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 The first section of this document describes the calculation of the near surface pressure field 
beneath low frequency ocean waves over the shelf and the excitation of normal modes by this 
pressure field. The second section discusses problems with a previous theory of the excitation of 
Earth normal modes by linear ocean waves. The last section provides an estimate of the high 
phase speed components of the pressure field under atmospheric turbulence and compares this 
estimate with previous estimates to show that atmospheric turbulence is of negligible importance 
as the source of excitation of Earth seismic modes. 
 
1. The Hasselmann Surface Pressure Spectrum in Shallow Water  
 
 Hasselmann1 derives a formula for the wavenumber and frequency spectrum of the near 
surface pressure induced by the nonlinear coupling of waves in a random ocean wave field to 
estimate the forcing of microseisms by ocean waves. The formula is valid for small wavenumber 
(high phase velocity) and for deep water (relative to the wavelength of the ocean waves). 
Hasselmann’s derivation is extended to apply to shallow water ocean waves and then adapted to 
the specific problem of the forcing of planetary modes. There is a large enhancement of the 
mechanism in shallow water so that waves over the continental shelf dominate the excitation of 
Earth normal modes. In the calculation, the shelves of the Earth are divided up into a large 
number of small source regions of width and length equal to the local shelf width. The forcing is 
summed over all regions assuming the contributions from each region are independent. This 
theory, given a reasonable estimate for the wave height spectrum of infragravity waves on the 
shelf predicts a spectrum of Earth normal mode vertical acceleration that closely matches 
observations at low frequency.  To match the higher frequencies, the high order modes are 
described by traveling wave equivalents and a factor describing attenuation is added to the 
equations to account for attenuation of short period modes during propagation into the centers of 
continents. With this added term, the theory accurately models the entire background spectrum 
for “quite sites” at frequencies from 2mHz and to the single frequency microseism peak above 40 
mHz.  
 Longuet-Higgins2 provides an easily understood description of how interacting ocean waves 
can excite much higher phase velocity seismic waves. Consider a pair of oppositely traveling 
waves interacting so as to generate a standing wave over the entire shelf. During one part of the 
cycle of the standing wave, the surface of the ocean will be flat. A quarter cycle later, the two 
waves constructively interfere and the ocean surface is a sinusoid. A quarter cycle later, the ocean 
is again flat, and a quarter cycle later the surface is again a sinusoid. During the transition from a 
flat surface to a sinusoid, the water move from the troughs into the peaks so during each half 
cycle, the center of mass of the water lying over the entire shelf goes up and down once.  This 
movement of the center of mass requires a force that is exerted simultaneously over the entire 
shelf. During a full cycle of the standing wave, the center of mass goes up and down twice 
producing a pressure signal below the sea surface at a frequency equal to twice the frequency of 
the ocean waves making up the standing wave.  Interacting ocean waves also exert a force on the 
atmosphere above the ocean. We can determine the atmospheric forcing by noting that the each 
time the center of mass of the water over the shelf moves up and down, the air in a layer just 
above the waves must be moved out of the way.  The volume of air that moves is equal to the 
moving volume of water. The force per unit area required to move the center of mass of this air 
layer will be equal to the ratio of the density of air to the density of water times the force per unit 
area (pressure) needed to move the water. The forcing of coupled atmosphere-solid Earth modes 
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by nonlinear ocean waves is then best described by a source term that is a “pressure glut4” or 
jump in pressure between  a level just above the sea surface and a level just below the sea surface. 
 Nishida et al.3  discovered that the OS29 and OS37 normal modes were excited in the Earth’s 
hum above the adjacent modes by about 20 and 10% respectively during the northern summer. 
Only for the 0S29 mode at 3.7mHz and 0S37 mode at 4.4 mHz are the frequencies of the 
atmospheric modes nearly coincident with the corresponding solid Earth normal mode.   They 
attributed the larger amplitudes of these two modes to coupling between the atmospheric and 
solid Earth modes. The relative enhancement disappeared during the winter months due to 
decoupling from changes in the frequencies of the atmospheric modes with changes in the 
temperature structure of the atmosphere.    
  Rather than calculating the mode forcing from nonlinear wave-wave interaction in a full 
coupled atmospheric-solid Earth model, I instead approximate the forcing as a vertical point force 
acting on the surface of the Earth and estimate the effect of atmosphere coupling on these two 
modes separately.  
 These atmospheric modes can be well described as the sum of a (nearly) vertically upward 
propagating and nearly downward propagating acoustic wave. The ocean wave interaction 
produces a pressure field that excites upward propagating acoustic waves in the atmosphere that 
at altitude reflect into a downward propagating wave. For components of the wave forcing that 
are resonant with atmospheric modes, the atmospheric mode amplitudes will increase until the 
rate of forcing by the ocean waves is balanced by the dissipation in the atmospheric mode, but the 
dissipation of the two relevant atmospheric modes is mostly due to losses into the Earth4.    
 The acoustic impedance at the surface of the Earth is much higher than in the atmosphere so 
the downward propagating acoustic wave is nearly perfectly reflected at the Earth’s surface, 
except the upward propagating wave amplitude will be smaller by the fraction ! /Q  because of 
losses into the Earth. In regions where wave forcing is occurring, the attenuation in the Earth is 
exactly balanced by the wave forcing, so that the difference in amplitude of the upward and 
downward going wave will be equal to the excitation pressure signal in the atmosphere p

