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Abstract Hasselmann's equation, describing the non-hnear interactions between sea waves, is 
studied numerically for a P]erson-Moskow, tz spectrum The apparent creanon of order, due to 
the non-hnear enhancement of the peak of the spectrum, occurs as the by-product of a large 
amount of &sorder. created at high wavenumbers 

It is also found that the physical process dominating the non-hnear transfer ~s the scattering 
of waves near the peak of the spectrum by short waves m the tail of the spectrum In this 
process the long waves become longer and the short waves shorter 

INTRODUCTION 

OBSERVATIONS o f  sea waves have always shown that the sea wave spectrum has its main 
peak just before a low frequency or low wavenumber cutoff. Recently BARNETT and 
WmKERSON (1967), HASSELMANN et al. (1973) In the J O N S W A P  (Joint North  Sea Wave 
Project) experiments, and others, have shown that the peak is usually higher and narrower 
than had been thought previously. In fact, the peak was commonly two or three times 
higher than expected. 

The JONSWAP  experiments were also concerned with the evolunon of the peak with 
time, in particular, the gradual movement  of the low wavenumber cutoff to even lower 
wavenumbers. The work indicated that both the enhanced peak and the movement  of the 
low wavenumber cutoff could be explained, at least qualitatively, in terms of the non- 
linear interactions between the sea waves as modeled by Hasselmann's equation 
(HASSELMANN, 1962, 1963a, 1963b) 

The full set of equations describing the non-linear interactions between sea waves is 
too complicated to be of any practical use in describing the evolution of a sea state. 
Instead one has to make approxamations, and the usual approach is to assume that the 
amplitude of a wave changes little in one period and that the higher order correlations 
between waves can be neglected For  water waves, one of the simplest outcomes of this 
approach is Hasselmann's equation 

Hasselmann's  equation estimates the rate of change of the mean energy (or mean action 
density) at each wavenumber. The mean is defined as an average over an ensemble of 
representative oceans 

Because when we use Hasselmann's equation we are not keeping a detailed record of 
the amplitude and phase of each wavenumber, the information we have about the ocean 
may become degraded with time As a result the entropy (or disorder) of  the solution is 
e~ther constant or increases with time. 

But here we hit a snag With Hasselmann's equation disorder should increase with rime, 
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but when it is applied to a realistic sea wave spectrum, the non-hnearitles produce a high 
narrow peak--so apparently they are producmg order Put in the terms of the JONSWAP 
paper, the effect of the non-hnear transfer "runs counter to intuition" 

The present paper arises from some work carried out to get a better understanding of 
the properties of Hasselmann's equation and in particular to understand how the highly 
peaked spectrum is produced. As one might expect, conservation of energy and momentum 
are Important Equally important are the rapid increase with wavenumber in the strength 
of the non-llnearitles, the high wavenumber tall of the sea wave spectrum, and the extra 
phase space associated wRh high wavenumbers. 

It is found that for a realistic sea wave spectrum, the non-linearlties do cause a 
locahsed increase in order near the low wavenumber peak of the spectrum This, however, 
is the by-product of a great increase in disorder at high wavenumbers. 

This creation of localised order, at the expense of disorder elsewhere, IS not unique 
to sea waves Similar behavlour is also found in many of the other systems of classical 
thermodynamics, from refrigerators to biological cells, m which there IS a flow of energy 
through the system. 

HASSELMANN'S EQUATION 

If n, is the action density at wavenumber k,, then Hasselmann's equation may be 
written as 

dn 1 
- , dkt dk2 dk3 C(kl, k2, k3,k4) 3 (kt + k2 - k3 - k,)  

dt 

6(091 +092--093--094)[nln3(n,,--n2)+nzn,(n3--nl)] (2.1) 

o9, is the angular velocity at wavenumber k, and C (kl, k2, k3, k,)  is the Interaction coefficient 
(Appendix 1) In this paper we shall use the action density form of Hasselmann's equation, 
partly because it helps to simplify the equation. However, for weakly interacting waves 
action density has the useful property of behaving as particle density does In systems of 
colliding particles As a result action density lS useful for getting a physical picture of the 
processes involved.* 

Hasselmann's equation conserves action density. To be physically reahstic it should also 
conserve energy and momentum. In fact the wavenumber delta function IS there to ensure 
momentum conservation and the angular velocity delta function to ensure energy con- 
servatlon (HASSELMANN, 1963a) 

