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ABSTRACT

A new investigation is made of internal wave generation by surface waves. Previous theories are put into a
unified form that includes a model of surface wave damping. Calculations using the complete theory, which do
not seem to have been made previously, indicate that for wind speeds between 7 and 20 m s~' the internal
wave field loses about 10™* W m~2 to the surface wave field. This would lead to a decay time of about 10 days
for the high frequency portion of the internal wave field if an energy source were not available to maintain it.
Possible sources for this energy are discussed. In contrast to this result for wind waves, a strong, highly collimated
ocean swell can lead to rapid growth of high frequency internal waves. The effects of nonlinear surface wave

modulation and wave blocking are also discussed.

1. Introduction

According to the model of Garrett and Munk
(1972a), the nominal energy in the internal wave field
is about 3 kJ m 2. Except for local variations this ap-
pears to be more-or-less steady, which has led to the
view that generation and dissipation mechanisms bal-
ance each other. Garrett and Munk (1972b) estimated
from turbulent fluxes that the dissipation rate for the
internal wave (IW) field is in the range of 10> W m 2.
Dissipation rates for small scale turbulence (assumed
to be fed by internal waves) observed, for example, by
Garget et al. (1981) and by Osborn (1978) imply dis-
sipation rates in the range of 1073 to 107 W m™2.
Vertical fluxes of IW energy observed by Leaman and
Sanford (1975) and by Leaman (1976 ) are also in this
range. These rates suggest that the IW field would decay
in 10 to 100 days if it were not maintained by external
sources. Further observations by Lueck et al. (1983),
by Gregg et al. (1986), and by Gregg (1987, 1989) lead
to estimates of about 50 to 100 days for the IW decay
time.

Theoretical calculations of turbulent fluxes within
the IW field by McComas (1978), McComas and
Muller (1981), and Pomphrey et al. (1980) predict
dissipation rates in the range of 107> to 10™* W m 2.
Careful predictions by Flatté et al. (1985) give values
toward the lower end of this range, in agreement with
Gregg (1989).

A number of plausible mechanisms have been pro-
posed for the generation of internal waves. Bell (1975)
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has suggested that large scale flow over topography can
be a significant source of IW energy. Bell (1978) has
also concluded that inertial oscillations of the upper
ocean can generate internal waves. Kanthu (1979) has
investigated mixed layer turbulence as a generation
mechanism. Mesoscale flow as a source of IW energy
has been studied by Watson (1985). Each of these
mechanisms appears able to account for much of the
energy in the IW field.

Striking visual evidence of the interaction of internal
waves with surface waves has been often noted (for
example, see Hughes and Grant 1978; Phillips 1973;
Hughes 1978; Apel et al. 1975; Curtin and Mooers
1975; Fu and Holt 1984). This interaction has led to
a number of calculations of the rate of generation of
the IW field by surface waves.

Theoretical models for a “wave triad” consisting of
two surface waves and one internal wave have been
developed by Ball (1964), Thorpe (1966), and Brek-
hovskikh et al. (1972). Energy transfer occurs when a
frequency resonance condition is met.

Calculations of the transfer of energy from a surface
wave (SW) spectrum to internal waves have been given
by Kenyon (1968), Watson et al. (1976), Olbers and
Herterich (1979), and Dysthe and Das (1981). Kenyon
used a constant N (i.e., Viiséld frequency) profile. Ol-
bers and Herterich chose N to be constant in a pre-
scribed depth interval and to vanish outside this inter-
val. Dysthe and Das (1981, hereafter DD) assumed N
to vanish outside a thin thermocline region. Watson
et al. (1976, hereafter WWC) chose N to vanish in a
mixed layer, below which they used the Garrett-Munk
(1972a) exponential scaling.

Olbers and Herterich (1979) made use of the spectral
transfer equations of Hasselmann (1967). They con-
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sidered a mechanism of ‘“spontaneous creation” by
which pairs of surface waves generate internal waves.
This mechanism does not require that internal waves
be initially present. Dysthe and Das describe another
mechanism by which a weak IW grows (or decays)
exponentially through interaction with a pair of surface
waves. They refer to this as “modulation interaction”
or “modulational instability.”

Olbers and Herterich (1979) concluded that the
transfer rates for the spontaneous creation mechanism
are relatively insensitive to the detailed form of the SW
spectrum, but are sensitive to the wind speed. A large
Viisild frequency, a thin mixed layer, or strong winds
were required to give significant IW growth rate, how-
ever.

Dysthe and Das performed calculations for only a
narrow band SW system. They concluded that the en-
ergy rate for modulation interaction mechanism is very
sensitive to the form of the SW spectrum and that a
very narrow angular spread is required to give signifi-
cant growth rates of the IW amplitudes. ‘

The mode coupling equations of WWC were ex-
pressed in the form of Hamilton’s equations. They ob-
tained an analytic expression for the IW growth rate
using a “locked phase assumption.” This gave a sig-
nificant energy transfer rate, but because of the locked
phase approximation could be considered as only an
upper limit on the IW growth rate. Watson et al. also
performed a numerical integration of their equations.
This was criticized by Olbers and Herterich (1979) as
ignoring the detuning effects of SW dissipation pro-
cesses. Because of computational limitations, WWC
chose a narrow band SW spectrum similar to that
shown by DD to give high energy transfer rates.

The conclusions from these calculations has been
that SW-IW interactions cannot account for the energy
needed to maintain the IW field. It appears however
that, although the theory has been well developed, de-
tailed calculations of the SW-IW energy exchange have
not been made. Studies have not been made that in-
clude simultaneously both the spontaneous and mod-
ulation mechanisms, nor have comparisons of the rel-
ative importance of these been given.