a
. The 

total pressure signal exerted by the atmospheric modes on the Earth will be 
ps = pu + pd ! 2pd ! 2paQa /" . As described above, the atmospheric forcing pressure is 

related to the forcing under the ocean waves by the ratio of the density of air at the Earth’s 
surface to the density of seawater. The effect of the excitation of the atmospheric mode on the 
strongly coupled solid Earth modes can be described as an enhancement to the pressure signal 
forcing the modes by the ratio: pe / p = 1+ 2Qa!a / ("!w )[ ] . Lognonne, et al.4 calculated the Q’s 
of the 0S29 and 0S37 modes to be about 115 and 21. The predicted enhancements of the 
amplitude of these two modes are the factors 1.09 and 1.02, smaller than enhancement in 
amplitudes measured (1.2 and 1.13). However, to date no other studies have reproduced the 
Nishida et al.3 result. Tanimoto5 notes Nishida et al.3 show a annual cycle to mode amplitudes 
whereas all other published measurements show a biannual signal and suggests the discrepancy is 
related to the method of data analysis. Even the small predicted enhancements appear surprising 
large given the much smaller pressure signal in the atmosphere compared to in the ocean, but the 
rate of work per unit area done on the modes by the wave interaction pressure signal is 
proportional to p

a

2
/ (!

a
c
a
)  and relatively more energy is transferred because the speed of sound 

( c
a

) and density are small in air.  
 To compute the nonlinear coupling of ocean waves into other components, Hasselmann1,6 
expands the potential describing the ocean wave field in a perturbation series: 
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!
x, z,t) = !
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+ ....   The first order (linear) ocean wave field is described by the potential 
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1
(
!
x, z,t) , valid for small amplitude waves (relative to water depth). The second order term that 

can force planetary modes is described as equivalent to a pressure signal appearing just below the 
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sea surface equal to p
2
= !("#

1
)
2

z=0
. In both the microseism and the Earth normal mode 

problems, it is necessary to include the compressibility of the water (allowing the propagation of 
sound) and the elastic structure of the seafloor in the solution of the second order potential. 
Rather than formally continuing the solution using the perturbation expansion, the calculation is 
simplified by dividing it into two steps. The formula relating the ocean wave height frequency-
directional spectrum f! (" ,#) to the frequency-wavenumber spectrum 

  
F
p
(
!
K,! )of the sea surface 

pressure signal arising from ocean wave coupling  is first developed. Then this calculation of the 
surface pressure spectrum is used to calculate the forcing of Earth normal modes using the 
standard computational machinery for calculating the excitation of Earth normal modes by 
earthquakes.  
 Adapting Hasselmann’s1,6 derivation, the first order potential valid for both shallow and deep 
water beneath a random wave field becomes: 
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The expression for the first order term in the surface elevation is: 
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The exponential form of the z dependence appropriate for infinite water depth is replaced by a 
cosh term to satisfy the bottom boundary condition of zero flow through the seafloor at z = h .  

 The Fourier transform in time of the wave-wave interaction pressure signal acting near the 
sea surface is: 
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again following Hasselmann1,6. Here s ' and s ''  =-1 or +1.  The general expression (to second 
order) for the nonlinear component of the wavenumber- frequency spectrum of the near surface 
pressure field 
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K,! )  caused by coupling of ocean waves with the wave height spectrum 
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from (Hasselmann1, equation 2.13, except a second term corresponding to forcing at small phase 
velocity has been dropped). The symbols: k '  and k '' (without vector notation) represent the 
vertical wavenumbers of pairs of ocean waves associated with horizontal wavenumbers  

!
k '  and 

 

!
k '' . The wave frequencies ! ' and ! ''  are related to the wavenumbers by the dispersion relation 
!
2
= gk tanh(kh) . Here water density is !  and g  is the gravitational acceleration at the Earth’s 

surface. Hasselmann recasts his result in terms of the frequency-directional spectrum of the 
original ocean wave field f! (" ,#) . The new result for the forcing pressure spectrum (valid only 

at small horizontal wavenumber   
!
K ) is: 

 
  
5) Fp (

!
K,! ) "

#2g2!
2

G(! / 2,h) f$ (! / 2,%)&'

'

( f$ (! / 2,% + ' )d%  

Here the ocean wave height frequency-directional spectrum f! (" / 2,#)  is evaluated at half the 
frequency of the forced wave (or planetary mode) reflecting the frequency doubling in the 
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coupling from ocean waves to seismic waves. This expression describes the pressure field forcing 
either of microseisms or planetary modes in water of any depth. A new factor G(! ,h)  has been 
added to the original expression of Hasselmann and accounts for the depth dependence of the 
forcing. In the limit of large water depth (defined as the kh >> 1), G(! ,h) =1 and the result 
reduces to the original Hasselman result.  

