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The radiation of atmospheric microbaroms by ocean waves
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A two-fluid model, air over seawater, is used to investigate the radiation of infrasound by ocean
waves. The acoustic radiation which results from the motion of the air/water interface is known to
be a nonlinear effect. The second-order nonlinear contribution to the acoustic radiation is computed
and the statistical properties of the received microbarom signals are related to the statistical
properties of the ocean wave system. The physical mechanisms and source strengths for radiation
into the atmosphere and ocean are compared. The observed ratio of atmospheric to oceanic
microbarom peak pressure levels �approximately 1 to 1000� is explained. © 2006 Acoustical Society
of America. �DOI: 10.1121/1.2191607�

PACS number�s�: 43.28.Dm, 43.25.Lj, 43.28.Ra �MFH� Pages: 2651–2664
I. INTRODUCTION

Energetic systems of ocean waves, such as those pro-
duced by storms at sea, radiate detectable levels of infra-
sound into both the atmosphere and the ocean and, through
the ocean, generate seismic waves at the sea floor which
radiate into the earth.1–6 The radiation is in a frequency band
approximately 0.1 Hz wide centered at about 0.2 Hz. This
radiation is referred to as microbaroms in the atmospheric
case and as microseisms in the seismic case. Although the
oceanic signals are sometimes referred to as microseisms, in
this paper the terminology oceanic microbaroms will be
used.

The microbarom and microseism peak is a permanent
feature of the oceanic and seismic noise floors,
respectively.1,7,8 Spectra measured on the floor of the Pacific
Ocean show peak levels up to 100 Pa/�Hz.7,8 Atmospheric
microbaroms are detected at large distances �up to thousands
of kilometers� from the waves which produced them. Their
propagation is highly dependent on the direction of the at-
mospheric winds.9–12 Atmospheric microbarom spectra mea-
sured downwind from the wave system have typical peak
levels of about 0.1 Pa/�Hz.13 Note that oceanic microbarom
signals are a thousand times greater than atmospheric sig-
nals.

In this paper a detailed calculation of the microbarom
source strength is presented. It is shown that the physical
mechanism for the radiation of microbaroms into the atmo-
sphere is different from that for the radiation of microbaroms
into the ocean. The predicted radiation into the atmosphere is
three orders of magnitude less than the radiation into the
ocean, in agreement with observation. Further, in order to
relate sea states to observed microbarom levels, a direct con-
nection is obtained between the stochastic models used to
describe ocean waves14,15 and the statistical properties of the
received microbarom signal.

The problem of the generation of oceanic microbaroms
was solved by Longuet-Higgens.2 He showed that mi-
crobaroms and, through their interaction with the ocean floor,
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microseisms are produced through a second-order non-linear
effect by the interaction of gravity waves of nearly equal
frequency and nearly opposite propagation direction. He
found that to obtain the source strength for the radiation of
oceanic microbaroms it is sufficient to assume that the ocean
is incompressible and that the atmosphere is a vacuum. In
particular, once the ocean surface is in motion, the atmo-
sphere’s effect on the radiation of microbaroms into the
ocean is negligible. Hasselmann3 extended Longuet-
Higgens’ result to general sea states and made a direct con-
nection between the stochastic models used to describe
ocean waves14,15 and the statistics of the observed mi-
croseism signals.

It was pointed out by Brekhovskikh et al. in Ref. 5 that
the ocean’s effect on the radiation of atmospheric mi-
crobaroms is significant. A large part of the atmospheric mi-
crobarom signal is due to sound radiated into the atmosphere
from pressure fluctuations produced in the water by the mo-
tion of the ocean surface. It will be seen in this paper that the
rest of the signal is due to the compression of the air by the
motion of the ocean surface.

It follows that the study of atmospheric microbaroms
requires a two-fluid model, consisting of a rare fluid, the
atmosphere, over a dense fluid, the ocean. The interface be-
tween atmosphere and ocean must be allowed to deviate
from its equilibrium position, assumed in this paper to be at
z=0. For simplicity, in this paper the ocean will be assumed
to be infinitely deep.

Of interest is the case in which there is a region of the
ocean surface in which the sea state contains energetic
counter-propagating waves. The acoustic signal radiated
from this region to a distant sensor is considered. The
mechanism through which the sea surface has been excited
�presumably through strong winds produced by storms14,15�
is not considered here. As in Refs. 3 and 5, the statistical
properties of the microbarom signal are related to those of
the sea state.

The paper is organized as follows. In Sec. II the notion
of a source region, the region of the ocean surface from
which the infrasound is radiated, is defined. The equations of

fluid mechanics are then solved in the source region to sec-
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ond order in the ratio of wave height to acoustic wavelength.
In Sec. III the statistical properties of the received mi-
crobarom signal are related to those of the sea state. The
source strength spectra for both atmospheric and oceanic mi-
crobaroms are obtained and compared. An explanation for
the nearly three order of magnitude difference between the
atmospheric and the oceanic signal strength is given. In Sec.
IV an example is presented: a simple model is considered for
the atmospheric microbarom signal received from storms
over the deep ocean far from land masses. Section V con-
tains our conclusions.

II. THE SOURCE REGION

Let S be a region of the ocean surface in which the sea is
extremely active. Let z represent altitude relative to the un-
disturbed air/water interface at z=0. Assume that the surface
of the water has been disturbed in such a way that the actual
air/water interface is at z=��xH , t�. Here, and throughout, xH

denotes the two-dimensional horizontal coordinate vector
with components x and y. The function ��xH , t� will be said
to specify the sea state. A two-dimensional cross section of a
portion of S is depicted in Fig. 1.

A. The sea state

Sea states are usually treated statistically14,15 in the sense
that ��xH , t� is taken to be a stochastic process, commonly
assumed to be Gaussian with mean zero. Let �S be this
Gaussian process and let �·�S be the expectation value of
functions of �S. If one writes

�S�xH,t� = Re� �̂S�k�ei�k·xH−��k�t� d2k , �1�

then, since it is Gaussian, the expectation value �·�S is com-
pletely specified by

��̂S�k��̂S�q��S = ��̂S�k�*�̂S�q�*�S = 0

and

��̂S�k��̂S�q�*�S = F�k���k − q� . �2�

Here k in �1� is the two dimensional wave vector and F�k� is
14,15

FIG. 1. A two-dimensional cross section of a portion of the source region.
The air/water interface and an upwardly pointing normal vector to the inter-
face are shown.
the wave number spectral density function; F�k� is real
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valued. The physical picture is that, under the action of a
fairly steady wind over long times and large areas of the sea
surface, an approximate equilibrium is reached between the
energy being deposited in the sea by the wind and the vari-
ous linear and nonlinear loss mechanisms. The resulting
steady state may be described as a superposition of linear
waves, �1�, whose statistics are specified by �2�.14,15

Given a sea state dispersion relation 2�f =��k�, one can
relate the wave vector density function F�k� to the direc-
tional spectral density function F�f ,�� by14,15

F�k�d2k = F�f ,��dfd� . �3�

Here f is frequency in Hz and � indicates direction of propa-
gation relative to some fixed direction. As a function of �,
F�f ,�� is generally strongly peaked at angles near those of
the direction of the prevailing winds. The integrated spec-
trum,

F̄�f� = �
0

2�

F�f ,�� d� , �4�

is known as the frequency spectrum. The “significant wave
height”

HS = 4�� F�k� d2k = 4��
0

�

F̄�f� df �5�

is commonly used as a measure of how excited the sea state
is.