The purpose of this paper is to provide such calcu-
lations that include both the modulation and the spon-
taneous mechanisms and to do these for environmental
conditions of physical interest. In contrast to what has
sometimes been expected, we find rather rapid energy
transfer rates, but predominantly a transfer of energy
from the IW field to the SW field.! This transfer of
energy is significant, however, only for the long vertical
wavelength IW modes having frequencies greater than
about a tenth of the upper ocean Viisdla frequency.

! We emphasize that our present calculations do not disagree with
other calculations of which we are aware. The pertinent calculations
seem not to have been done before.
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In this band and for wind speeds in the 7 to 20 m s™~!

range the predicted time for IW decay is a few days.
Expressed differently, for a Garrett-Munk spectrum
the power delivered to the SW field at the expense of
the IW field is about 10™* W m ~2. This is not of course
a significant energy source for the wind waves, but (as
we shall discuss later) it does raise a question as to the
source for the IW energy in this band.

For a wind increasing above 15 m s™! there is a
tendency in some spectral domains for transfer of en-
ergy to the IW field, although at even 20 m s~ the net
transfer is to the SW field.

The theories of WWC, DD, and Olbers and Herter-
ich (1979) are described (without derivation )? in sec-
tions 2 and 3. An innovation in the present work is to
take account of surface wave dissipation. This dissi-
pation broadens the triad resonance condition of the
previous theories. This broadening has some numerical
impact, but does not significantly change our conclu-
sions. The calculations described in the paragraph
above are presented in Section 4. In Section 5 we show
the implications of some calculations of IW generation
by ocean swell, which can effectively stimulate IW
growth. Finally, in Section 6 some implications of
nonlinear SW modulation are described.

2. Notation and ocean model

In this section we shall review for later use certain
properties of linear surface and internal waves (for a
more detailed description of the linear wave fields see,
for example, Phillips 1977). Where appropriate, we
will follow the notation of WWC.

Capillary waves will be excluded from our model.
Characteristic IW frequencies Q are assumed to be
small compared to frequencies w of the interacting SW
field, but much larger than the inertial frequency. Sim-
ilarly, horizontal IW wavenumbers K are assumed to
be small compared to wavenumbers k of the SW field:

A< w
K<k. (2.1)

The undisturbed surface of the ocean is assumed to
coincide locally with the plane z = 0 of a rectangular
coordinate system. The ocean bottom is assumed to
coincide with the plane z = —B,. The Viisili frequency
N(z) is assumed to vanish in a mixed layer of domain
—D < z <0. It will be supposed that D is large enough
that surface wave currents can be neglected for z < — D.
Specific models for N(z) in the domain —D > z> — B,
will be introduced when calculations are presented.

Following the notation of WWC, for /inear internal

2 A very simple derivation of the energy transfer resulting from
the modulation mechanism is given Section 3, using arguments of
energy conservation.
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waves we expand the vertical component of velocity
in the form

‘™8

W,‘(X, z, l) = 2 eiK'xAj,K(t)Wj’K(Z). (22)
K

1

.
]

The sum on K represents a Fourier expansion in
some conveniently chosen rectangular Area Ay. The
symbol j labels vertical mode numbers. The vertical
mode function Wj(z) is obtained from the equations

W;k(z) = Ksinh(Kz), —D<z<0,
Wik(z) + KX (N*/Q* = 1)W,;x =0,
—-By<z< =D (2.3)

where W” = d?W/dz? and Q is the angular frequency
of the mode (j, K). At the ocean bottom we have the
boundary condition

Wik(—Bp) = 0.

The rigid-lid approximation has been used to give the
boundary condition at z = 0 in (2.3). Olbers and Her-
terich (1979) have discussed the validity of this and
the Bousinesq approximation for the present applica-
tion. We have used their analysis to explicitly verify
the validity of these approximations for the parameter
ranges used in our calculations. For linear waves we
have the relation

Ajx = —Q*(J, K) 4
where 4 = d?A/dt>.

We shall encounter the integrals

0
NZI’VJ",KI’VJ‘,KdZ = 6j’j' j,KNOZ/B. (2.5)
By

(2.4)

Here N, and B are convenient scale parameters for N
and for the vertical scale of stratification, respectively.
The quantity V;x above is dimensionless. It will be
seen to represent a kind of IW inertial response to SW
driving,

The horizontal component of the IW current is

u(x, z, 1) = 2 iKAxWge™ /K% (2.6)
K
It is convenient to write
iK™ = 5 100, K) exp(=i90), K)1)
— U*(j, —K) exp(iQ(j, K)t)]. (2.7)

Then at the surface z = 0 we may use (2.4) to express
(2.6) in the form

U(x, 1) = > K[U(j, K) exp(i(K-x — Q¢))

5K

+ccl/2. (2.8)
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The internal wave energy/unit area in the mode (j,
K)is
2

2
V.
2l K0, %)

2BQ*K?
where pg 1s the density of sea water (say, in the mixed

layer). The spectrum of internal wave energy E;(j, K)
is obtained from (2.9) as

E(j,K) =

» o (29)

| EG0@x=-S EG K. (210)
K

The corresponding action /unit area is
Fi(J, K) = Ei(j, K)/Q(J, K). (2.11)

For the calculations to be given later we shall need
a model for E;, for which we take, unless specified oth-
erwise, the venerable Garrett-Munk spectrum of Munk
(1981). Since we are interested only in IW frequencies
much larger than the inertial frequency, we write this
as

0.013p9 No*40°
27K3(1 + j2/9)

valid for KB > fynj/N,, where f; is the inertial fre-
quency. We recognize that (2.13) does not always de-
scribe very well internal wave observations in the upper
ocean (see Pinkel 1985). We do not think, however,
that our conclusions are sensitive to details of the IW
spectrum,

For linear surface waves we write the vertical dis-
placement and velocity potential at z = 0 in the form

G(x, 1) = =2 [Bee™ X — c.c/(2iV poVi),
|3

E(), K) = (2.12)

bs(x, 1) = 2 VVi/(2p0) [ Bxe™ * + c.c.]. (2.13)
k

Here V. = Vch is the surface gravity wave phase speed.
The surface wave spectrum of action/unit area is Fj.
This may be obtained from (2.13) using the Wigner
(1932) relation

fd2sz(xa k,0) =2 2 e"* (B Btan)
k1
(2.14)

where { ) represents an ensemble average over many
realizations of the SW field. The corresponding SW
energy spectrum is

E:(X, ks t) = kaS(.x’ k: t) (2'15)

where w, = Vg-k is the angular frequency corresponding
to wavenumber k.