For the microseism problem, ocean waves are always sufficiently short in wavelength to be 
considered “deep water waves” except in very shallow water (<40m).  (The excitation of 
microseisms can then be evaluated from equation 5 using Green’s functions or other methods1,7). 
Infragravity waves at frequencies relevant to the forcing of Earth normal modes (1 to 30 mHz) are 
inherently shallow water waves and G(! ,h)  is needed to account for the noncircular particle 
orbits and depth dependence of the dispersion relation in shallow water. The magnitude of the 
horizontal and vertical particle velocities in terms of the wave height !  in finite water depth can 

be written as: 
 
[
!
u , w ] = [coth(kh),1]! " . For large kh  (deep water), the vertical and horizontal 

particle velocities are equal in magnitude. At increasingly shallower water depths (relative to the 
wavelength), the particle motions are more and more elliptical, with the water moving mostly 
horizontally for kh<<1.  The near surface pressure signal caused by the quadratic nonlinearity of 
the ocean wave equations is proportional to mean squared particle motion at the free surface. 
Thus the larger particle motion (for a given wave height) in shallow water leads to an 
enhancement in the strength of the wave-wave interaction.  

An expression for G(! ,h)  is derived in terms of the water wave phase C and group 
velocities U as a function of frequency and depth:  
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The three terms in G  in equation 6 can be related to 1) the effect of larger wavenumber at 
smaller water depth (for fixed frequency) on the terms proportional to k 4  in equation 4, 2) a term 
related to changing variables from a wave height wavenumber spectrum to a frequency spectrum, 
and 3) a term related to the ellipticity of the particle motion in shallow water.   

The continental shelves of the ocean basins range in width from a few km to more than a 
thousand kilometers with an average width of about 100km. Depths on the shelf range from the 
coastline (0m) to more than 200m. It is difficult to define a “mean depth” for the shelves, but I 
use 30m in the calculations below representing a typical depth near the shoreline. Roughly 1/3 of 
the world’s shelf area is shallower than this depth8. Infragravity wave height spectra are 
considerably more energetic on the shelf than in deep water. The source of infragravity waves is 
at the coastline, with very little energy leaking off the shelf. Infragravity wave amplitudes 
decrease with increasing water depth because the conservation of energy flux requires amplitudes 
to decrease as waves travel in deeper water and because strong bathymetric trapping (by the depth 
dependent phase velocity) acts to refract most of the wave energy back toward the coastline9-11. 
Typical spectral levels near 10 mHz measured by ocean bottom pressure gauges in deep water in 
the Pacific basin are about 3x104Pa2 / Hz corresponding to surface wave height spectral values 
of 3x10!4

m
2
/ Hz . Deep water infragravity wave heights in the Pacific are quite stable, whereas 

levels in the western north Atlantic are lower and more variable with little known about other 
oceans12.  

 Shelf spectra are quite variable spatially and temporally. Infragravity wave spectral levels 
increase toward shallower water and can be very large near the shoreline during storm events. 
Observations of infragravity waves on the shelf reveal both a “bound” or forced wave 
component9 and a free wave component10. The bound wave also originates from the nonlinearity 
of the surface gravity equations. The bound wave component is typically smaller than the free 
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wave component except very near the coastline. Bound waves may be a modest source of Earth 
normal mode excitation but are ignored in the calculation below.   

Measurements show the free and forced infragravity wave energies are related to the square 
of the incoming swell energy. Observations of infragravity waves on the shelf off California 
suggest spectral values of 10!2

!10
!1
m
2
/ Hz , but wave conditions off California are relatively 

benign. Observations of infragravity waves made with tide gauges in Queen Charlotte Sound, 
B.C. show levels exceeding 50m2

/ Hz at 1 mHz during a winter storm13. The quadratic 
dependence of the forcing on spectral levels suggest mode forcing will be dominated by the 
effects of very large waves over the shelf in relatively limited regions.  I use a flat spectrum  
(2m2

/ Hz ) as an estimate of the most energetic wave height spectrum over the shelves, 
recognizing this estimate as quite uncertain.  The root mean square wave amplitude in the band 
from 1 mHz to 30 mHz is then 0.25m.  

Earth normal modes are well described as spherical harmonics in a spherical geometry 
(r,!,") . The spectral amplitude (a

nl

m ) of a normal mode at frequency ! excited by a time 
varying pressure field can be calculated from a spatial integral of the temporal Fourier transform 
of the pressure field p(! ,",#)  over the source region Dj . Ignoring the slight splitting of the 
eigenfrequencies for different values of m, the amplitude of a mode excited by this pressure field 
will be 
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from Tanimoto14, (note d! = R
2
sin"d#d" , R is an Earth radius). 