A further requirement of the equation is that the action density should never become 
n e g a t i v e  (KRAICHNAN, 1961 ; ELSASSER, 1973). This IS true for Hasselmann's equation and 
hke the conservation of action density it arises from the adiabatic assumption 

A useful consequence of the conservation of action, ts that, if one considers just the 
interaction of four waves kl,k2,k3 and kg, satisfying the delta functions, then, 

dnl dn2 dn3 dn,  

dt dt dt dt 

As a result one may take Hasselmann's equation as representing the scattering of wave- 

* Although action density is a little understood quantity, for periodic systems it is often the most convement 
to use This arises because action is an admbatm lnvariant of penodm systems (LANDAU and LIFSHITZ, 1960) 
It Is interesting to note that in quantum mechanics conservation of action density corresponds to conversation 
of the number of particles 
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numbers k3 and k4 to give kl and k2--plus the reverse process. This analogy also show~ 
up in the symmetry of the interaction coefficient Thus C (kl,k2,k3, k4) is lnvanant under 
interchanges of kl with k2 or of k3 with k4, or of both kt and k2 with k3 and k4 

Unfortunately the detailed behavlour of the interaction coefficient is rather complicated 
However, its most important property is that it is a rapidly Increasing function of wave- 
number Thus for deep water waves, for wtuch ~0 IS proportional to k ~, 

C (~k 1,0~k2,0ck3,~k4) -- ~6 C ( k l , k 2 ,  k3,k4). 

This rapid increase in the couphng coefficient with wavenurnber reflects the much more 
non-hnear nature of short waves 

THE TRANSFER FUNCTION 

Figure 1 shows the calculated non-linear transfer function e~/dt for the Pierson-  
Moskowltz spectrum of Fig. 2. The results of the JONSWAP experiment indicate that the 
Pierson-Moskowltz  spectrum may be typical of a sea in which the enhanced peak due to 
the non-hnearltIes has not been developed. 

'1" /Yy / 

Fig 1 

't - 
The non-hnear  transfer dn/dt as a function of wavenumber The contours are marked in 

umts  of 10 - 3 i n k s  units 

The present calculation corresponds to case PNB in SELL and HASSELMANN (1972). A 
smoothed version of their results is shown as Fig 2.21b in the JONSWAP paper 
(HASSELMANN et al, 1973). Both their results and the present results were obtained by 
integrating equation (2.1) numerically. In the present case the relative error of each of the 
calculated values used to construct Fig. 1 should be less than a few per cent. Further 
details of the procedure are given in Appendix 3 
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Fig 2_ The sea wave spectrum n(k) used in these calculations This Js a Plerson-Moskowitz 
spectrum with a cos 20 spreading factor, a Phflhps constant of 0 01 and a maximum variance at 
0 3 Hz Case PWB of SELL and HASSELMANN (1972) lS mmflar but used a Phllhps constant of 0 081 

Figure 1 illustrates that the non-linearitles transfer action density (and momentum 
and energy) away from intermediate and high wavenumber waves in the downwind 
direction This action density is transferred predominantly to a region near the peak of the 
spectrum and also to two regions at high wavenumbers in a direction approximately 45 ° 
to the downwind direction 

In Fig. i, the main peak ofdn/dt occurs at a wavenumber corresponding to 18-m waves. 
The minimum value of dn/dt corresponds to 8-m waves, and the two secondary maxima 
correspond to wavelengths of 4 m. 

Although the connection is not at first obvious, the high and low wavenumber peaks 
in dn/dt do complement each other. The energy associated with a unit of action density 
is proportional to the angular velocity o9 (HASSELMANN, 1963a). As a result, if action 
density is being transferred somewhere in the spectrum to higher wavenumbers and higher 
o9, then for the overall energy of the system to be conserved there must be a corresponding 
transfer somewhere else in the spectrum to lower wavenumbers and lower o9. 

DIFFUSING AND PUMPING 

To analyse the behavlour further, it is useful to split equation (2.1) into a diffuse 
term and a pumping term Remembenng that equation (2.1) describes the transfers between 
the pairs of wavenumbers kl, k2 and k3, k4, the term n2n4 (n3 - nl) can be looked on as de- 
scribing a diffusive transfer between wavenumbers k3 and kl, this transfer being catalysed 
by wavenumbers k2 and k,. 