It is convenient to introduce an ambient SW field
for which we can use one of the current equilibrium
models. We shall denote the action density spectrum
for this ambient field by F,(k). The ambient spectrum
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of vertical displacement ¥, is expressed in terms of the
action density with the relation

Fa(k) = poVi¥a(Kk). (2.16)

The ratio of the actual to the “ambient” spectrum rep-
resents the SW modulation M:

Fy(x, k, 1) = M(x, k, £)F,(K).  (2.17)

We shall see in the next section that for the modulation
mechanism it is M that can be considered as the driver
of the IW field.

For the calculations presented in this paper we shall
use the wind wave spectral model of Donelan et al.
(1985) and Phillips (1985):

Y, (k) = S(k)G(0 - 0,). (2.18)

Here 6 is the angle of the vector k with respect to the
direction of K and 6,, is the corresponding direction of
the wind vector. The function S is

A
S(k)=——=¢TT,
(k) ks.svjc:e

T = 0.6(ke/k)? — 0.5 exp[—1.2(1.2Vk/k, — 1)?],
ke =g/W? A=3X1073, (2.19)

and W is the wind speed. The “spreading function” of
Donelan et al. (1985) is

G(6 — 6,) = o sech?[a(6 — 6,)]/2. (2.20)
The Donelan model used for the parameter o is
B 2.9(ky/ k)%, klky <4
- {1.2, k/ky > 4.

for
(2.21)
for

We shall also consider a “collimated” model for
which

(2.22)

Our calculated results will be seen to be rather sensitive
to the spreading function used, but do not seem very
sensitive to modest changes in .S. Omitting the “JON-
SWAP peak enhancement” in (2.19) or using a k™*
spectrum in the equilibrium range does not modify
our results significantly.

o= 8.

3. The interaction between surface and internal waves

In this section we shall present the equations that
describe the response of the IW field to SW forcing.
The derivations given by DD and WWC lead to equiv-
alent results for the modulation mechanism, which we
now quote without derivation. (Since the form in which
we express the modulation mechanism is somewhat
different from that given by WWC and DD, we show
in the Appendix how to obtain this specific form using
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expressions derived in WWC.) A very simple derivation
is given at the end of this section, however, for the
transfer of energy between the IW and SW fields, as
implied by the modulation mechanism.

The equations of Olbers and Herterich (1979) de-
scribing the spontaneous model are also quoted in this
section, re-expressed in the present notation.

The SW and IW fields are treated as linear, except
for the coupling between them. This coupling is as-
sumed to be weak in the sense that the linear wave
frequency € is large compared to the evolution rate of
the amplitudes U(j, K):

Q> |U/0]. “(3.1)
The nonlinear coupling is evaluated in lowest order as
a triad wave interaction. A typical triad from a field of
interacting waves would include two surface waves of
wavenumbers k and k'’ and an internal wave of mode
(J, K). Energy exchange among these waves occurs
when a resonance condition is met:

k-k =K,

Wy — W = Q(j, K) (32)
Higher order resonances, involving harmonics of the
linear wave frequencies, can also transfer energy. When
condition (3.1) is satisfied, we do not expect significant
transfer rates from these higher order interactions. We
shall see that SW relaxation mechanisms can lead to
more general conditions than (3.2) for energy ex-
change, however.

Because of the conditions (2.1) we may rewrite the
second equation above as

c(k)-K=c¢, (3.3)
where ¢; = /K is the IW phase velocity and ¢, is the
SW group velocity. This is the condition that the com-
ponent of SW group velocity parallel to K match the
IW phase velocity. An obvious generalization of (3.3)
is the expression

[eg(k) + U]-K = ¢;. (3.4)

As will be discussed in more detail in Section 6, (3.4)
is the condition that an overtaking SW will be turned
back, or blocked, by the IW generated surface current
U. In the case of sufficiently weak interactions (3.3)
and (3.4) are equivalent (recall that | U| must be sig-
nificantly less than ¢; if the IW field can be treated as
linear). The relation (3.4) leads us to anticipate that
SW blocking plays a role in the energy transfer between
the two wavefields.

The derivations of the modulation mechanism given
by WWC and DD lead to an expression for the rate of
change of the IW current amplitude introduced in
(2.9):
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. Q3KB J‘ ) d x
LK) = —i Kk
vU. K) (No 2poV K) d Ao

Xexp[—i(K-x — Q)] Fs(x, k, 7). (3.5)
Here A, is the rectangular area within which the Fourier
expansion (2.4) was introduced. [ As noted earlier, we
show in the Appendix how Eq. (2.29) of WWC may
be transformed into the form used here.] We may re-
write (3.5) using the modulation function M of (2.17),

A Q3KB
UG, K) = i (No . K) dekkfdz /Ao

X exp[—i(K-x — Q)][M(x, k, t) — 1]1F,(k).

(3.6)

This shows explicitly how modulation of the SW spec-
trum is required to excite the IW field.