The resulting vertical displacement at any point described by the spherical coordinates 
(R,!,") on the Earth’s surface is: 
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The power spectrum of acceleration at location (!,") due to excitation by the small region Dj is 
then 
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The extent of any shelf region with coherent pressure fluctuations under an interacting ocean 
wave field is assumed to be small compared to the wavelengths of the relevant Earth normal 
modes so that the spherical harmonic describing each Earth normal mode can be approximated as 
constant across the source region reducing the equation above to: 
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where (! j
,"

j
)  is the center point of a source region. This approximation becomes poorer toward 

higher mode order and frequency because the spatial scale of the modes becomes more 
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comparable to the size of the source regions. However the error is probably small compared to the 
uncertainty in our knowledge of the infragravity wave climatology.  

The total forcing of normal modes over the ocean shelves will be calculated by dividing the 
shelves into small regions which are shelf width L in width and of the same scale in the along 
shore direction. The across shelf width is set by the rapid decrease in wave height as waves 
propagate into deep water. The ocean wave field so far has been described in a Cartesian 
coordinate system appropriate for a flat Earth. The widths of the continental shelves are small 
compared to the radius of the Earth so the “flat Earth” approximation is valid when considering 
forcing on the shelves. It is possible to recast the wave-wave interaction problem into spherical 
coordinates but this leads to excessively complicated mathematics. A paper describing this 
calculation in spherical geometry is in preparation. The main result is to demonstrate that forcing 
by infragravity waves within the ocean basins is small compared to the forcing occurring on the 
shelves.  

 The integrals over the sphere for the forcing from each region Dj are replaced by integrals 

in a Cartesian coordinate system (i.e. “flat Earth”)  
 

!
x ! Rsin"

j
(# $ #

j
),R(" $"

j
)%& '(  centered at  

(R,!
j
,"

j
) . 

The term p
*
(! ,",#)p(! ," ',# ')  is the Fourier transform in time of the spatial cross 

correlation function of the near surface pressure field. In Cartesian coordinates it is related to the 
pressure horizontal wavenumber, frequency power spectrum as:  
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Instead of summing over a large number of regions of different area, I assume the specific spatial 
limits describing each Dj  can be replaced by a Gaussian term in the two horizontal directions to 
represent the range of areas associated with varying shelf widths around the world. The integrals 
in equation 11 become: 
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Performing the integrals over space first this reduces to: 
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K ,! ) is constant for small  
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K so the equation reduces to 
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Equation 9, representing the forcing from a single region becomes: 
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The slight dependence of ! on m and m’ has been ignored in the equation above. The 
acceleration spectrum is found by summing the contributions from many small regions covering 
the continental shelves. If we had detailed knowledge of the infragravity wave spectrum over the 
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worlds shelves, equation 10 could be calculated explicitly for each region and the result summed 
following Tanimoto14, but we currently know little about the infragravity wave spectrum over the 
shelf along most of the Earth’s coastlines. In particular, measurements of infragravity wave 
spectra from under very large storm waves from the northernmost coastlines  (in winter) and 
southernmost coastlines (in southern winter) are needed. Given only limited knowledge of the 
distribution of source regions, I make the simplifying assumption that regions are randomly 
distributed around the globe. This is clearly incorrect, as evidenced by the biannual cycle seen in 
mode energy14,15. 

I divide the coastal regions into N source regions of area !L2 ,  so that the number of regions 
is: 

17) N =
!

S

"L
2

 

The term !
S

describes the total Earth area covered by continental shelves divided by the effective 
area of each source region defined above. The fraction f of the total Earth’s surface covered by 
shelves is about 5%, but only a subset of this shelf area is likely to have energetic infragravity 
waves at any given time and therefore be important for exciting normal modes. The acceleration 
spectrum excited by the entire continental shelf will be the sum of the contributions from each 
small region because the waves are assumed to be incoherent between regions. The energies from 
each source region Dj sum: 
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The only dependence of the sum on the source region center points is 
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This last result is valid if the regions are randomly distributed over the globe so that the expected 
value of the products of the spherical harmonics is the integral of the spherical harmonics over the 
unit sphere divided by the area of the sphere.  The spherical harmonics are defined to be 
orthonormal over the unit sphere.  
 Equation 17 then can be expanded as 
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using equation 19, equation 20 simplifies to: 
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Evaluate the sum over m: 
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An additional simplification is to note that the minimums of the functions !
nl
(" )  occur at the 

eigenfrequencies of the Earth normal modes, and because the eigenfrequencies are different for 
different orders n ! n ' the cross terms contribute relatively little to the spectrum reducing 
equation 16 further to: 
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The vertical acceleration spectrum (equation 22) is independent of the location on Earth as 
expected for a source that is randomly distributed over the Earth’s surface: 
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is the continental shelf area of the Earth. 
 