Ocean wave spectra generally have sharp low-frequency
cutoffs and high-frequency tails. These features are due to
nonlinear effects which cause energy to cascade from longer
to shorter wavelengths. For energetic seas the frequency
spectrum generally saturates at some limiting form strongly
peaked in a narrow frequency band centered at around
0.1 Hz.14,15 A quasi-empirical form for the frequency spec-
trum is given by the two-parameter JONSWAP15,16 model for
highly excited seas. JONSWAP spectra are shown in Fig. 2
for several significant wave heights and peak frequencies.
Note that while observed microbarom spectra are peaked at
about 0.2 Hz, the spectra of the ocean waves that produced
them are peaked at about 0.1 Hz. The frequency doubling
observed in the microbarom spectra is a consequence of the

2

FIG. 2. The JONSWAP model for the frequency spectrum F̄�f�
=	0

2�F�f ,�� d� for significant wave heights HS equal to 4, 8, and 12 m and
peak frequencies f0 equal to 0.17, 0.12, and 0.095 Hz, respectively.
nonlinearity of the radiation mechanism.
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Assuming that the source region is over deep water one
has17 ��k�=�g 
k
, where g is the acceleration due to gravity
at the earth’s surface, g=9.8 m/s2. At the peak frequency,
0.1 Hz, one has an ocean surface wavelength of 2� / 
k 

�156 m. At the microbarom peak frequency of 0.2 Hz the
acoustic wavelengths are about 1700 m in the air and about
7500 m in the water. Thus, in the frequency band in which
microbarom radiation is significant, the ocean surface wave-
lengths are much shorter than the acoustic wavelengths. It
follows that, if ca and cw are the speeds of sound in the
atmosphere and ocean, respectively, the values of k for
which F�k� is significant satisfy

�

cw
�

�

ca
� 
k
 . �6�

Note as well that the effect of gravity is small in the sense
that

g

�cw
�

g

�ca
� 1. �7�

The pointlike correlation between sea state wave vector
components indicated by the � function in �2� is equivalent
to the translation invariance of the stochastic process. In re-
ality the statistical properties of the sea state are neither tem-
porally nor translationally invariant. However, these changes
are negligible over times of several ocean periods �tens of
seconds� and distances of several ocean wavelengths �hun-
dreds of meters�. It will be assumed that �2� remains valid if
F is allowed to vary slowly with both time and horizontal
position.

B. The equations of motion in the source region

The highly active region S of the ocean surface and a
shallow layer of the ocean and atmosphere surrounding S
will be referred to as the source region. The vertical extent of
the source region, above and below the ocean surface, is
greater than the significant ocean wavelengths; however, the
height to which it extends in the atmosphere is much less
than the acoustic wavelength in air and the depth to which it
extends in the water is much less than the acoustic wave-
length in water. In this region the effects of viscosity, thermal
conduction and molecular relaxation can be ignored. Thus, in
the source region the air and the water obey the equations of
lossless fluid mechanics.18 One has the equation of continu-
ity

�	

�t
+ � · �	v� = 0, �8�

the Euler equation

	� �v

�t
+ �v · ��v + �P = − 	gẑ , �9�

where g is the acceleration due to gravity, and the thermo-
dynamic equation of state,

	 = f
�P� �10�

where f
, for 
=a ,w, are the adiabatic equations of state for

air, a, and water, w, respectively. Note that this notation will
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be used throughout for quantities which are discontinuous
across the air/water interface: the subscript 
 will be as-
sumed to be a for air and w for water.

The pressure and normal components of the velocity
field must be continuous at the air/water interface. Thus one
has

P�xH,� + 0+,t� = P�xH,� − 0+,t� , �11�

and

n�xH,t� · �v�xH,� + 0+,t� − v�xH,� − 0+,t�� = 0 �12�

where n is an upwardly pointing normal vector to the inter-
face �see Fig. 1� chosen here to be

n�xH,t� = �− �H�

1


with

�H =�
�

�x

�

�y
� .

Further, the vertical component of the acceleration of the
interface must equal that of the adjoining fluid elements,

vz�xH,� ± 0+,t� =
��

�t
+ v�xH,� ± 0+,t� · �� . �13�

C. The ambient state

A solution to �11�–�13� with �=0 will be called an am-
bient state. The corresponding pressure, density, and velocity
will be denoted P0, 	0, and v0, respectively. We will assume
that P0, 	0, and v0 depend only on height/depth z and that
ẑ ·v0=0. With these assumptions the equations of fluid me-
chanics reduce to

dP0

dz
= − 	0g �14�

for which the general solution is given implicitly by

�
P0�0�

P0�z� 1

f�P0�
dP0 = − gz .

Letting

	
 = f
�P0�0��

and introducing the small-signal sound speeds at the inter-
face

c
 =� 1

f
��P0�0��

one has, for small z,

P0�z� = P0�0� − 	
gz +
	
g2

2c

2 z2 + . . . . �15�

It will be assumed here that
v0 = 0. �16�
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Note that the ambient density and sound speed profiles,
	0= f
�P0�z�� and c0�z�=1/�f
��P0�z��, are discontinuous at
the air/water interface. By �7� and �15� both are approxi-
mately piecewise constant,

	0 � �	a if z � 0,

	w if z � 0,
�

and

c0 � �ca if z � 0,

cw if z � 0,
�

in the source region. For later reference note that f
��P0� is
related to the “B /A” parameter of nonlinearity19 through

B

A
= − 	0c0

4f
��P0� � − 	
c

4 f
��P0�0�� . �17�

The parameter B /A has been tabulated for many gases and
fluids.19,20 For air one has B /A�0.4 and for sea water
B /A�5.25.

D. The order expansion

Solving �11� and �13� in the case in which ��0 requires
some approximation method. It was pointed out in Ref. 2
that the nonlinearity of the equations can be treated using
regular perturbation theory to second order.20,21 The proce-
dure is to perform an expansion about the ambient state,

P = P0 + P1 + P2 + ¯ ,

v = v1 + v2 + ¯ ,

	 = 	0 + 	1 + 	2 + ¯ ,

and

� = �1 + �2 + ¯ ,

where the subscript 1 indicates solutions of the linear ap-
proximation and the subscript 2 indicates terms quadratic in
the linear solutions. In the expansion of the sea state � it will
be assumed3,5 that the linear approximation �1 is given by the
Gaussian process �S specified by �1� and �2�. One then sub-
stitutes the order expansions into the equations of fluid me-
chanics and interface conditions and expands. The solution is
obtained order by order, beginning with the ambient state at
zeroth order.