The term 'diffusive' seems apt, because the transfer is proportional to the difference in 
action density at the two wavenumbers k 1 and k 2 and results in a flow from the higher 
action density to the lower action density. Conservation of energy and momentum then 
requires that the diffusive transfer be matched by a 'pumped' transfer between k2 and k,  
The term 'pumped' is chosen to emphasize how the diffusive transfer between kl and ka 
forces or pumps the transfer between k 2 and k ,  Similarly the diffusive transfe~ between 
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k2 and k4 gives a pumped transfer between kl and k3. In equation (2.1) this pumped transfer 
is represented by the term nl n3 (n4 - n2). 

To make the definition of the pumped and diffusive terms precise, it is convement to 
rewrite the integral so that ]kl - k31 is less than Ik~ - k41. Thus if (dn/dt)p is the non-linear 
transfer due to the pumping term and (dn/dt) is that due to the diffusive term, then, 

(dn)~p = 2 f dk2 dk3dk4C(k,,k2, k3, k4)~i(k~ + k 2 _ k 3 _ k 4  ) 

6 (r.01 + c02- r-03 - to4) 0(Ikl - k 4 1 - I k l - k 3 1 ) n l n a ( n 4 - n 2 ) ,  (4.1) 

and 

(dn)d_ta = 2 f  dk2 dk3 d k 4 c ( k x ' k 2 ' k 3 ' k 4 ) 6 ( k ' - k 2 - k 3 - k 4 )  

6(oJl +o~2-~oa-co4)O([kl-k41-1kl-kal)n2n4(n3-ni) (42) 

Here 

0 ( x ) = l  if x > 0 ,  
= 0  ff x < 0 .  

As discussed in Appendix 2, the entropy H of the sea wave spectrum is given by, 

= ~ IInn(k)dk, (4 3) H 

where x is Boltzmann's constant. Transfer of a umt of action density from a region where 
n(k) ~s large to a region where it is small wdl increase the entropy of the spectrum. That is, 
it will decrease the amount of usable reformation we have about the system. 

As shown by HASSELMANN (1966), the total rate of entropy production due to the non- 
hnear transfer is, 

dH I dt - • dk ldk2dk3dk4C(k l ' k2 'k3 'k4 )~(k l+  )6(°~1+ " ) 

/:/1/:/2/:/3/:/4 -~ r/2 H 3 rl4. 

>_0 

In the steady state case this is zero, otherwise the overall entropy Increases. If one con- 
siders the entropy production due only to the diffusive term, then using the same method 
used do derive equation (4.4), one finds that, 

~ -  a = x  dk ldk2dk3dk4C(k l ,  k2, ka, k4)~(kl+ .-)~(~01+ -) 

>_0. 

Again this is positive or zero, exactly as one would expect from a diffuslvc like process 
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Fig 3 The pumping and diffusive contnbut]ons to dn/dt along the k~ axis 

The entropy production due to the pumping term is the difference of the above quantit]es, 

~ -  p = r  dk~dk2dk3dk4C(k~,k2, k3,k4)6(kl+ . )~(0)1+ ..) 

Th]s may have either sign, depending on the properties of (1 /n l  - l/n3) (l/n2 - 1/n4) 
Thus the pumping term may create order by pumping action density from regions where 

the act]on dens]ty is small to reg]ons where it is large However equations (4 4) to (4 6) 
show that the order created is always less than the disorder created by the diffusive term 

The ordering behavlour of the pumping term is illustrated in Figs. 3 and 4. Figure 3 
shows the pumping and diffusive contributions in the downwind direction. Figure 4 shows 
the behavlour of the same quantities at an angle of 45 °. One sees that the transfer from 
intermediate wavenumbers to the main low wavenumber peak is due to the pumping term 
Similarly the diffusive term is transferring action density from intermediate wavenumbers 
to high wavenumbers at an angle to the downwind direction. As the entropy change depends 
on the relative* change an action density, the diffusive process, which transfers action to 
regions where at as initially small, increases the entropy by a large amount. In contrast 
although the pumping term produces an impressive peak at low wavenumbers, the 
relative change of action density is small and so the decrease in entropy IS also small 

* (6 Inn = 6n/n) 
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Fig 4_ The purnpmg and dJffuslve contributions to dn/dl along a hne at 45 c to the k~ axis 

Figures 3 and 4 and the above comments on entropy constitute the main results of this 
paper The rest of this paper represents an attempt to describe qualitatively how the 
flows of action density arise. 