The excitation is not really randomly distributed over the Earth, because the shelves are not 
randomly distributed and the ocean wave spectrum is not uniform over the shelves. Some 
variation in the normal mode spectrum is expected between locations, but the formula provides a 
useful first approximation.  

Figure 3a shows A(! )  using an estimate for the typical infragravity wave spectrum on the 
shelf (Fig.1b). The values of the other variables used in the calculation are shown in Table 1. The 
result depends on an integral of the directional spectrum times the directional spectrum evaluated 
180 o around in azimuth (at ! + " ). Directional spectra from the shelf typically show most of the 
wave energy at sites more than a few kilometers offshore is directed either toward or away from 
the coast.  Evaluating the azimuthal integral in equation 24 using a measurement of the shelf 
directional spectrum for infragravity waves (From ref. 10, Fig. 6) yields a factor of 0.17 times the 
wave height spectrum squared. Our knowledge of the “mean” infragravity wave spectrum on the 
shelf (both its directional dependence and frequency dependence) is poor. In particular, we have 
no knowledge of the infragravity wave spectrum in southern regions where the biggest waves 
occur and it is such areas likely to dominate the excitation of Earth normal modes.  

 
 

Table 1. 
Infragravity wave spectrum 

 
f! (f) " 2m

2
/ Hz  

Scale of coherent regions on shelf L=100km 
Water depth on shelf h=30m 
Fraction of Earth’s area in shelves f = 0.05  

 
The good fit between the shape of the spectrum and the absolute magnitude realized from 

equation 24 using a reasonable guess for the infragravity spectrum strongly suggests that 
infragravity waves on the continental shelves are indeed what drives the normal mode signal 
observed on quiet days seismically (Fig. 3).  

The width of the envelope of E(! )  is controlled by the Q’s of the modes. Modal Q’s 
decrease with increasing mode number and frequency. The width of the envelope goes from wide 
to narrow with increasing frequency accurately reproducing the observed spectrum.  I have used 
the standard PREM model17 of Earth elastic structure but augmented the model by using the 
attenuation (Q) structure18 PA5 which provides a more accurate model of the attenuation structure 
under the oceans above the transition zone (above 660km depth). PREM does not include a low Q 
low velocity zone in the aesthenosphere and so overestimates mode Q for modes above 10 mHz. 
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The dependence of the width of the Earth hum spectral envelope on attenuation has been 
previously explored by other authors14,15. 

A model of the effect of the gravitational attraction of the changing atmospheric mass19,20 
above a sensor is estimated from a figure in Widmer-Schnidrig16. This noise term, which affects 
only the frequencies below 2mHz was added to the model to better match the spectrum at very 
low frequency (Fig. 3).  

The slope of the function E(! ) decreases above 3 mHz, so that the predicted spectrum rolls 
over gently, but a similar gentle hump in the spectrum is found in quiet spectra from most sites. 
The background noise above the clearly identifiable normal mode spectral peaks has been shown 
to be describable as propagating Rayleigh waves22.  

The model (equation 24) overestimates the spectra for quiet sites at frequencies above 10 
mHz. Quiet sites are always deep within continents. Sites near the shoreline are invariably more 
energetic reflecting the noise from nearby ocean waves.   Missing from the development above is 
the attenuation of the higher frequency modes with distance into the continents. This problem can 
be corrected by dropping the assumption of a uniform distribution of source sites, and 
numerically calculating the forcing over source regions (following Tanimoto14), but because the 
true distribution of sources is not known, I instead model the effect of attenuation into the 
continents. Each spherical harmonic has an asymptotic approximation as a pair of propagating 
(Rayleigh) waves valid at large range ( ! ) : 
25) Y

l

0 (!,")e# i$ t = P
l
(cos%)eii$ t

&
e
# i$ t

2'l sin%
exp[i(l +1 / 2)% #

i'
4
]+ exp[#i(l +1 / 2)% +

i'
4
]

(
)*

+
,-

 

The attenuation of Rayleigh wave amplitude with distance can be modeled as23: 

26) exp !
"#

2QU

$

%
&

'

(
)  

 Here U is the group velocity. The attenuation of the Earth hum signal with distance! into a 
continent can then be modeled by modifying the function E(! ) : 

E(! ) =
n

"
(2l +1)Unl

4
(R)

4# $nl (! )
2

l

" exp %
!&

QnlUnl

'

(
)

*

+
,  

 
The curves in Figure 3c represent attenuation over 0, 2000, and 4000km. This attenuation 

leads to the formation of a small peak in the predicted spectrum between 8 and 20 mHz. This 
feature of spectra from quiet sites has been known for some time24. The peak is controlled by the 
attenuation structure of the Earth, and without the higher attenuation of short period Rayeligh 
waves caused by the LVZ zone near100km depth, the spectrum would be expected to be more 
energetic near 20 mHz at these quiet sites.  The importance of attenuation in forming this peak in 
the noise spectrum from quiet sites has been previously described by Tanimoto14. 