In expanding the interface conditions some care is re-
quired since the interface is in motion. The interface condi-
tions for the full problem are imposed at z=��xH , t�, how-
ever, for the ambient state they are imposed at z=0. Thus the
order expansion for the interface conditions involves both
expanding in powers of � about �=0 as well as in the order
expanded variables.

The order parameter, or Mach number, for such a per-
turbation expansion is the ratio of a typical fluid velocity to
the small-signal sound speed.20 For this problem the order
parameter can be taken to be �0HS /c0 where �0=2�f0 and
f0 is the peak frequency of the sea state, about 0.1 Hz. Note
that this order parameter is in fact the Mach number at the

interface times 2� and that the Mach numbers for air and

2654 J. Acoust. Soc. Am., Vol. 119, No. 5, May 2006

 07 Mar 2011 to 134.246.166.168. Redistribution subject to ASA licens
water are different. The subscript n in the perturbation ex-
pansion indicates a term whose magnitude is proportional to
��0HS /c0�n. In addition to Mach number one may exploit the
small parameters �0 /c
k0 and g /�0c
; here k0 is equal to 
k

evaluated at the peak frequency f0. The second-order solu-
tions are required, but only to lowest nonzeroth order in
these small parameters.

E. The linear response

In this section the linear approximation will be
obtained17 and put into a suitable form. It has been
emphasized2,4–6 that in the linear approximation the sea does
not radiate. Indeed, the first-order acoustic fields are verti-
cally evanescent and are negligible outside of the source re-
gion itself.

Substituting the order expansions into the equations of
fluid mechanics at first order one has the familiar equations
of lossless acoustics. The equation of state, �10�, becomes

	1 =
1

c

2 P1,

the equation of continuity, �8�, becomes

�P1

�t
+ 	
c


2� · v1 = 0,

and the Euler equation �9� becomes

�P1 + 	


�v1

�t
+ g	1ẑ = 0.

The interface conditions must be expanded about �=0 to
first order in �1 as well as in the first-order variables. The
first-order part of the pressure interface condition �11� is


P1
z=−0+
0+

+ �1� �P0

�z
�

z=−0+

0+

= 0,

which, with �14� gives


�P1 − 	
g�1�
z=−0+
0+

= 0. �18�

The velocity interface condition, �12�, together with the as-
sumption, �16�, of no mean flow, gives


v1z
z=−0+
0+

= 0 �19�

and �13� gives

��1

�t
= v1z�xH,0+,t� = v1z�xH,− 0+,t� . �20�

Introduce a velocity potential �1 with v1=��1+w1,
with � ·w1=0 and with

P1�xH,z,t� = − 	


��1

�t
. �21�
Choosing
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�w1

�t
= −

g

c

2 P1ẑ �22�

the first-order Euler equation is solved. Substituting into the
first-order equation of continuity one obtains the wave equa-
tion for the velocity potential,

��2 −
1

c

2

�2

�t2�1 = 0. �23�

The system is driven by the interface motion through
�18�. As in �1� one has the horizontal wave vector expansion

�1�xH,t� = Re� �̂1�k�ei�k·xH−��k�t� d2k �24�

for the interface. The solutions to the first-order equations
can be expanded similarly. Substituting in �23� one obtains

�1�x,t� = Re� �̂1
�
��k�ei�k·xH−��k�t�−�
k
2−�2/c


2 
z
 d2k . �25�

It follows from �22� that w1z��g /�0c
��1/	
c
�P1.
Substituting �25� into �21� one finds that ��1 /�z
��k0c
 /�0��1/	
c
�P1. It follows that w1z��g /�0c
�
��0 /k0c
����1 /�z� so that, by �6� and �7�, w1 is negligible
as compared to ��1. It follows that one may write v1

=��1.
Expanding with respect to the horizontal wave vector

one has

P1�x,t� = Re� P̂1
�
��k�ei�k·xH−��k�t�−�
k
2−�2/c


2 
z
 d2k �26�

and

v1�x,t� = Re� v̂1
�
��k�ei�k·xH−��k�t�−�
k
2−�2/c


2 
z
 d2k . �27�

Substituting into �18�–�20� and letting �−1�
 be 1 in the air,

=a, and −1 in the water, 
=w, one obtains

�̂1
�
��k� = �− 1�
 i�

�
k
2 − �2/c

2

�̂1�k� , �28�

P̂1
�
��k� = − �− 1�
 	
�2

�
k
2 − �2/c

2

�̂1�k� , �29�

and

v̂1
�
��k� = ��− �− 1�
 k

�
k
2 − �2/c

2

− iẑ�̂1�k� . �30�

By �6� the first-order solutions decrease exponentially with
either altitude or depth. At distances large compared to 1/ 
k

from the interface they become negligible. In particular, the
linear solutions do not radiate. The continuity of pressure
�18� gives the surf dispersion relation

0 = �	w − 	a�g +
�2


k
� 	w

�1 −
�2


k
2cw
2

+
	a

�1 −
�2


k
2ca
2 �
which gives

J. Acoust. Soc. Am., Vol. 119, No. 5, May 2006

 07 Mar 2011 to 134.246.166.168. Redistribution subject to ASA licens

k
 �
�2

g

so that

��k� � �g
k
 . �31�

Note that with this dispersion relation the two order param-
eters �0 /k0c
 and g /�0c
 are identical.

Checking the orders of the first-order solutions one finds
that

v1 � c


�0HS

c


while

P1 � 	
c

2 �0

k0c


�0HS

c


.

Both are first order in Mach number as expected, however,
the pressure P1 is also first order in the small parameter
�0 /k0c
.

The first-order solutions given by Eqs. �28� and �30� are
well approximated by setting � / 
k 
c
=0. In the linear ap-
proximation this is equivalent to assuming both air and water
to be incompressible. In this approximation the acoustic

pressure fields, P̂1
�
�, are zero and the velocity fields, v̂1

�
�,
differ in the water and in the air only by phase: the vertical
components are equal while the horizontal components have
equal magnitudes but opposite signs. In Ref. 2 it was shown
that to obtain the oceanic microbaroms it is sufficient to re-
place the first-order solutions with their incompressible ap-
proximations. It will be seen below that to obtain the atmo-
spheric microbaroms the incompressible approximation to
the first-order solutions is not sufficient.

F. The second-order acoustics

It is known2,5 that in the second-order approximation the
sea does radiate. In this section the leading-order corrections
to the linear approximation, the terms of second order in
Mach number, are obtained. The solution is simplified some-
what by obtaining only the leading-order terms in the small
parameter �0 /k0c
. The general form of the second-order
solution is quite complicated, even to leading order in
�0 /k0c
, and will not be given here. Rather, in this section
the solution will be presented as a superposition of pairs of
plane waves. The explicit determination of the solution is
postponed to Sec. III where it is shown that, to determine the
statistical properties of the microbarom signal, only the terms
corresponding to counter-propagating ocean waves of equal
frequency are required.3

Continuing the order expansion, at second order one
finds21 that the equation of state, �10�, can be written

	2 −
1

c

2 P2 =

1

2
f��P0�P1

2,
the equation of continuity, �8�, can be written

R. M. Waxler and K. E. Gilbert: Atmospheric microbaroms 2655

e or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloaded
�P2

�t
+ 	
c


2� · v2 =
�1 − 	
c


4 f��P0��
	
c


2 P1
�P1

�t
− v1 · �P1

and the Euler equation, �9�, can be written

�P2 + 	


�v2

�t
+ g	2ẑ = −

1

c

2 P1

�v1

�t
−

1

2
	
��v1 · v1� .