The rate of change of the IW energy is obtained from
(2.9) and (3.5) as

> 2
E(j, k) = i(E)-dekkffi——sz(x, k, 1)
2 4o

X QUexp[i(K-x — Q)] —cc]. (3.7)
Using the condition (3.1) and (2.10) we can put this
in the compact form

E; =3 Ed(j,K)

5K
2
~ —f dzkk-f%i‘U(x,z)Fs(x, K, 7). (3.8)
0

To continue, we need a model or a prescription for
calculating F;. There are several possibilities: 1) The
IW field surface current can modulate the SW field.
An equation from which to determine F; from U will
close the system, permitting U and F; to be calculated
simultaneously. This is the approach used by DD.and
by WWC (with their analytic calculation). 2) The SW
modulation may be determined by external environ-
mental factors. This might be due to wind variability
(for example, see Gill 1984), spatial variation of swell,
Langmuir circulation, etc. An example, assuming a
modulated ocean swell, will be described in section 5.
3) Modulation can also result from random statistical
fluctuations of the SW field.

To describe the first of these modulation possibilities
we shall adopt a simple, often used model that takes
account of the inequalities (2.1). In the ray path ap-
proximation we can write (for example, see Hassel-
mann 1968)

) .
[& + xV, + k-VkJFs(x, k,7)=3S8(x,k,1). (3.9)
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Here

x=V\H, k=-V,.H,

H=uw,+k-U, (3.10)
The source term S is often expressed as
S=Sn1+Sw+Sd, (3.11)

where S,; represents nonlinear SW-SW interactions
(Hasselmann 1967 or 1968), S, represents wave ex-
citation by the wind, and S, represents wave damping
due to viscosity.

Equations (3.9) and (3.11) are overly complex for
our current study [see, however, van Gastel (1987),
who investigated SW modulation using this full set of
equations for capillary waves], so we shall adopt a
model for S introduced by Hughes (1978 ) and by Phil-
lips (1984). We set

S = —B(k)(F; — Fa), (3.12)

which is the form of the Hughes and Phillips models
when | F; — F,| < F,. The non-negative constant 8
used in this paper is that deduced by Watson (1986).
His calculations may be scaled in the approximate form

B(k) = wi exp(—G(p)),
D= W/Vk9
14.5C(p)
0.4 + po37°°
1, if p<15,
C(p) = 5
p—10°
When the action source term S'in (3.9) is negligible,
we expect the total energy of both wave fields to be
constant. (The Hamiltonian formulation of WWC as-

sures energy conservation when there is no SW damp-
ing.) To verify this, we write

G =

(3.13)
if p>15.

d*x 9 . . .
fA—Ofdzkwk[é;+X'Vx+k'V+k'VkFs=0,
or
i d*x . . ;

E; + T d*k[(x-V, + k- Vi) (wr X Fy)
0

— Fo(Viwy)- l.(] =
Then

2
E, = fd—?ff Kk - cg(K)F,.  (3.14)
Ao

Now

kec,= —¢V (U-k) ~ k- U,
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where we have made use of the condition (3.3). Thus
(3.14) becomes

E, = fd2x/A0fd2kk-UFs(x,k,t) = —FE;.
(3.15)

The last form follows from energy conservation. In ob-
taining (3.15) we have made use of the condition (3.3).

We see that this provides an alternate derivation of
(3.8). When SW damping is significant, (3.15) remains
valid for the IW energy rate, but an additional term is
added to the SW energy rate of change.

Equations (3.5) and (3.14) describe the response of
the IW field to a modulated SW field. When this mod-
ulation is driven by the IW field, (3.9) may be used
(this is the case explicitly considered by WWC and
DD, who did not include SW relaxation, however) to
close the set of equations.

Olbers and Herterich (1979) presented calculations
using the “spontaneous creation” mechanism. (We use
this term since internal wave energy does not have to
be present for this process to work.) The rate at which
the IW field receives energy from the SW field, as ob-

tained by Olbers and Herterich (1979), is
J0E;(J, K)) — 4dragpeNo

KB?

Q 2 2
U [ e row.00

X W (k')o(wr — wir — ). (3.16)
Here the x-axis has been chosen as the direction of the
vector K and k' = k — K, Q@ = Q(j, K). The dimen-
stonless quantity « is

3
_ (BKB/No)” (3.17)

2V,
where V¢ is given by (2.7).

In the next section we shall present calculations of
the energy exchange between SW and IW fields using
(3.5) and (3.9) for the modulation mechanism and
(3.16) for the spontaneous mechanism. In Section 5
we discuss IW generation by a naturally modulated
ocean swell. Finally, in section 6 we investigate the
case that the SW field is strongly modulated by a packet
of internal waves.

4. The case of weak modulation

When the IW surface current is sufficiently weak we
may linearize (3.9) in U. In this case there is no cou-
pling among the modes and it suffices to consider only
a single IW mode, say (j, K). We may take K parallel
to the x-axis and write

U(§, 1) = i[U()e™E + ccl/2, (4.1)

where i is a unit vector parallel to the x-axis and £ = x
~ ¢;t. We shall also omit writing the (j, K) label on
U, etc., except where it is needed for clarity.
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The distortion in F, due to the IW current is

F,(E’ ks Z)EFS_Faa (42)
and the linearized form of (3.9) is
a 9 oU 9F,
+ (e ZIF =k, ——2—~BF (4.
[at (cx~ <) f] ky 3t ok BF' (4.3)

where ¢ is the x-component of ¢,. It is convenient to
introduce positive and negative frequency parts of F’
in (4.3)

= [H(k, t)e*  + c.c.]/2,
so (4.3) becomes

dF,
" Ok

% (4.4)

2 + B+ iK(cx — c,)] = Kk,
Equation (3.9) for U can now be expressed as
O — —liaNo/(KB0)) [ dhhccH,  (45)

where the dimensionless quantity « is given by (3.17).

We may suppose that U and H evolve from initial
values U(0) and H(k, 0) at time ¢ = 0. An explicit
solution to (4.4) and (4.6) is then readily obtained
using a Laplace transform.