The good agreement between the estimated Earth Normal mode spectrum and measurements 
confirms infragravity waves on the continental shelf are the likely source of the Earth’s hum. 
Deep water infragravity waves are a negligible source because of the strong dependence of the 
G(! / 2,h)  term on inverse water depth and because of the much lower spectral levels in the 
deep ocean basins, despite the much larger fraction (93%) of the ocean surface underlain by water 
deeper than 200m (beyond the shelves) and despite the small size of the shelves which limits the 
horizontal extent of the source region of coherent wave-wave interaction to regions of scales 
small compared to the wavelengths of normal modes. The contributions from the shelves 
overwhelm the excitation of normal modes by ocean waves elsewhere over the oceans. 
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 2. A Previous Theory on Excitation by Infragravity Waves and Alternative Mechanisms 
 

A previous report by Tanimoto14 examined infragravity waves as the energy source for Earth 
normal modes in the absence of large Earthquakes, but did not identify a mechanism for the 
forcing. The paper assumed without justification a form for the spatial cross correlation of 
seafloor pressure variations beneath infragravity waves.  The model is not a valid physical model 
to describe either this process or atmospheric turbulence (see section below). Linear infragravity 
waves cannot couple significantly into Earth normal modes because the phase speeds of ocean 
waves and Earth normal modes are very different. Linear infragravity waves drive a simple 
(inhomogeneous) response in the Earth. This response has been used to study magma beneath 
ocean ridges25, but the deformation signal extends only to depths comparable to the ocean wave 
wavelength. 

 The Tanimoto paper does provide a convincing case that it is a combination of energetic 
infragravity waves in the southern ocean in the southern winter (July-Sept) and energetic 
infragravity waves in the northern ocean in the northern winter (Dec-Feb.) that produces the twice 
yearly cycle of the Earth’s hum. 

The transfer of energy between infragravity waves and Earth normal modes requires a 
nonlinear process to couple energy from the relatively shorter wavelength, slow phase speed 
infragravity waves into the much faster, longer wavelength Earth normal modes. There are two 
obvious ways this can happen. The first way is through the inherent nonlinearity of the surface 
wave equations as described in this letter. The second way is through the interaction of ocean 
waves with bathymetry. It is known that ocean wave energy couples into “single frequency” 
microseisms (the peak at 0.07 Hz in worldwide seismic spectra) and it is believed that this 
coupling happens through the interaction of ocean waves with bathymetry close to shore. 
Hasselmann1 addresses the interaction of waves with bathymetry. The problem is quite difficult 
and obtaining a result involves many simplifications.  To couple energy into high phase 
velocities, waves must interact with bathymetry of comparable wavenumber.  The coupling of 
infragravity waves with bathymetry is necessarily weak in deep water, so the supposition in the 
Tanimoto paper that there is a significant contribution to the forcing from deep water infragravity 
waves is unlikely. It is possible that coupling between infragravity waves and shallow water 
bathymetry does contribute to the excitation of Earth normal modes but the Hasselmann wave-
wave interaction mechanism described in this letter appears to be fully adequate to explain the 
amplitude observed without invoking coupling through bathymetry.  The two mechanisms differ 
in their dependence of the mechanism on frequency. Hasselmann suggests an !"6  dependence 
for the forcing of microseisms by waves interacting with bathymetry. I found a similar 
dependence in the infragravity wave band using numerical calculations that followed 
Hasselmann’s formulation but which used a realistic model for the continental shelf, slope and 
ocean floor. My calculations suggest both that the mechanism is too weak and also that the 
frequency dependence is wrong in order to fit what is observed for the spectrum of the Earth’s 
hum, but a definitive answer must await further modeling. In particular, the modeling to date 
assumes normal incidence of the ocean waves to the bathymetry, but real variations in the 
bathymetry in the along coast direction seem likely to minimize the forcing of planetary modes 
by shifting the coupling to shorter wavelength (scales comparable to the scales of the along 
coastline bathymetric variations).  

It may be possible to discriminate with observations between the two nonlinear mechanisms 
by determining the dependence of the forcing on the ocean wave spectrum.  The forcing due to 
the interaction of waves with the bathymetry interaction is expected to depend on the spectrum to 
the first power, and the nonlinear wave-wave interaction mechanism depends on the ocean wave  
spectrum squared.  

For simplicity, the description of infragravity waves in this manuscript has been for a “flat” 
(Cartesian) Earth. It is straightforward to extend the description of infragravity waves to a 
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spherical Earth of constant water depth for which the waves can be described as “tsunami’ modes 
of the Earth23. These modes are dominated by the effects of gravity and lie on dispersion curves 
separate from the seismic modes associated with the Earth’s hum. 