Consider the orders of the various terms in the second-
order equations of state and continuity. Note that, recalling
�17�,

1

2
f��P0�P1

2 �
B

A
	
� �0

k0c

2��0HS

c

2

and

�1 − 	
c

4 f��P0��

	
c

2 P1

�P1

�t

� �1 +
B

A
	
c


2�0� �0

k0c

2��0HS

c

2

.

while

v1 · �P1 � 	
c

2�0��0HS

c

2

.

All of these terms are second order in Mach number
�0HS /c
. However, the two terms involving the second de-
rivative f��P0� are second-order in the small parameter
�0 /k0c
 as well and thus can be dropped. Similarly, on the
right side of the second-order Euler equation one has the
terms

1

c

2 P1

�v1

�t
� 	
c
�0

�0

k0c

��0HS

c

2

and

1

2
	
��v1 · v1� � 	
c


2k0��0HS

c

2

.

The first of these terms is again smaller by two orders of the
small parameter �0 /k0c
 than the second and can be
dropped. One thus obtains the simpler set of equations

	2 −
1

c

2 P2 = 0, �32�

�P2

�t
+ 	
c


2� · v2 = − v1 · �P1 �33�

and

�P2 + 	


�v2

�t
+ g	2ẑ = −

1

2
	
��v1 · v1� . �34�

The second-order part of the pressure interface condition
�11� is

��P2 + �2
�P0

�z
+ �1

�P1

�z
+ �1

2
�1

2�2P0

�z2 �
z=−0+

0+

= 0.
Using the first-order Euler equation one finds
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�1
�P1

�z
= − 	
�1

�v1z

�t
� 	
c


2��0HS

c

2

and using �15� one finds

1

2
�1

2�2P0

�z2 =
1

2

	
g2

c

2 �1

2 � 	
c

2� g

�0c

2��0HS

c

2

.

The last term is second order in g /�0c
 and can be dropped.
Using �15�, the second-order part of the pressure interface
condition can be written


�P2 − 	
g�2�
z=−0+
0+

= 	
�1� �v1z

�t
�

z=−0+

0+

. �35�

The second order part of the velocity interface condition �12�
is


v2z
z=−0+
0+

=��− �1
�v1z

�z
+ v1 · �H�1�

z=−0+

0+

�36�

and the second-order part of �13� is

��2

�t
=��v2z + �1

�v1z

�z
− v1 · �H�1�

z=±0+
. �37�

The procedure is to substitute the linear solutions
�25�–�30� into the second-order wave equations �32�–�34�
and find the outgoing solution which satisfies the interface
conditions �35�–�37�. The solutions are simplified somewhat
by using the inequality �6� to conclude that compressibility is
insignificant in the linear approximation so that
�
k
2−��k�2 /c


2 �
k
. This approximation is valid as long as
it gives a nonzero result.

The source terms in �36� and �37�, however, can be writ-
ten

− �1
�v1z

�z
+ v1 · �H�1 = − �1� · v1 + �H��1v1� . �38�

The term � ·v1 is zero in the incompressible approximation.
In the product �1v1 the terms which are responsible for the
microbarom radiation, those with wave numbers of equal
magnitude �and thus equal frequency� but opposite
direction,2,3 are constant so that for these components the
term �H · ��1v1� is zero as well. Thus, while the right side of
�36� appears to be large, of order ��0 /k0c
�−1��0HS /c
�2, in
fact its contribution to the microbarom radiation will be seen
to be small. For this reason some care must be taken in
evaluating the inhomogeneous part of the velocity interface
condition �36�. In particular, the incompressible approxima-
tion cannot be used.

To solve the second-order Euler equation �34� one can
write v2=��2+w2 where � ·w2=0,

	


�w2

�t
+

g

c

2 P2ẑ = 0,
and �2 is given by
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P2 + 	


��2

�t
= −

1

2
	
v1 · v1. �39�

With these definitions �34� is satisfied. As in Sec. II E, w2

can be shown to be smaller than ��2, in this case by a single
power of g /�0c
. Consequently, it can be ignored so that one
has v2=��2.

Substituting �39� into the second-order equation of con-
tinuity �33� and using the first-order Euler equation to sim-
plify, one obtains the second-order wave equation

��2 −
1

c

2

�2

�t2�2 =
1

c

2

�

�t
v1 · v1. �40�

Note that, since the linear solutions decrease rapidly with
distance from the interface, the source term on the right side
of �40� does so as well.

The second-order wave equation contains the effects of
nonlinearities in the air and the water themselves. The
second-order interface conditions contain the nonlinear ef-
fects due the fact that the motions of the fluids affect the
motion of the interface. To separate the effects of the fluid
media from those of the undulating interface one may write
the solution of �40� as

�2�xH,z,t� = �p�xH,z,t� + �h�xH,z,t� , �41�

where �p is a particular solution and �h is the solution of the
homogeneous wave equation required so that the interface
conditions �35�–�37� are satisfied.

To determine �p substitute �27� and �30�, into �40�. In
evaluating the source term the incompressible approximation
�
k
2−��k�2 /c


2 �
k
 may be used here since it gives a non-
zero result. The source term on the right of �40� becomes

1

c

2

�

�t
v1 · v1

=� � �R

�+��k,q��̂1�k��̂1�q�ei��k+q�·xH−���k�+��q��t�

+ R

�−��k,q��̂1�k��̂1�q�*ei��k−q�·xH−���k�−��q��t��

e−�
k
+
q
�
z
 d2k d2q + complex conjugate �42�

with

R

�±��k,q� = −

i

c

2 ��k���q����k� ± ��q��� k · q


k

q

� 1 .

Using �42� the particular solution �p can be chosen to be

�p�xH,z,t�

=� � �Q

�+��k,q��̂1�k��̂1�q�

ei��k+q�·xH−���k�+��q��t�−�
k
+
q
�
z


+ Q

�−��k,q��̂1�k��̂1�q�*

ei��k−q�·xH−���k�−��q��t�−�
k
+
q
�
z
� d2k d2q

+ complex conjugate �43�
with
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Q

�±��k,q� =

R

�±��k,q�

����k� ± ��q��2/c

2� + 2�
k

q
 � k · q�

.