Before leaving F~gs. 3 and 4, it is interesting to note that the diffusive term also 
produces a transfer down the low wavenumber face of the spectrum. In fact one finds that 
at very low wavenumbers, wave growth due to diffusive transport is much more ~mportant 
than that due to pumped transport. Thzs is partly due to the pumped term (dn/dt)p being 
proportional to n~. It thus drops off sharply at low wavenumbers 

TRANSFER 

In th~s section, we take advantage of the two-particle scattering nature of Hasselmann's 
equation and rewrite equation (2.1) as an integral of a transfer function T(kz,ka), where 
T(kx,k3) gives the rate at which wave k3 is scattered into wave kl Again we shall use 
the convention that kl is nearer to ka than k4- 

Thus from equation (2 1), 

dn_~_l 
=.fd k3 T(kl, k3 ), (5. l) dt 

T(kl,k3) = 2 (dk2 dk4 C (kl,k2,ka,k4)6 (kl + ) 6 (cox + ...) 

O([kx-k4l-[kl-k3l)[nlna(n4-nE)+nEn4(na-nl)]. (5.2) 
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The pumped transfer Tj, (k~, k3) for kt equal to (0 3, 0 0), plotted as a function of k3 Contour 
values m umts of 10 -3 

As before this can be split into a pumped transfer and a diffusive transfer. 
The pumped and diffusive transfers for three values of kl are shown in Figs. 5, 6 and 7. 

Figure 6b especially emphasizes that we are dealing with a flux of action density, transfer 
towards kl from one direction usually being matched by a transfer away from kl in the 
opposite direction. The figures also show that for the pumping terms, the flux is usually 
towards lower wavenumbers and that for the diffusive terms, the flux is towards high 
wavenumbers. 

However, to understand the reasons for this behavlour, we have to look at the integral 
(5.2) in more detail. 

INTEGRAL 

The delta functions on k and 09 in equation (5 2) limit the integral to one around a 
contour. If s is the unit vector along the contour and n the normal vector, then (5.2) 
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Fig 5b The diffusive transfer Ta(k~,k3) for kl equal to (0 3,0 0) Contour values in umts of 10 -3 

becomes,  

T(km, k3) = 2 ~ d s  C(k l ,  k2, k3, k4) c ~  
1 

O([kl-k,l-lkx-k31)[nln3(n,-nz)+n2n,(n3-nl)], (6.1) 
where  k ,  = kl  + k2 - k3 and  k2 -- k2 (s, ki ,k3).  The  equat ion  for the locus of  k2 is, 

co (kl) + co (k2) - co (k3) - co (kl + k2 - k3) = 0. 

Fo r  deep water,  for which to is p ropor t iona l  to k ½, this becomes,  

Q + k~ - ( I P -  k2l) ~ = 0, (6.2) 

where Q = k~ - k~ and  P = kl  - k3. 
A tylamal locus for k2 for given values of  kl  and  k3 is shown in Fig. 8 It  is roughly  
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Fig. 6a The pumped transfer Tv(kl,k3), for kl equal to (0 8,0 8) Contour  values m umts  of 10 3 

egg shape, becoming circular when (P-Q)/Q2 is very small or very large The diameter 
of the path of integration is approximately equal to (P/Q - Q)2/4. So in the hmlt, as Q tends 
to zero with P fixed, the length of the path of integration tends to lnfimty_ 

As mentioned previously the interaction coefficient Is a rapidly increasing function 
ofwavenumber. The term 1Oo)/0nl- 1 also rapidly increases with wavenumber In particular 
it is straightforward to show that when k2 is large compared with P, [t~o)/?n[-t is pro- 
proportional to k~/2. 

This sharp increase in 10o~/Onl-~ is a phase space effect and reflects the fact that when 
k2 is large compared with kl and k3, a small change in k~ or  k 3 wall produce a large 
change in the positions of k 2 and k4- As a result a small group of waves in the region of 
kl and k3 will interact with many more waves in the region of k2 and k4, enhancing the 
effect of the non-hnearities 

The behavlour of the various terms m the intergrand along a typical contour are 
illustrated in Fig. 9. The contour used is that of Fig. 8 Figure 9 dlustrates how both the 
coefficient C and the I&o/t)nJ- 1 term increase with wavenumber However, as mentioned by 
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Fig 6b The diffusive transfer Ta(kt,k3) for kt equal to (0_8, 0_8) Contour  values in units of 10- 3 

HASSELMANN (1963b), the coefficient C drops off sharply when the angle between the wave- 
numbers becomes large. 