 
3. Atmospheric Turbulence as a Source of Normal Mode Excitation  
 

A series of papers5,15,26-27 have invoked atmospheric turbulence as the source of the Earth’s 
background free oscillations. These papers follow earlier work on the excitation of solar normal 
mode vibrations by turbulence within stars in their derivations. The stellar papers derive the 
excitation of normal modes within stars using a model for the spatial and temporal cross 
correlation of pressure fluctuations driven by high Mach number turbulence28-31.  As with the high 
phase velocity terms associated with ocean waves, the high phase velocity terms associated with 
turbulence are controlled by the nonlinear terms in the momentum equation.  

The study of sound driven by turbulence goes back to the fundamental paper of Lighthill32 
who showed that sound generation in free space was related to the fourth (and higher) order 
correlations between velocity fluctuations, thus making turbulence an inefficient generator of 
sound at low Mach number. Turbulence acting on a boundary or within stratification may be 
more efficient (see below). Many authors have extended the Lighthill theory to explain the 
excitation of stellar oscillations by turbulence. The stellar oscillation mechanism predicts a high 
dependence on Mach number31. The strong Mach number dependence suggests low Mach number 
atmospheric turbulence on the Earth is not likely to be associated with an energetic normal mode 
spectrum. This Mach number dependence has been ignored in the previous papers on the Earth’s 
hum. The strong Mach number dependence arises because only higher order correlations of the 
particle velocities in turbulence contribute significantly to forcing of planetary modes. The direct 
action of turbulent pressure fluctuations acting on the Earth’s surface approximately averages to 
zero over large areas (corresponding to the forcing at the large wavelengths of planetary modes), 
because producing a nonzero force acting on a patch of the Earth surface requires the transfer of 
vertical momentum from the turbulence to the Earth. Averaged over areas comparable to 
planetary wavelengths the vertical momentum in any isolated volume of turbulence averages 
toward zero because there is no net movement of the center of mass of volumes that are large 
compared to the largest scales of the turbulence33. 

The strong stratification of the lower atmosphere establishes a thin (1km) turbulent shear 
layer, “the atmospheric boundary layer” (ABL). Flow fluctuations at the Earth’s surface in the 
normal mode band (periods less than one hour) are dominated by atmospheric boundary layer 
turbulence34. While all levels in the atmosphere experience turbulence, the stratification limits the 
vertical scale of the turbulence (and hence the horizontal scale, at least at short periods). 
Turbulence in the boundary layer is driven by wind shear and by heating at the surface.  

The pressure signals seen at a sensor on the Earth’s surface can be divided into three 
components: 1) pressure fluctuations from flow very near the sensor, 2) pressure fluctuations 
from boundary layer turbulence and 3) infrasound35. There is a component of the pressure 
fluctuations under atmospheric turbulence at very small wavenumber (and hence high phase 
velocity) that can resonantly excite the Earth normal mode spectrum, but it is a tiny component of 
the  pressure spectrum measured at any site.  

Measurements of pressure fluctuations beneath boundary layers in the lab might provide an 
appropriate model for the pressure fluctuations beneath the atmospheric boundary layer, but it has 
proven remarkably difficult to either measure or predict the high phase velocity components 
beneath a boundary layer. Recent theory begins to explain much of the wavenumber-frequency 
spectrum of pressure fluctuations under turbulent boundary layers, but large discrepancies remain 
between measurements and between theories at small wavenumber36-39.  The phase velocities 
associated with Earth normal modes are much faster than the speed of sound in air, so it is the 
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supersonic component of the pressure field beneath atmospheric turbulence that is relevant to this 
problem. 

Recent work converges to the view that the supersonic component of the pressure field at a 
shear flow boundary is related to the viscous stress so that the pressure frequency-wavenumber 
spectrum is proportional to the square of the shear stress (! " #C

D
U

2 ) at the boundary 
multiplied by some power of the Mach number (M =U / c ). One model39 valid in the supersonic 
range is: 
27) P(! ,k) = X(k)"

2
M

2
#
3
/ u

*
 

The drag coefficient C
D
! 0.0015  relates the stress to the free stream velocity U. In equation 27, 

!  is the boundary layer thickness, and c is the speed of sound in air. The scaled spectrum is 
defined as X(k) . The efficiency of production of the supersonic components (! / k > c ) is 
observed to be higher above a rough surface because of turbulent flow around roughness 
elements. A model39 of the wavenumber-frequency spectrum for flow over a rough wall suggests 
a flat wavenumber spectrum for small wavenumber with X

0
! 10

"7 . An estimate of the power in 
small wavenumber components in the spectrum of the pressure field is obtained by assuming the 
spectrum is white at small wavenumbers and integrating the wavenumber spectrum over 
k <! /C

m
 where C

m
 is the phase speed of a typical Earth normal mode. The relevant 

component of the pressure spectrum under atmospheric boundary layer turbulence is then about:  
28) P

k <(! /Um )
(! ) " C

D

2#2U 4
X
0
$ 3M 2% / u

*
(! /C

m
)
2 .  