The homogeneous solution �h is then of the form

�h�xH,z,t�

=� � �C

�+��k,q��̂1�k��̂1�q�

ei��k+q�·xH+�+�k,q�
z
−���k�+��q��t�

+ C

�−��k,q��̂1�k��̂1�q�*

ei��k−q�·xH+�−�k,q�
z
−���k�−��q��t�� d2k d2q

+ complex conjugate �44�

with

�±�k,q� =����k� ± ��q��2

c

2 − �k ± q�2

and the second-order contribution to the sea state is given by

�2�xH,t� =� � ��̂�+��k,q��̂1�k��̂1�q�

ei��k+q�·xH−���k�+��q��t� + �̂�−��k,q��̂1�k��̂1�q�*

ei��k−q�·xH−���k�−��q��t�� d2k d2q

+ complex conjugate. �45�

The coefficients C

�±��k ,q� and �̂�±��k ,q� are determined

by the condition that the interface conditions �35�–�37� must
be satisfied. The explicit determination of C


�±��k ,q� and

�̂�±��k ,q� will be postponed until the next section where it is
shown that, to determine the statistical properties of the
microbarom signal, only the coefficients C


�+��k ,−k� and

�̂�+��k ,−k� are required. Note that these particular coeffi-
cients correspond to the interaction of ocean waves of equal
frequency and opposite propagation direction.

The decomposition �41� with the choice �43� for the par-
ticular solution separates the second-order velocity potential
into a term, the particular solution, which is negligible out-
side of the source region and a term, the homogeneous solu-
tion, which contains the part of the field which radiates into
the atmosphere and into the ocean. The particular solution
contains the nonlinear effects produced in the air or water in
the bulk rather than at the interface. These volume contribu-
tions do not directly produce acoustic radiation. The radia-
tion is produced by the requirement that the interface condi-
tions be satisfied. Note that the homogeneous solution must
both account for nonlinear contributions to as well as correct
for the deviations of the particular solution from the interface
conditions. Specifically, the air and the water must accom-
modate both the nonlinear contributions to the interface mo-
tion as well as the nonlinear contributions to the flow in the

bulk.
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III. THE RECEIVED MICROBAROM SIGNAL

Let P
�xH ,z , t� be the acoustic pressure at large dis-
tances from the source region, either in the atmosphere, 

=a and z�0, or in the ocean, 
=w and z�0. To determine
P
 one must find the outward-propagating solution to the
equations for acoustic propagation in the atmosphere/ocean
which reduces in the source region to the solution produced
in Sec. II F. One may write

P
 = P
p + P
h,

where
�i� in the source region P
p and P
h reduce to the solu-

tions produced in Sec. II F,

P
p = − 	


��p

�t
−

1

2
	
v1 · v1

and

P
h = − 	


��h

�t
,

where �p and �h are given by �43� and �44�;
�ii� away from the source region P
p is negligible, so

that P
= P
h, and P
h is taken to satisfy the rigid ground
boundary condition at the atmospheric side of the air/water
interface and the pressure release boundary condition at the
oceanic side

0 =� �P
h�xH,z,t�
�z

�
z=0+

= P
h
�xH,z,t�
z=−0+

Let Ga�xH ,z ,xH� ,z� , t� be the Green’s function describing
the propagation of sound in the atmosphere over a rigid sur-
face and let Gw�xH ,z ,xH� ,z� , t� be the Green’s function de-
scribing the propagation of sound in the ocean under a pres-
sure release surface. Let S be the part of the z=0 plane which
is in the source region. Then the Helmholtz-Kirchoff integral
theorem gives

P
h�xH,z,t� = − 	
�
−�

� �
S

G
�xH,z,yH,0,t − ��


�v
�yH,��

��
d2yH d� , �46�

where

v
�xH,t� =� ��h�xH,z,t�
�z

�
�− 1�
z=0+

�47�

is the normal component of the homogeneous part of the
fluid velocity at the interface.

A. The statistics of the microbarom signal and the
sea state

Let �·�T represent both the sea state ensemble average,
�·�S, given in �2� as well as, if required, an average, �·�P, over
fluctuations in the propagation medium. Of interest is the

correlation
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�P
�xH,z,0�P
�xH� ,z�,��*�T

= lim
T→�

1

T
�

0

T

P
�xH,z,t�P
�xH� ,z�,t + ��* dt �48�

between the signals received at �possibly� spatially separated
points �see Fig. 3�. The Fourier transform of �48� with re-
spect to � is known as the cross spectral density; for xH�
=xH it is the power spectrum.22 Substituting �46� and �47�,
into �48� one has

�P
�xH,z,0�P
�xH� ,z�,��*�T

= 	

2�

−�

� �
−�

� �
S
�

S

�G
�xH,z,yH,0,− �1�

G
�xH� ,z�,yH� ,0,� − �2�*�P

� �v
�yH,�1�
��1

�v
�yH� ,�2�*

��2
�

S

d2yH d2yH� d�1 d�2.

�49�

To compute v
 in �47� one may substitute from �44� for
the velocity potential �h. Note that v
 is a binomial in the

linear sea state amplitudes �̂1. As discussed in Sec. II D, to
compute the average over the sea state in �49� we assume

that �̂1 is the Gaussian process �̂S given by �2�. Since �·�S is
Gaussian23

��̂1�k1��̂1�q1��̂1�k2�*�̂1�q2�*�S

=��̂1�k1��̂1�k2�*�S��̂1�q1��̂1�q2�*�S

+ ��̂1�k1��̂1�q2�*�S��̂1�q1��̂1�k2�*�S

=F�k1�F�q1����k1 − k2���q1 − q2� + ��k1 − q2�

��q1 − k2��

so that one has

�v
�yH,�1�v
�yH� ,�2�*�S = 2� � F�k�F�q�


C

�+��k,q�
2
�+�k,q�
2

ei��k+q�·�yH−yH� �−���k�+��q����1−�2�� d2k d2q

+ complex conjugate + time-independent terms �50�

for the correlation between the normal velocity field v
 at
different positions and times.

Substitute �50� into �49�. The integrals over �1 and �2 are

Fourier transforms in time of the G
. Let Ĝ
�xH ,z ,xH� ,z� ,��
be these Fourier transforms at angular frequency �. Since the
Green’s functions for the acoustic propagation are approxi-
mately constant over distances which are small compared to
acoustic wavelengths and since the significant sea state wave

24
vectors K satisfy �6�, one has, to leading order in �0 /k0c
,
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�
S
�

S

Ĝ
�xH,z,yH,0,��Ĝ
�xH� ,z�,yH� ,0,��*

eik·�yH−yH� � d2yH d2yH�

��2��2��k��
S

Ĝ
�xH,z,yH,0,��

Ĝ
�xH� ,z�,yH,0,��* d2yH.

It follows that

�P
�xH,z,0�P
�xH� ,z�,��*�T

=
32	


2�2

c

2 � ��

S

�Ĝ
�xH,z,yH,0,2��k��

Ĝ
�xH� ,z�,yH,0,2��k��*�P d2yH
F�k�F�− k�
C


�+��k,− k�
2��k�4e−i2��k�� d2k . �51�

Equation �51� was first obtained by Hasselmann for the oce-
anic microbarom signal. It gives a direct relation between the
spectral density function of the sea state and the statistical
properties of the received microbarom signals.

