in terms of the areas and times over
which energy transfer takes place (i.e., both nonlinear
wave-wave energy transfer, energy transfer between
the atmosphere and ocean and viscous effects). The
waveheights 7;(k,w) are in general complex random
variables whose statistics change over areas and times
larger than those required for energy transfer.

So long as the above area/time restrictions are under-
stood, the Fourier series solution can be generalized
to allow one to perform statistical averaging, and sums
are readily converted to integrals, with average wave-
height spectra evolving from the height coefficients.
This process will be illustrated in a companion paper.
In certain (but not all) averaging processes, one must
define a length or time period associated with the series-
integral conversion, and this quantity remains in the
final result. For the radar problem, this length (or area)
period must logically be taken as the actual areal resolu-
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tion cell observed by the radar. Likewise, the temporal
period (if needed explicitly in the final result) would be
the coherent observation time associated with the buoy
or radar experiment. An example will be given in the
companion paper.
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