The theory39 predicts the pressure spectrum (for low Mach number flow) will be at a minimum at 
small wavenumber and much more energetic at wavenumbers corresponding to the advection 
velocity: k

a
!" /U  forming an advective peak in the spectrum, before falling again toward 

higher wavenumber. If the turbulence is instead at high Mach number (as is the case for stellar 
oscillations) then U  becomes similar to C

m
 (flow velocities comparable to the speed of 

planetary modes), and the planetary mode wavenumbers are instead within the advective peak. 
For this case, the “stellar model” is an appropriate model for the forcing.  

The proponents of mode forcing by atmospheric turbulence assume the pressure fluctuations 
under turbulence that can drive planetary free oscillations are of order p

0
= !U 2 . This term 

correctly describes pressure fluctuations that are felt by a structure impeding the flow, but grossly 
overestimates the source of forcing planetary modes because this pressure term changes sign and 
will average roughly to zero over a large area33 (certainly on a scale comparable to a planetary 
mode wavelength) Kobayashi and Nishida26 make the assumption that the pressure spatial 
correlation function has a scale length H equal to the scale depth of the atmosphere: 

 
29) P(

!
x,t)P(

!
x ',t) ! exp("

!
x,"
!
x ' / H )  

This implies the horizontal wavenumber spectrum is: 

 

30) P(! ,
!
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2" P(! )

H 4"
2
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2
+1 / H

2
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which approaches a constant value at small wavenumber ( k << 1 / H ). This form for the spatial 
correlation function is valid for wavenumbers that are comparable to the reciprocal of the eddy 
scale in the turbulence (that is of order k !" /U ) but wrong at the very small wavenumbers 
corresponding to planetary modes. Integrating equation 30 over wavenumbers 
k <! /U

m
suggests the frequency spectrum of pressure fluctuations with wavenumbers small 

enough to force normal modes should be: 
31) P
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The authors26 state “the pressure fluctuations at a frequency f are ! p = p
0
f
0
/ f ”,  

( f
0
=U / H ), implying a pressure power spectrum proportional to ( f

0
/ f )

2 . Setting the 

variance in the spectrum equal to p
0

2 for f ! f
0

 gives the equivalent pressure spectrum driving 
the Earth normal modes as  
32) Pkn (! ) " 4#
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2
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2
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2
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2
" p

0

2
HU /Um

2 .  
 For any reasonable choice of parameters (see Table 2), the spectral estimates for the high 
phase velocity component of the pressure frequency spectrum under turbulence from the 
expression derived from boundary layer theory (equation 28) will be roughly 150 dB lower than 
the result from equation 32). The >150 dB difference between the model in this paper and 
previous models comes from 1) X

0
! "70dB  (spectral levels are down 70 dB relative to the 

advective peak), 2) u
*

4
/U

4
= C

D

2
! "55dB  (the ratio of the friction velocity to the flow velocity 

to the fourth power) and 3) M 2
! "39dB  (Mach number squared) with all other terms of order 1 

at f = f
0

.  Atmospheric turbulence from the boundary layer is a negligible forcing term for Earth 
seismic normal modes as there just is very little energy in pressure fluctuations at high phase 
velocity for low Mach turbulence charactering the Earth’s atmosphere.  

Atmospheric turbulence above the boundary can generate infrasound40 and the high phase 
velocity component of this could couple in planetary modes. However, the excitation of sound by 
atmospheric turbulence is expected to depend on the Mach number to the fifth power suggesting 
the boundary layer component (which depends on Mach number squared) will dominate the 
excitation of planetary modes for low Mach number turbulence. 

An array of microbarographs was recently used to investigate the wavenumber and frequency 
spectrum of pressure fluctuations at the surface of the Earth41. The array detected infrasound 
propagating across the array at velocities between the approximate speed of sound in air (350 
m/s) and 1 km/s (associated with waves arriving from above the horizon). It also detected more 
slowly propagating (<100 m/s) internal gravity waves in the atmospheric boundary layer. 
However, the aperture of the array (20km) was far to small to resolve wavelengths comparable to 
low order Earth normal modes (400km for L=100, N=0, f=7 mHz) so the estimate provided in the 
report40 of the high phase velocity components of the pressure field (that might be associated with 
Earth normal mode excitation) is dominated by energy at wavenumbers too large (and phase 
velocities too slow) to excite Earth normal modes. It is expected that the infrasound component 
corresponding to planetary mode wavelengths and phase speeds will be negligible except for the 
infrasound driven by solid earth modes after excitation by earthquakes.  

Table 2. 
Density of air !air = 1.3kg / m

3  
Drag coefficient C

D
= 0.0015  

Free stream velocity U=3.8 m/s 
Mach Number M=0.011 
Speed of Sound in Air C=350 m/s 
Scale height of atmosphere H=8.7 km 
Boundary layer thickness ! = 1km  
Shear stress  ! = 0.03kg / (ms

2
)  

Typical mode phase velocity C
m
! 5km / s  
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