The sharp low-frequency cutoff in the wave spectrum
means that there is a smallest 
k
 and �, corresponding to a
longest wavelength and period in the ocean wave spectrum.
At separations, 
yH−yH� 
, much longer than this longest wave-
length or at time delays much greater than this longest period
the motions of the sea surface become uncorrelated.14 Thus,
the normal velocity �50� becomes uncorrelated at separations
large compared to the longest wavelength and at time delays
long compared to the longest period. However, by �6� these
separations are small compared to acoustic wavelengths. The
physical picture which emerges from the stochastic sea state
model is one of intermittent radiation, persisting for times
long compared with the longest ocean wave period, from
patches of the ocean surface randomly distributed across S,
whose diameters are larger than the longest ocean wave
wavelengths but smaller than acoustic wavelengths. This pic-
ture is consistent with the observations of individual mi-
crobarom wave trains reported in Ref. 25. Recall that radia-

FIG. 3. The geometry. Microbaroms radiated from the source region are
detected by distant sensors.
tion produced by patches which are small compared to
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acoustic wavelengths can be represented at large distances as
a acoustic monopole fields. Thus the microbarom signal can
be thought of as an incoherent superposition of fields pro-
duced by monopole sources at the sea surface �see also Ref.
5�, precisely as presented by �51�.

B. Solving the reduced problem

Taking the dispersion relation ��k� to be given by the
deep water dispersion relation, �31�, all that remains is a
determination of the coefficients C


�±��k ,q� in �44�. The task
is greatly simplified by the fact that we need only C


�+��k ,
−k�. Hence, only the sum frequency components for sea state
wave vectors of equal magnitude and opposite direction are
required. Referring to Eqs. �44� and �45�, one sees that the
restriction to interface waves of equal and opposite wave
vectors reduces the acoustic problem to one of plane waves
propagating normal to the air/water interface. The determi-
nation of the reduced set of coefficients is thus equivalent to
the one-dimensional problem of finding the outward propa-
gating velocity potential

� = C

�+��k,− k�ei�2��k�/c
�
z
−i2��k�t �52�

and uniformly vibrating surface displacement

� = �̂�+��k,− k�e−i2��k�t, �53�

which satisfy the interface conditions.
The interface conditions simplify as well. Substituting

�39� and �41� into the pressure condition �35� one obtains

��	


��h

�t
+ 	
g�2�

z=−0+

0+

=��− 	


��p

�t
−

1

2
	
v1 · v1 − 	
�1

�v1z

�t
�

z=−0+

0+

.

Referring to �43�, the relevant component of �p, to leading
order in �0 /k0c
, is

i
��k�3


k
2c

2 e−2
k

z
−i2��k�t.

Substituting the linear form �27� in 1
2	
v1 ·v1+	
�1�v1z /�t,

one finds the relevant component to be

2	
��k�2ei�2��k�/c
�
z
−i2��k�t.

Thus, recalling that the density of water is much greater than
that of air and noting that the contribution from �p is higher
order in �0 /k0c
, the reduced velocity potential �52� and
surface displacement �53� satisfy

��	


��

�t
+ 	
g��

z=−0+

0+

= 2	w��k�2e−i2��k�t. �54�

Similarly, substituting �41� into the velocity condition

�36� one obtains
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� ��h

�z
�

z=−0+

0+

=��−
��p

�z
− �1

�v1z

�z
+ v1 · �H�1�

z=−0+

0+

Using �38� one needs only the relevant component of
−�1� ·v1= �1/	
c


2���P1 /�t�. Referring to �29� one finds this
component to be

�− 1�
i
��k�3


k
c


ei�2��k�/c
�
z
−i2��k�t.

Adding the contribution from �p and dropping 1/cw
2 relative

to 1/ca
2 one obtains

� ��

�z
�

z=−0+

0+

= 3i
��k�3


k
ca
2 e−i2��k�t �55�

and

��

�t
=�� ��

�z
− 3i

��k�3


k
c


e−i2��k�t�
z=±0+

. �56�

Substitute �52� and �53�, into �54�–�56� to obtain

	a�− 2i��k�Ca
�+��k,− k� + g�̂�+��k,− k��

+ 	w�2i��k�Cw
�+��k,− k� − g�̂�+��k,− k�� = 2	w��k�2,

2

ca
Ca

�+��k,− k� +
2

cw
Cw

�+��k,− k� = 3
��k�2


k
ca
2

�̂�+��k,− k� = −
1

cw
Cw

�+��k,− k� +
3��k�2

2
k
cw
2 .

Solving, one finds to leading order

Ca
�+��k,− k� = i��k�� ca

cw
−

3

2
i
��k�

k
ca

 �57�

Cw
�+��k,− k� = − i��k� , �58�

and

�̂�k,− k� = i
��k�
cw

.

The atmospheric and oceanic velocity potential ampli-
tudes �57� and �58� are of rather different forms. The oceanic
microbarom velocity potential amplitude �58� is equivalent
to that obtained by Longuet-Higgens2 �it is also equivalent to
that obtained, incorrectly, by Arendt and Fritts6 for the atmo-
spheric microbarom amplitude�. The imaginary part of the
atmospheric microbarom velocity potential amplitude �57� is
equivalent to the form predicted by Brekhovskikh et al. in
Ref. 5 for the normally propagating component of the atmo-
spheric radiation.

The ratio of the velocity potential amplitudes �57� and
�58�, is given by the term ca /cw− 3

2 i��k� / 
k 
ca. This term is
plotted in Fig. 4 assuming the deep water dispersion relation
�31�. Note that for frequencies near 0.1 Hz the velocity po-
tential amplitude in the atmosphere is smaller than in the
ocean by about a factor of four. The real and imaginary parts,
ca /cw and − 3

2��k� / 
k 
ca, respectively, of the ratio of �57�

and �58�, are of comparable magnitude. The real part ca� cw
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is the larger of the two, by about a factor of 3, and represents
the contribution from sound radiated from the ocean into the
atmosphere; that such a term is significant was pointed out in
Ref. 5. The imaginary part − 3

2��k� / 
k 
ca represents the com-
pression of the air by the ocean waves.

Generally speaking, because of the enormous impedance
contrast between air and water, the acoustic pressure radiated
into the air by sound in the water is reduced by a factor of
	aca /	wcw. In this case, however, the effective interface pres-
sure source given by the right side of �35� is proportional to
the density of the water, 	w. This is the origin of the factor
ca /cw in �57� and illustrates the basic physics of the problem.
Once the interface is in motion the air and water in the
source region must have roughly the same velocity fields �up
to phase, see �30��. However, the changes in pressure re-
quired to support changes in velocity are proportional to den-
sity. Thus the sound pressure fluctuations in the water asso-
ciated with the motion of the interface are greater than those
in the air by a factor of 	w/	a�1000.

The compressibility of the air arises in �57� because, as
discussed above, the horizontally constant part of the effec-
tive interface velocity source given by the right side of �36�
is proportional to � ·v1, which is zero in the incompressible
approximation. Indeed, to have a horizontally constant veloc-
ity source requires the fluid to be compressible.