U=f e PUdt,

o

ﬁ=f e P Hdt.
0

For the quantity U we find
[p — /10 = U(0) — i[aNo/(KB?po)]

X f d’kk, H(k, 0)/[p + 8+ iK(cx — )], (4.7)

with

d?kk, 2 — [Vk\I/ (k)]
= (N, 2 f x .
= (No/ BY) +B+1K(cx——c1)
Here ¥, is the SW displacement spectrum (2.18).
The free response of the system is obtained from the
equation

(4.8)

p=al. (4.9)

It will be seen that | p| is sufficiently small that the
term p can be dropped in the denominator of (4.8).
Also we need calculate only the real part of (4.9), which
is then

Re(p) = (aNow/B2) f dzkkx2{£ [kaa<k)1]

X A[K(cx — ¢1)] (4.10)
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where
_ B/x
T B+ KM — o) (4.11)
When 8 is much less than Q,
AlK(cx — )] = 6[K(cx —c)]. (4.12)

To be compatible with (3.16) we shall replace (4.10)
by

vm = 2 Re(p) (4.13)

describing the rate at which IW energy grows. Olbers
and Herterich (1979) also obtained, but did not discuss,
a result equivalent to (4.10) and (4.12).

The mean IW growth rate, averaged over all K-di-
rections (equivalent to averaging over all directions 8,,),
is

VU = if vndl,,. (4.14)
27 J-n

The rate at which energy is received in unit area of
ocean, in mode j, and within the interval dK is

Pn(j, K)dK = 27v, Ei(j, K)KdK. (4.15)

For E; we use (2.12).
To obtain a growth rate for the spontaneous mech-
anism we use (3.16):

oL (j, K .
= ——‘a’t—’ / E, K)

_ ArageoNoQ ) 0 o '
KB'E, fd k(ke* k)W a(k)¥o(k')
X A(K(cx — ¢)). (4.16)

Here for consistency we have replaced the é-function
in (3.16) by the function (4.11), for which plausible
arguments may be given. The mean rate for all K-di-
rections is

_ 1 [

vy = o vedb,,.

(4.17)
The rate at which power is received per unit area by
the IW field is then
Py(j, K)dK = 2nv,E(j, K)KdK.
Net e-folding rates for the IW field are
v =v, 1 v,

(4.18)

(4.19)

Tl;e total power received by the IW field per unit area
is

5=+ 7y

3 It might be noted that to evaluate the mean rates it is easiest to
first do an analytic integration of (4.10) and (4.16) over 8,, before
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P(j, K) = Pn(j, K) + Ps(j, K).  (4.20)

Olbers and Herterich (1979) presented calculations
for the spontaneous model using (3.16). They used a
“box” Viiisili profile. (We have repeated selected ex-
amples of their calculations to compare numerical re-
sults, but have not systematically pursued this some-
what unphysical Viisild profile.) An expression equiv-
alent to (4.10) and (4.12) was used by DD to discuss
IW generation by the modulation mechanism for a
thin thermocline and a narrow band ocean swell.

A systematic investigation of the implications of
(4.10) and (4.16) does not seem to have been made,
perhaps because of the very slow IW growth rates
found. It is our present purpose to present calculations
of the implications of the theory using somewhat re-
alistic Viisild profiles (emphasizing the upper ocean
waters) and the SW relaxation model of Watson
(1986). Unless otherwise specified, the GM Viisild
frequency model is chosen here for all of our calcula-
tions:

0, 0>z>—-D,
Nyexp[(z+ D)/B], —D>z>—B,
B=1200m, N,=0.01sec!. (4.21)

We shall, however, describe some calculations done
with a “Patchex” model and also with a constant N
model. The mode functions W,k were evaluated nu-
merically from (2.3) using both a WKB approximation
(where valid) and numerical integration of the differ-
ential equation. The results from use of the relaxation
model (3.13) were compared with those using the 8-
function limit (4.12). Generally, the two sets of cal-
culations were within a “factor of two” range of agree-
ment, those done with the relaxation model tending
to be somewhat larger. It should be noted in this context
that when 8 is large A is small, and when 8 is small A
can be replaced by the é-function. The short waves for
which g is large do not contribute strongly to the cou-
pling. Thus, we do not expect dramatically different
results from the two models. For consistency with the
condition (2.1) we have limited the integration in
(4.10) and (4.16) to the domain k > K. This constraint
did not seem to affect our numerical results, however.

In Fig. 1 we show the e-folding rate »(6,,) [defined
in (4.18) and expressed in days™'] for a mixed layer
depth D = 20 m, a wind speed W = 10 m s™', and the
first vertical mode corresponding to j = 1. The curves
are labeled by the value of KB. The striking feature
here is that the energy transfer is overwhelmingly from
the IW field to the SW field. Although v, (4.16) is pos-
itive definite, the net rate is strongly dominated by the

N(z) = [

integrating over k. To verify our numerical evaluations, we have
done this and also integrated over wind angles last, as implied by
(4.14) and (4.17).
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FIG. 1. The e-folding rate (day™') (4.18) is shown as a function
of wind angle 8,, (with respect to the direction of horizontal propa-
gation of the internal wave) for several values of KB and the mode
Jj = 1. The surface wave spectrum is that given by (2.19), (2.20),
and (2.21), and the wind speed is 10 m s™'. Positive rates correspond
to internal wave growth, negative rates to internal wave decay.

contribution from the modulation mechanism. The
small positive value of » at certain angles 6,, is sensitive
to the SW spectral model, as was observed by DD. This
is illustrated in Fig. 2, where the above calculation is
repeated using the “collimated” SW model (2.22). The
possibility of IW growth at certain angles is much more
pronounced in this case.