The integrand of the diffusive term n 2 n 4 ( n  3 -- hi) lS largest when both n 2 and n4 lie within 
the peak of the spectrum. The greater value of the product n2n 4 thus more than com- 
pensates for the relatively small values of C and [009/t~n[- 1 This was a general property of 
the diffusive term, with the result that the direction of maximum transfer Td(ki, k3) occurred 
when the separation of ki and k3 was such that the path of integration passed through 
the peak. This direction shows up clearly in Fig. 6b 

A simple calculation shows that, for a narrow peak at (A,0) and a small value of P, 
the maximum diffusive transfer will occur when the direction of P is such that.* 

P~ A - ~ ( x Z  + y2) '~- -  x 
- -  - , ( 6 . 3 )  

Pr y 
where (x,y) = kl 

* This corresponds to flow along streamlines defined by the stream-function ~d(x, y) = x -  2A ~/2(X2 ~-~,2 )1./4 
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Fig 7a The pumped transfer Tp(k~,k3) for k~ equal to (0 8,00) Contour values m umts of 10 -3 

Near the downwind axis, y in equation (6.3) is small and so the diffusive transfer is 
predicted to ~ at right angles to the axis As shown in Figs. 5b and 7b, in reality this is 
not quite the case, essentially because of the broadness of the main peak in n(k) and 
because, for diffusion at nght angles to the axis, the term ( n 3 -  nl) becomes very small. 
However, as shown In Fig. 3, there ~s still a net diffusion away from the downwind axis. 

Turning to the pumping term, nl na (n4 - n2); as we are now concerned with the difference 
(n4 - n2) there is no longer such an advantage in having n4 and n2 near the peak. Instead 
the largest integrals are obtained where the length of the contour of integration is large 
Then large values of k2 and ka are involved, so that both C and I&o/Onl-~ are large 
However, there is a compromise involved, for when k2 and k4 are very large compared 
with ka and k3, C increases relatively slowly (HASSELMANN, 1963b) and so increases in the 
contour length no longer compensate for the reduction in (n4 - n2) 

These effects can be seen in Figs. 5a, 6a and 7a. The maximum pumped transfer is 
never directly towards the origin, because the path of integration is then shortest. Instead 
it ,ends to be at an angle of about 45 ° to the origin, the action density being pumped 
to lower wavenumbers in a crabwise fashion. The transfer is always to lower wavenumbers 
as it is produced predominantly by diffusive transfer in the tail of the spectrum, the 
direction of which is towards even higher wavenumbers. 

The behawour of the integral can be illustrated further by neglecting the geometric 
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Fig 7b The  daffuslve transfer Ta(kl,k3) for k l  equa l  to ( 0 8 , 0 0 )  C o n t o u r  values m umts  of 10-  ~ 

factors and writing the Integral (6 1) as an integral over k2(= [k2[) Thus, 

t 
" - 1  

T(kl,k3),,~ dk2C(kl, k2,k3,k4) On [nlna(n4-n2)+n2n4(n3-nl)].  

At high wavenumbers, 
n(k) ... k-  9/2 

If P is small, 

and we will take 

1 
~t.D - ~., k3/2 

, 

C(kbk2,k3,k4) ... klk23 3 

for small values of P. Substituting in (6.4) 

T(kx, k3) = .ldk2 kalk]ka,/2 [k~ 9k2"/2 + k2 9k~ ,,/2], 

--'-- [dk2 (k'~ 6k 21 -b k~ 5/2k 29/2) 
3 

(6.4) 

(6.5) 

(6.6) 
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Fig 8 The contour oflntegrataon for T(kt,k3) where kl equals (0 3,0 0) and k3 equals (0 35,0 15) 
The curve marked Iq shows the locus of k4 dunng the integration At the same txme k2 follows 

the curve marked k2, but with k4 - k: equal to P 

The diffusive process gives the second term. This is dominated by the behavlour when 
k2 iS small, that is to say by the peak of the spectrum The pumping process gives the 
first term. This drops offmuch more slowly and could in fact give a logarithmic singularity. 
However, for very large values of k2, the coupling coefficient increases more slowly and 
so the integral is finite. 