C. The source spectra

Substituting �57� and �58�, in �51�, using the deep water
dispersion relation �31� to relate the wave vector spectral
density to the frequency direction spectral density through
k= �4�2 /g�f2�cos � , sin �� and

F�k� =
g2

32�4f3F�f ,�� ,

and choosing as integration variable the frequency of the

FIG. 4. The real and imaginary parts of the complex conjugate �so that both
parts are positive� of the ratio, ca /cw− 3

2 ig /2�fca, of velocity potential am-
plitude in the atmosphere to that in the ocean for an infinitely deep ocean
plotted as a function of frequency f .
received acoustic signal one finds
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�P
�xH,z,0�P
�xH� ,z�,��*�T

= �
S
�

0

�

Q
�xH,xH� ,z,z�,yH, f�D
�f�e−i2�f� df d2yH, �59�

where Q is the cross spectral density,22




gular part of the wave vector distribution. The determination
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Q
�xH,xH� ,z,z�,yH, f�

= �Ĝ
�xH,z,yH,0,2�f�Ĝ
�xH� ,z�,yH,0,2�f�*�P, �60�

for propagation from a point source at yH�S to receivers at
�xH ,z� and �xH� ,z��, and D
 is the source strength spectrum
squared
D
�f� = �
0

2�

F� f

2
,�F� f

2
,� + � d� · �

4	a
2g2�4f3

ca
2 � 9g2

4�2ca
2f2 +

ca
2

cw
2  in the atmosphere, 
 = a

4	w
2 g2�4f3

cw
2 in the ocean, 
 = w . � �61�
A similar form for the source strength spectrum Dw for ra-
diation into the ocean was first obtained by Hasselmann in

Ref. 3. If P̂
 is the Fourier transform in time of the received
acoustic pressure P
, then22 the cross spectral density of the
received microbarom signals is given by

�P̂
�xH,z,2�f�P̂
�xH� ,z�,2�f�*�T

= �
S

Q
�xH,xH� ,z,z�,yH, f�D
�f� d2yH. �62�

The integral over S in �62� is required because, in general, as
discussed above, D
 is not constant over the source region,
but varies slowly enough to be considered constant over dis-
tances of many ocean wavelengths.

Consider the ratio of the atmospheric to oceanic source
strength spectra. Note that this ratio is independent of the sea
state. One has

�Da�f�
Dw�f�

=
	acw

	wca
� 9g2

4�2ca
2f2 +

ca
2

cw
2 . �63�

The source strength spectra ratio �63� is plotted in Fig. 5. For
higher frequencies the ratio is asymptotic to the incompress-
ible value 	a /	w�10−3. In the frequency range of interest,
0.1 to 0.3 Hz, the ratio is always less than 210−3. This
explains the observation, pointed out in the Introduction,
that atmospheric microbarom levels are generally three
orders of magnitude lower than oceanic levels.

The integral,

�
0

2�

F� f

2
,�F� f

2
,� + � d� , �64�

first obtained by Hasselmann,3 is the only term in �61� which
is not explicit. It is a factor common to both atmospheric and
oceanic radiation and is a measure of the density of counter
propagating waves at frequency f . Its determination is prob-
lematic. The largest component of a wave field consists of
traveling waves propagating in the direction of the prevailing
wind. Evaluating �64� requires knowing the tails of the an-
of �64� thus depends on quantities which are difficult to de-
termine, either experimentally or numerically.7,15,26,27 It is
possible that observed atmospheric and oceanic microbarom
levels will ultimately be used to constrain ocean wave mod-
els.

IV. A SIMPLE MODEL FOR THE ATMOSPHERIC
MICROBAROM SIGNAL FROM STORMS OVER THE
OPEN OCEAN

In this section an example calculation is presented to
illustrate an application of �61� and �62� to the atmospheric
microbarom signal. A simple model is considered for the
signal received from a distant isolated storm over the deep
ocean far from any land masses. It is assumed that the source
region is roughly centered at the origin yH=0, that the hori-
zontal extent of the source region is small compared with the
distance 
xH
 to the receiver, and that the source spectrum is
constant over the source region.

To compute the power spectrum,

�
P̂
�xH,z,2�f�
2�T = �
S

Q
�xH,xH,z,z,yH, f�D
�f� d2yH,

of the received signal both the power spectral density,
Q
�xH ,xH ,z ,z ,yH , f�, for acoustic propagation from �yH ,0�
to �xH ,z� as well as the source spectrum, D
�f�, are required.
Let 
S
 be the area of the source region interface S. As a
consequence of the assumption that the source spectrum is
constant one has

�
P̂
�xH,z,2�f�
2�T = 
S
Q
�xH,xH,z,z,0, f�D
�f� .

The term �Qa�xH ,xH ,0 ,0 ,yH , f� will be referred to here as
the propagation factor so that to obtain the received mi-
crobarom power spectral density one simply takes the
product of source strength squared, propagation factor
squared, and area 
S
. Note that −20 times the logarithm of
the propagation factor is generally called the transmission

28
loss.
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A. Propagation model

To model the propagation a stratified model will be
used.29 In this model the mean thermodynamic properties of
the atmosphere, mean temperature, mean pressure, mean
density 	a, and mean entropy, are assumed to depend only on
altitude. It is assumed that the mean winds v0 have no verti-
cal component and that the horizontal components again de-
pend only on altitude.30,31 The frequencies of interest here
are much larger than the Brunt-Väisälä frequency in the at-
mosphere so that the effects of buoyancy can be ignored.
Thus one may set g=0 in the equation for the Green’s func-
tion. To simplify the model further the effective sound speed
approximation, in which the wind velocity in the direction of
horizontal propagation,

k̂ =
xH − yH


xH − yH

,

is added to the adiabatic sound speed, is used. The effective
sound speed approximation is valid for low angle propaga-
tion.

Atmospheric attenuation is included by adding an imagi-
nary part, an attenuation coefficient ��z�,32 to the wave num-
ber. Here only the classical attenuation coefficient, that due
to thermo-viscous effects alone, will be used.

The resulting equation for the Green’s function for at-

mospheric propagation, Ĝa, is30,31,33

��H
2 + 	a

�

�z

1

	a

�

�z
+ � �

ceff
+ i��z�2

Ĝa�xH,z,yH,z�,�� = ��xH − yH���z − z��

for z�0 with

ceff�z� = ca�z� + k̂ · v0�z�

and with rigid ground boundary conditions

� �Pa�xH,z,��
�z

�
z=0

= 0

taken at z=0. For the purposes of this example the sound
speed ca is taken to be given by the polynomial fit to the
“Standard Atmosphere”34 given in Ref. 35. To simulate

FIG. 5. The ratio of the microbarom source strength spectra for radiation
into the atmosphere versus radiation into the ocean.
downwind versus upwind propagation a simple model for
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wind speed is used: k̂ ·v0�z� is assumed to have a Gaussian
profile centered at the stratopause �an altitude of 60 km in
the model used here� and 17.5 km wide. Explicitly,

k̂ · v0�z� = ± 40 · exp�− � z − 6.0  104

1.75  104 2�m/s.

The effective sound speeds that result for downwind, up-
wind, and crosswind propagation, as well as the classical
attenuation coefficient, are plotted in Fig. 6.