In Fig. 3 we repeat the calculation of Fig. 1, but with
a wind speed W = 20 m s~!. Except for KB = 2, the
pronounced effect is IW growth, or energy transfer from
the SW field to the IW field. In Fig. 4 we repeat the
calculation of Fig. 3 using the collimated SW model

0.2 —

Mixed layer depth =20 m

Rate (/day)

-0.4
o 60 120 180

windangle

FIG. 2. The e-folding rate is shown for the same conditions as in Fig.
(1), except that the collimated spreading function (2.22) is used.
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FIG. 3. As in Fig. 1, except that the wind speed is 20 m s~'.

(2.22), but with D = 60 m. An even more pronounced
growth of the IW field is seen.

There are two reasons for the significant difference
between wind speeds of 10 and 20 m s ™!, First, at higher
wind speeds »,,(8,) tends to have a greater range of
positive values; second, v; grows rapidly with increasing
wind strength.

In Fig. 5 we show the average growth rate (4.19) as
a function of wind speed. Here, again, the mode cor-
responds toj = | and the curves are labeled by the IW
horizontal wavelength expressed in meters. The same
calculation is repeated in Fig. 6, but with a mixed layer
depth D = 60 m. We see from these results that for W
< 15 m s ™! or for longer wavelengths the predominant
effect is to transfer energy from the IW field to the SW
field. This contrasts with the view frequently expressed

3 —
' . Mixed layer depth = 60 m
2 N,
4
VARV
3
3 1
2
2 L 16
2
0 ‘%’ -
1 —_— o .
0 60 120 180
windangle

FIG. 4. As in Fig. 2, except that the windspeed is 20 m s™" and the
mixed layer depth has been changed as indicated.



SEPTEMBER 1990

0.2
Mixed layer depth = 20 m
4
0.1
. 950
;-g 470 =
e
[}
o
0.0
M 3800
0.1 : —
0 10 20

Wind Speed (m/s)

FIG. 5. The mean e-folding rate (day ™) (4.19) is shown for several
IW horizontal wavelengths (expressed in meters) and mode j = 1 as
a function of wind speed. The SW spectrum is that of (2.21).

that wind waves tend to generate internal wave energy,
however slowly.

In Figs. 7 and 8 we show the IW decay time
(= —v7"), expressed in days, as a function of the IW
horizontal wavelength and for j'= 1, 2, 3. The wind
speed is 10 m s~" and D = 20 and 60 m. Although not
shown, the decay time for j = | increases with hori-
zontal wave length for lengths greater than 15 km.

For the first mode, corresponding to j = 1, the time
scales presented here tend to be significantly less than
the 50 to 100 day decay times quoted in the Introduc-
tion. The decay times for the second mode tend to lie
in this 50 to 100 day range. For the higher modes the

0.2 ——

Mixed layer depth = 60 m

0.1

470 A/////
0.0 J
-__4ELEEEE—-———"”“""”?

0 10 20

Rate (/day)

-0.1

Wind Speed (m/s)

FIG. 6. As in Fig. 5, except for the indicated change
in mixed layer thickness.
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FI1G. 7. The decay time [the negative of the inverse of the expression
(4.19) expressed in days] for the internal wave field is shown as a
function of IW horizontal wavelength and a wind speed of 10 m s ™.
Results are shown for the first three vertical modes and the surface
wave spectrum is that of (2.21).

energy exchange between the SW and IW fields does
not appear to be very significant.
In Fig. 9 we show the ratio

Vs

Vm

as a function of wind speed for several IW horizontal
wavelengths and D = 60 m. When W < 15 m s™! the
contribution of the spontaneous mechanism to the net
energy exchange is seen to be negligible.

The power delivered to the SW field from the IW
field,

300 T -

Mixed layer depth = 60 m

200
N—

100 ' /

—//

Time (days)

0 5000 10000

Wavelength (m)

FIG. 8. As in Fig. 7, except that the mixed layer depth
is changed as indicated.
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F1G. 9. For the data obtained for Fig. 6 we show the ratio of con-
tributions from the spontaneous and modulation mechanisms as a
function of wind speed for several IW horizontal wavelengths (ex-
pressed in meters).

P(j) = —J; P(J, K)dK, (4.23)

is shown as a function of wind speed in Fig. 10. The
curves are labeled by the mode number ;. The mixed
layer depth is 60 m and we have taken Ky B = 0.5. The
total GM energy (2.12) for the first mode in this wave-
length range is about 70 J m 2, so a few days are re-
quired to deplete this mode when the wind speed is in
the 10 m s™! range.

The dependence of ¥ on mixed layer depth D is
shown in Fig. 11 for several selected IW horizontal
wavelengths and j = 1. The wind speed here is 10 m
s, The variation of the rates » with D is dominated
by the exponential factor exp(KD) in (2.3).

We have examined several data sets for N(z) taken
by Pinkel* during the Patchex experiment. Represen-
tative of some of these is a strong thin thermocline at
50 m depth superimposed on a Viisild profile similar
to (4.21). We model this thermocline as a density dis-
continuity of strength

f N?%dz =0.035m s 2,
thermocline

The IW decay time for this “Patchex” profile is shown
in Fig. 12 for a wind speed of 10 m s™!. These results
are seen to differ little from those of Fig. 8. The energy
transfer rates are certainly sensitive to gross variations
in the Viisild profile, however.

To see the effects of a significant change in the Viis-
dld profile we consider the model

4 We are indebted to Dr. Pinkel for the use of this data.
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F1G. 10. The power per unit area (4.23) extracted from the IW
field by the SW field shown as function of wind speed for the first
three vertical modes. The SW spectrum is that specified by (2.21).

0, 0>Z>-50m

NZ) =
No=00l, —50m > Z> —1000 m,

with the ocean bottom at 1000 m depth. The resulting
IW decay times are shown in Fig. 13.