To sum up, the diffusive scattering is dominated by scattering off waves near the peak 
of the sea wave spectrum. Diffusive scattering is always towards regions of lower 
action density, but the position of the spectral peak can Influence the ease at which 
transfer occurs in various directions. 

On the other hand, the pumped transfer is dominated by scattering off much shorter 
waves. As a result the pumping mechanism transfers action density to the lower wave- 
numbers near the origin in a crabwlse fashion. 

GROWTH AND DECAY 

So far we have considered the quantities T(kt,ka). From Figs. 5 to 7 they are seen to 
behave much like fluxes, with the transfer towards kl from one direction being roughly 
balanced by a transfer away from kl in the opposite direction. The rate of change of the 
spectrum depends on the difference between the two fluxes. 

The flux of pumped action density is most important and appears to behave most 
simply, so we shall consider it first At high wavenumbers, the pumped flux is towards 
lower wavenumbers, and as indicated by equation (6.6), it increases as kl is reduced. There 
is thus a positive divergence of the flux and so dn/dt is negative At lower wavenumbers, 
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Fig 9 This shows the behavlour of various terms in the mtegrand around the contour of integration shown 
in Fig 8 The curves marked P and D are the total pumped and diffusive parts of the lntegrand The point O 
colresponds to the similar point marked m Fig 8 The regton marked L - L  is not included m the integration 

because of the constraint Ik~ -k31 < Ik~ -k,d 

the flux of action density increases rapidly and dn/dt becomes even more negatwe (see 
Fig. 3) 

However, as the peak of the spectrum is reached, the transfer to lower wavenumbers 
is reduced. This is because the product nl n3 is no longer increasing rapidly enough to 
counteract the fall in the coefficient C and the phase space terms (1 e. the lOog/0nl- t term 
and the length of the contour of integration). 

This sudden reduction in the traasfer to lower wavenumbers means that dn/dt becomes 
very large and positive. But on the low wavenumber face of the spectrum both the 
transfer term T(kl,k~) and dn/dt include a term proportional to n, which drops off very 
rapidly in this region. As a result the pumped part of dn/dt has its maximum value near 
the peak of the sea wave spectrum 

For the &ffusive transfer, at high wavenumbers the flux is directed outwards and It 
increases rapidly as the wavenumber is lowered. Thus dn/dt is positive and increases 
towards lower wavenumbers. As seen in Fig 6b, the width of the lobes of T(kl,k3) contri- 
buting to the diffusive flux is approximately equal to the width of the mean peak From 
what was said earlier this ~s to be expected for it means that in the integral (6 1) both 
k2 and k4 can lie within the main peak at the same time. 

As kl moves to lower wavenumbers, the positive lobe of T(k~,k3) starts to intersect the 
spectral peak. At this point the gradient ( n3 -  nx) is not increasing rapidly enough as the 
wavenumbers are reduced to compensate for the reduced coupling coefficient and phase 
space effects. As a result the dlffuswe contribution to dn/dt stops increasing and eventually 
becomes negative under the main peak 

Physically, the dxffUSlVe term ~s behawng as one would expect, with a negative lobe 
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under the main spectral peak and two positive lobes on either side. However, an important  
property of sea waves is that for a realistic spectrum the high wavenumber posmve 
lobe is enhanced and the low wavenumber positive lobe is suppressed. This anisotropy 
is then also reflected m the pumped transfer. 

DISCUSSION 

In this paper we have seen how the relatively non-linear short waves in the ocean 
scatter off the waves near the peak of the sea-wave spectrum to become even shorter 
waves. Conversely the waves near the peak of the spectrum are scattered by the short 
waves and become even longer. As a result of this process one might expect to see short 
breakang waves at an angle of 45 ° to the mean sea, because of the saturation of the 
spectrum there. One may also see some longer breaking waves arising from the over- 
enhanced peak of the mare spectrum. 

One of the reasons why the pumped flux of action density stops near the peak of the 
spectrum is that it cannot be pumped to shorter wavenumbers. This ~s because the pumping 
process requires energy or action already to exist at a gwen wavenumber before it is 
effective. The question then arises as to what happens if there is a swell wave at a 
wavenumber lower than that of the low wavenumber cutoff of the main sea. Admittedly 
the couphng coefficient and the phase space terms will be small, but there would be some 
effect. 