To solve for Ĝa one may expand in vertical normal
modes.28,36 At long ranges from the source �xH and yH

widely separated� one has

Ĝa�xH,z,yH,z�,��

=
1

	a�z��
� i

8�
xH − yH
�j

eikj
xH−yH


�kj

� j�z�� j�z�� �65�

with

�	a
�

�z

1

	a

�

�z
+ � �

ceff
+ i��z�2

− kj
2� j�z� = 0

and � j��0�=0. The modes satisfy the bi-orthogonality �no
complex conjugation� condition

�
0

�

� j�z��n�z�
1

	a�z�
dz = � jn.

The condition that this integral converges for j=n uniquely
determines the mode numbers.

Rather than the Green’s function, the cross spectral den-
sity Q from �60� is required. For a stationary atmosphere the
cross spectral density is the product of two Green’s func-
tions. In this case the propagation factor is simply the mag-
nitude 
Ga�xH ,0 ,yH ,0 ,2�f�
 of the Green’s function. For a
fluctuating atmosphere a simple model for the average over
the propagation medium �·�P is obtained by assuming that the
different modes have statistically independent, uniformly
distributed phases. Under such assumptions the square of the
propagation factor for surface to surface propagation is given

28

FIG. 6. �a� The model effective sound speed for downwind, crosswind, and
upwind propagation. �b� The classical attenuation coefficient, as a function
of altitude.
by the “incoherent modal sum”
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Qa�xH,xH,0,0,0, f� =
1

8�	a�0�2
xH

· �

j

e−2 Im kj
xH



kj


� j�0�4
 .

�66�

The mode functions � j and wave numbers kj have been
determined using the finite difference methods described in
Ref. �28�. The modal attenuation coefficients, Im kj, are de-
termined perturbatively: the modes are determined for the
lossless case �=0 and then first-order perturbation theory36

is used to approximate the imaginary parts of the modal
wave numbers. Both upwind and crosswind the surface-to-
surface propagation paths must pass through the thermo-
sphere �the region above 120 km�. In these cases there is a
severe reduction in predicted levels as a consequence of the
increased attenuation in the thermosphere. While this is con-
sistent with observations1,9,11,12,37 the numerical values for
the propagation as predicted by such linear models should
not be taken literally since, in the thermosphere, the density
	a decreases dramatically so that the accuracy of the linear
approximation to the atmospheric response is doubtful.38 For
downwind propagation, however, the sound gets trapped in
the duct formed by the stratosphere �below 60 km� so that
received levels are not greatly influenced by the thermo-
sphere. Thus, for downwind propagation a linear propagation
model is reasonable. In Fig. 7 the propagation factor for the
downwind model is plotted as a function of range 
xH
 at
frequency f =0.2 Hz.

B. Sea state model

Now consider the sea state angular integral �64�. It is
common to write F�f ,�� as15

F�f ,�� = F̄�f�a�f ,��

where F̄�f� is the frequency spectrum given by �4�. For pur-
poses of illustration it will be assumed here that the fre-

quency spectrum F̄�f� can be taken to be given by the

JONSWAP15,16 model of highly excited seas, that both F̄�f�
and a�f ,�� are independent of position in the source region,
and that a�f ,��=a��� is independent of frequency. Then one

FIG. 7. The propagation factor for downwind propagation. Both the coher-
ent modal sums, representing propagation in a stationary atmosphere, and
the incoherent modal sum, representing the mean for propagation in a fluc-
tuating atmosphere, are shown.
has
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�
0

2�

F� f

2
,�F� f

2
,� + � d� = F̄� f

2
2�

0

2�

a���a�� + �� d� .

If 	0
2�a���a��+��d�=b, then

Da�f� = 4bF̄� f

2
2	a

2g2�4f3

ca
2 � 9g2

4�2ca
2f2 +

ca
2

cw
2  .

In Fig. 8 the atmospheric microbarom source strength
squared divided by b, Da�f� /b, is plotted for a significant
wave height of 10 m and peak frequency of 0.95 Hz. Refer-
ring to Figs. 8 and 7, one finds that to produce a microbarom
signal with amplitude of 0.1 Pa/�Hz at the peak frequency
1000 km from the source region would require

�10−12 1

m2�8
Pa2

Hz
b
S
 = 0.01

Pa2

Hz
.

This gives b 
S 
 �109 m2. Assuming the source region to
be a disk of radius 200 km gives b�0.01. For comparison,
note that assuming the sea to be isotropic gives b=2�. It
should be emphasized, however, that the value for b ob-
tained here is illustrative only. The forms used for both
the propagation factor and the source strength are based
on simplifying assumptions: for the propagation factor
these are the use of the standard model for the atmo-
spheric temperature and the exponential profile for the
atmospheric wind; for the source strength these are the use
of the JONSWAP model for the frequency spectrum and
the assumption that the sea state statistics are constant
over the source region.

V. DISCUSSION OF THE RESULTS

A complete solution of the problem of the radiation of
infrasound by ocean waves, the so-called microbarom radia-
tion, has been presented. A direct connection is made be-
tween the statistical properties of the microbarom signal and
the stochastic models commonly used to describe ocean
wave systems. Since the acoustic wavelengths are so much
longer than the correlation lengths for the ocean waves the
received microbarom signal can be described as an incoher-

FIG. 8. The relative source spectrum for atmospheric microbaroms,
Da�f� /b.
ent superposition of fields produced by monopole sources at
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the sea surface. The problem of finding the source strength of
the radiation has been reduced to oceanography: the determi-
nation of the density of counter-propagating waves of equal
frequency �standing waves� on the ocean surface, as given by
the integral �64�, is required.

The source strength spectral density function for the ra-
diation of atmospheric microbaroms has been derived and
compared to that for oceanic microbaroms. The primary ra-
diation is into the ocean; the source strength for radiation
into the atmosphere is three orders of magnitude smaller than
that for radiation into the ocean. This is in accord with ob-
servations: typical peak atmospheric microbarom levels are
measured in the tenths of Pascals while typical peak oceanic
microbarom levels can reach 100 Pascals. The reason for this
difference lies in the fact that sea water is three orders of
magnitude denser than air. The velocity of the air/water in-
terface is fixed by the ocean waves. Consequently, the air and
water have similar velocity fields near the interface. How-
ever, the variations in pressure required to maintain varia-
tions in velocity are proportional to the density of the fluid.
Thus the pressure fluctuations in the ocean are three orders of
magnitude larger than those in the air. Indeed, the ratio of the
atmospheric to the oceanic microbarom source strengths is
shown to be approximately equal to the ratio of the atmo-
spheric to the oceanic densities.

The full atmospheric microbarom signal is shown to be
the sum of two terms. The first term, responsible for about
80% of the radiation, represents sound radiated from pres-
sure fluctuations produced in the ocean by the motion of the
interface plus a term, responsible for the remaining 20% of
the radiation, due to the compression of the air by the ocean
waves. The single unknown factor, the standing wave density
�64�, is common to both the atmospheric and oceanic source
strength spectra.
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