To illustrate the significance of our calculations, we
refer to Table 1, where yearly means for wind speed
and mixed layer thickness are quoted for three locations
on the North Pacific Ocean. We recognize that the
mixed layer is much more complex than accounted
for in our model and can vary significantly in a day’s
time, as can the wind. Reference to Figs. 8 and 10 does,

0.050 —
\WQI\\\\

5‘ 0.025

1

& \ P
\1{\\\

0.000 :

20 60 100

Depth (m)

Fi1G. 11. The negative of the e-folding rate (4.19) shown as a func-
tion of mixed layer depth for j = 1, a wind speed of 10 m s™', and
the SW spectrum (2.21). The curves are labeled by the IW horizontal
wavelength,
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FiG. 12. The IW decay time is shown for the same conditions as
those of Fig. 7, except that the “Patchex” Viisili profile is assumed.

however, suggest that for these areas the first mode
internal wave should decay rapidly, if no source for
maintaining this exists. To be more precise, we are led
to expect IW decay within, perhaps, 10 to 20 days for
internal waves in the wavenumber—frequency range:

horizontal wavelength: 1 to 20 km
vertical wavelength: >1km
frequency/Ny: 0.15t00.7. (4.24)

Theories for the transport of internal wave energy
imply that the long vertical wavelength (low mode
number) waves act as a source of energy which flows
to higher mode numbers, where shear instabilities lead
to turbulent dissipation (for example, see Gregg 1989).
McComas (1978) conjectured on the basis of the work

1000

100 .

Time (days)

0 2000 4000
Wavelength (m)

F1G. 13. As in Fig. 12, except a constant Viisili profile is assumed.

KENNETH M. WATSON

1243

TABLE 1. Yearly average wind speed and mixed layer thickness*
for three areas of the North Pacific Ocean. Data taken from the 1989
U.S. Pilot Charts.

Mean wind speed Average mixed

Location (ms™) layer thickness (m)
50°N, 175°W 9.0 50
35°N, 165°W 7.5 45
25°N, 135°W 6.7 70

* Robinson, M., 1976: Atlas of the North Pacific Ocean Monthly
Mean Temperatures and Mean Salinities of the Surface Layer. Naval
Oceanographic Office.

Reid, J. (private communication) data from 1966 Boreas Expe-
dition.

Reid, J., 1982: On the use of dissolved oxygen concentrations as
an indicator of vinter convection. Naval Research Reviews, No. 3.

of McComas and Bretherton (1977) that the high fre-
quency-low mode number region of the IW spectrum
is fed by an external energy source and that this energy
flows to lower frequency and high mode numbers. The
detailed studies of energy balance within the IW spec-
trum made by McComas and Bretherton (1977) and
by Pomphrey et al. (1980) were not, however, extended
into the high frequency domain where we find strong
SW-IW interactions. The careful analysis of Flatté et
al. (1985) also did not address this high frequency do-
main. The injection of energy from mesoscale current
shears into the IW field occurs within the inertial fre-
quency band, according the calculations of Watson
(1985). Bell (1978) has given a calculation that suggests
that energy can be injected into the internal wave field
at high frequency and low mode numbers by mixed
layer flow. Rates could not be given with confidence
by Bell because of a lack of knowledge of the relevant
environmental parameters.

We are left with an unclear picture of the energy
source (of sources) required to maintain the internal
wave spectrum in the domain (4.24), and in fact of
the actual levels of internal wave energy in this domain.

5. Generation by ocean swell

Several observations have been reported (for ex-
ample, see Apel et al. 1975; Briscoe 1983 ) which suggest
that a strong ocean swell may generate internal waves.
Generation by a sharply collimated swell was investi-
gated by DD, who found IW growth for a sufficiently
narrow SW spreading function and a sharp thermocline
Viisdla model.

In this section we illustrate IW generation from a
narrow band SW system by two mechanisms. The first
is the modulation mechanism as described by (4.10).
The second is generation from a swell wave field that
has a prescribed modulation (not resulting from IW
interactions). Equation (3.15) is used to calculate IW
generation by this mechanism. We can use the exact
resonance condition (4.12) for both of these because
of the relatively long wavelength of ocean swell.
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For the first mechanism described above, we replace
(2.19) by

- <s“2>] (k= k)?/(2A2
S(k) [mAk exp[—(k — k,)*/(247)], (5.1)

where A and k, are parameters. It is supposed that
A<k,

Equation (2.20) is used for the spreading function and
it is now assumed that

a> 1.

We replace the angle 8,,in G by 8, to indicate that this
is the angle between the direction of swell propagation
and that of X.

Conditions (5.2) and (5.3) permit an analytic eval-
uation of (4.10). If we choose 6, to give maximum IW
growth rate (that is, approximately 90°) we obtain

Rate (day ') = 1.7 X 10° Re(p)

_ L9 X10%({* ke’ (92 (5.4)
(KB)*H Kg/’ ’
where
2649\
H=1+ .
(Kbgkp)

Here « is defined by (3.17).

To illustrate (5.4) we choose a swell wavelength of
145m, H =1, 0 = 10, {{*)k,? = 0.04, and the Viisild
profile (4.21). The growth times [ that is, the reciprocal
of (5.4)] for the first three modes are shown in Fig,.
14. Reference to Fig. 4, which describes a similarly
collimated spectrum, illustrates the sensitivity of the

30
Mixed layer depth = 20 m

20
- |
>
(]
X j=1
-3
g ”
i * \

o N S .
0 1000 2000 3000 4000

Wavelength (m)

FIG. 14. The IW growth time [the reciprocal of (5.4), expressed
in days] due to interaction with ocean swell is shown as a function
of horizontal wavelength for the first three vertical modes.
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growth rate on the angle ;. It is seen that e-folding
rates in the range of (1 day) ™! may be expected.