From the &scussions earlier m this paper one would expect the presence of the main 
sea to enhance the &ffusive decay of the swell peak, making it broader. In addition 
diffusion between sea waves coupled with pumping between two waves within the swell peak 
would lead to a movement of the swell peak to even lower wavenumbers. Finally, 
diffusion between sea waves coupled with pumping between one sea wave and one swell 
wave would lead to growth of the swell peak. 

We can also consider qualitatively what would happen with one of the sharply peaked 
spectra, found during the JONSWAP (Joint North  Sea Wave Project) experiment, con- 
sidenng it to be composed ofa  Pierson-Moskowitz spectrum plus a very narrow spectrum 
placed at the peak. We already know what the Pierson-Moskowitz  spectrum does, and a 
very narrow spectrum tends to broaden out (Fox, 1976). There remains the interaction 
between the two 

One would expect that the main effect of the narrow peak on the Plerson-Moskowitz  
spectrum would be to enhance the diffusive process amongst the high wavenumbers This 
m~ght mean, for example, more short-breaking waves. 

In the other direction, the effects of the Plerson-Moskowltz spectrum would increase 
the rate 'at  which the narrow peak spreads out diffusively The scattering of the narrow 
peak offhigh wavenumbers in the Pierson-Moskowltz spectrum would also tend to pump 
the narrow peak to lower wavenumbers. 

As a result of this one might expect the low wavenumber maximum m dn/dt  to be 
moved to shorter wavenumbers, that is, towards the low wavenumbers face of the main 
spectrum. In the calculations of Hasselmann and Sell (HASSELMANN et al., 1973, Fig. 2.21) 
such an effect can be observed. 
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APPENDIX I THE COUPLING COEFFICIENT 

HASSELI~ANN (1962, equations 4.3, 4.9, 4 10) gives rather involved formulae for the 
coupling coetticlents. For  deep water waves, when the delta functions are satisfied (1 e. 
kl + k2 = k3 + k4 and 091 + 092 = 093 + ~o4), these equations simphfy a little to give, 

2(Wl -I- W2) 2 (kl k2 - kx 'k2)  (k3 k4 - k3 k 4 )  
D (kl,k2,k3,k4) = w2+ 2 - (wl + w2) 2 

2 (w 1 - w3) 2 (kl  k3 q- kl '  k3)  (k2 k4 + k2 '  k4) 

+ w ~ - 3  - (wl  - w3) 2 

2 (W 1 -- W4) 2 (kl k4 + k l  'k4)  (k2 k3 q- k 2 ' k 3 )  

+ w ~ - 4 -  (wl  - w , )  2 

+ ½[kl "k2k3 k4 + k l  "k3 k2"k4 + k l  "kak2'k3] 

-- ~ ( k l k 2  q- k3 k4)(w~ q-w2)4 + ~ ( k l  k3 + k 2 " k 4 ) ( w l  - w 2 )  4 

+ ¼(kl k4  + k2 "ka) (w 1 - w4) 4 -~- ~ k  I k2k3 k4 

W (w I -Ji- w2)E(w1 - w 3 ) 2 ( w 1  - w 4 ) 2 ( k l  q-k2q-k 3 +ka). (A1) 

Here, 

and similarly for k2, w2, etc. 

w1+2 = (Ikx +k21) ~, 

kl ----Ikll, wl = kl ~ 

W1-3 = (Ikl - k 3 1 )  ~, Wi-4 = (jkl - k 4 [ )  ~. 
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The coefficient C of Hasselmann's equation (2.1) is 

C (kx, k2, k3, k4) = ~zg2D (k l ,  k2, ka ,k4)  (A2) 
4/)20)1o)20)30)4 

g is the acceleration of gravity, p the density of water 
Equation (A1) was obtained with the help of an algebraic manipulator (BARTON and 

FITCH, 1972) and has been checked numerically against Hasselmann's original equations 
The algebraic manipulator was also used to obtain its asymptotic form and this agreed 
with a related asymptotic expansion given by HASSELMANN (1963b) Equation (A1) IS 
probably not in its physically most transparent form, but it does give some indication 
of the physical processes that are occurring. 

Where wavenumbers kl and k2 interact non-linearly, they produce a perturbation with 
wavenumber ki +kz. If the frequencies match, that is 0)1+2 equals 0)1 +0)2, there will be a 
transfer of energy and momentum to wavenumber k 1 + k 2 and this wave can then propagate 
away as a free wave With surface waves this process is not possible. However, the 
forced wave can decay to two other free waves k3 and k4 wath overall conservation of 
energy and momentum This process corresponds to the first term of equation (A1), which 
shows that the rate at which it happens depends on the mismatch of energy, i.e. 
[0)12+2 __((01 ..1_O)2)2]-1. The first term also includes the effect of transfer in the opposite 
direction, that is from k3 and k4 to kl and k2 The second and third terms correspond 
to similar transfers among the other combinations of wavenumbers. 

Some rearrangement among the first three terms and the remaining terms is possible, 
but the remaining terms must mainly represent the direct process, that is, the direct 
non-linear interaction of two waves to give two new waves without the intermediate 
forced wave 

APPENDIX 2 ENTROPY 

HASSELMANN (1963a) used mathematical arguments to show that the function H, defined 
by, 

= Const + [lnn(k) dk (BI) H 
! 

behaves like entropy This appendix shows how the above equation may be related to the 
more conventional definitions of entropy. 

In statistical mechanics (HuANG, 1965; LANDAU and LIFSHITZ, 1969), entropy is defined 
in terms of the probabihtyflp) that the system is in a particular part of the phase space p 

= - K -j'f(p) In f(p) dp (B2) H 

h- is Boltzmann's constant and the integral is over all the phase space. For a system of 
waves, if p, defines the amplitude and phase the wave k, say, then, 

dp = l-I dp, 
I 

Hasselmann's equation gives the ensemble average action density at each wavenumber. 
The corresponding probability distribution will be the one that has maximum entropy, 
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given the constraints that the total probability is one, 

ffdp = (B3) 1, 

and that the mean action density at wavenumber k 1 is that given by Hasselmann's equation, 

?m, f pff dp= n(k,)/N, 
= tl~ s a y  

Here N is the density of states. It is convenient to rewrite this equation in the form, 

f p2f q,, (B4) dp 

where q, = 2w,n,/g 
This problem can be solved using the calculus of variations (see for example MATTHEWS 

and WALKER, 1964) The derivauon is essentially the one used to derive the Maxwell-  
Boltzmann distribution, except that we do not have equal energy per degree of freedom 
If a and r ,  are Lagrange multipliers, we maximize 

-~fflnfdp+=(ffdp-1)+~B,(fpUdp-q,), 
for all small variations 6 f o f  the p robab th ty f  Tbas gives 

Thus, 

The constants A and 7, are found by substituting (B5) into (B3) and (B4) This gives, 

f = ~ 2~exp(-P~/q,) 
Substituting into equation (B3), one finds, 

H=-KfIJ~-~,,exp(-p2,/q,)ln[~-~exp(-p~/qj)]dp, 

Thus, 

(Bs) 

H = Const + x ~ l n q , ,  
t 

= Const + x ~ In n,. 
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If the density of states is large, the equation can be transformed Into an integral over k 

-- Const + ~c -.t'ln n(k) dk_ (B6) H 

Thus the statistical mechanical (and thermodynamlcal) definition of entropy is obtained 
by multiplying equation (B1) by Boltzmann's constant. 

A possible drawback of the above derivation is that it does not Include any information 
on the correlations between waves implicit in the derivation of Hasselmann's equation. 

APPENDIX 3 COMPUTING NOTES 

Hasselmann's equation was integrated in the form of the two integrals of equations 
(5 1) and (5.2) The first of these was carried out using polar coordinates For  the radial 
integral a transformation was used of the form 

r = y/(1 -y ) ,  

the integral of r from zero to infinity being changed into an integral of y from zero to 
one_ For the contour integral (5 2), the length of which could be very large, a similar 
techmque was used, but it was made into an angular Integral about a point near the 
centre of the contour For each value of the integrating variable, equation (6 2) was solved 
for  k2 by iteration. 

A number of methods for carrying out the integrals were tried (KAHANER, 1971) An 
adaptive Simpson's rule technique was more efficient at following the vagaries of the 
mtegrand than the more sophisticated methods. Some trouble was experienced at the higher 
levels when the strategy at one of the lower levels of integration changed, as th~s introduced 
small steps In the integrand This was overcome by requiring a relative accuracy of 1°o 
at the highest level, 0.3% at next and 0.1% at the lowest level of integration. Each 
evaluation of dn/dt took about 10 s on an IBM 360/195. 

About 200 evaluations were made, interpolated using sphnes, and then contoured to 
give Fig 1 