To even a casual observer a swell wave train exhibits
modulation in the direction of its propagation (as a
time record taken at a fixed position would show).
Because the resonance condition (3.3) requires that
the swell angle 6, be nearly 90°, we require modulation
also along the wave crests. One might, for example,
expect such modulation to be related to the width ¢!
of the spreading function. Snodgrass et al. (1966) have
discussed a number of phenomena which may deter-
mine the swell spectrum, such as the dimensions of
the region in which swell is produced, refraction by
currents, and scattering from wind waves, islands, or
shallow areas in the swell path.

We have not, however, found data from which to
model F;in (3.15), so are led to a very simplified model
that illustrates the mechanism and permits analytic in-
tegration of (3.15). We consider the swell to be rep-
resented as a sequence of wave trains, each of length
T and of the form:

FS = pOVk\I’(x9 k) t)9

¥ = M(x,t)S(k)G(8 — 6,),
M(x,1)= 2 P(LY{1 + e Tcos[L-(x - ¢)1},

L

(5.5)
where ¢t > 0 and
2 P(L)=1.
L

Here ¢, is the group velocity of the swell and we suppose
that P describes modulation along the swell crests.
To continue, we assume that E;in (3.15) represents
the IW energy in a restricted band which matches the
resonance condition (3.3). The current U is that due
to this restricted IW band. For Sin (5.5) we use (5.1).
Equation (3.15) may be integrated analytically for
a narrow band collimated swell. We define the average

power received by the IW field as
power = E;/ T, (5.6)

which is appropriate if swell groups such as (5.5) arrive
at intervals 7. We find from (3.15) that

power = 0.25p0(NoB)? Ba(R/ No)( Twy,)>
X [($*)/B*1(P*/(KBT)). (5.7)

Here P is the weighted sum of P(K) over the specified
IW band.

To illustrate (5.6) we take k, = 2x/145 m™', T
=100 s and { {*) = 20 m?. The quantity

power/P?

is shown in Fig. 15 for the first three modes. We see
from these results that if the swell modulation well
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FIG. 15. The IW power per unit area received from a modulated
ocean swell (5.7) is shown for the first three vertical modes as a
function of horizontal wavelength.

matches the IW field that rather intense generation of
internal waves can result.

6. Nonlinear modulation of surface waves

In this section we shall investigate the interaction of
surface waves with an IW packet that has a finite extent
in the x-direction, but is uniform in the y-direction. A
finite packet of internal waves may arise from statistical
fluctuations in the ambient field, from uneven topog-
raphy, or a transient source. In the interest of numerical
simplicity we shall set S = 0 in (3.9). Damping will
be accounted for by ignoring those portions of the SW
spectrum for which a significant SW—-IW interaction
time T; is greater than the relaxation time, or

T;> 87 (k). (6.1)
We express the IW surface current U in the form
U =iV (¢). (6.2)
It is supposed that

Va0 for £E<§ or £>6 (6.3)

and that within the range §, < £ < &,
V =~ cos(KE). (6.4)

We may now write (3.9) in the form
[é ;_E + k, g{;]ﬂ =0, (6.5)

where
£ = Ce(K)(ke/ k) — Cr + UV (£),
y= Cg(k)(ky/k),
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, v
kx._ kaOEz

k,=0. (6.6)

We shall consider only surface waves which travel
in the positive x-direction and overtake the packet. For
those waves which have not yet reached the IW packet,
say at time f, and position £ < §;, we have

F,=F,. (6.7)

Similarly, we have
k = ko, (6.8)

Then having integrated the ray equations (6.6) to a
point (k, £) within the packet we may set

Fi(k, £) = Fa(ko). (6.9)

A simple technique for evaluating F(k, £) is to choose
a specific value of (k, £) and to integrate (6.6 ) backward
in time to a location £ < £,. For ¢ < £, we know that
k = ky. Then with the use of (6.9) we obtain immediately
the numerical value of Fy(k, £).

On integrating (6.6) we must distinguish four tra-
jectory types:

a constant for ¢ < f.

1) those which pass through the packet from &, to

&

2) those which have entered the packet at £, and
are turned back at the point where d¢/dt = 0 [equiv-
alent to the resonance condition (3.4)], and then pass
back out of the packet at £ = £,.

3) those which have been overtaken by the packet
at{=§&

4) those which are trapped within the packet.

We shall ignore the type 3 and type 4 trajectories.
We must, however, calculate the type 1 and type 2
trajectories. The type 1 trajectories do not lead to an
energy exchange between the two fields, since on
emerging from the packet a SW has the same wave-
number as it had on entering.

The rate of energy exchange to the IW field is ob-
tained from (3.8) and (6.9) as

. £2
E, K) = —UoK f ds / L f Phe.k.
£y

X sin(KE)F,(k, £).

Here we have taken L, = & — £,.
As a first example we set

V(&) = 1.46 cos(KE)/ {[1 + exp(—0.5K¢)]
X [1 + exp(0.5K¢ — 6.28)]} (6.11)
and take (here A; is the internal wave wavelength)
standard profile (4.21)
D=20m

(6.10)
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Up=025ms™!

g=0.56ms™!

A;=470m

8, = 30°. (6.12)

This is a strong internal wave, corresponding to a ver-
tical displacement at the thermocline of 8 m.

The resulting modulation function M(k, £) [see
(2.17)] is shown as the solid curves in Fig. 16 for the
location K¢ = 3x. The lines are labeled by the direction
of k and shown as functions of k. The corresponding
results obtained from linear perturbation theory (4.4)
are represented by the dashed lines. The blocking of
the SW field is seen at those values of & where A/ van-
ishes.

To study the energy transfer (6.10) we take

K%), 2 < K S7/2
V(£)={COS( £), w/2 < Kt<5w/

. (6.13)
0, outside above range,

and continue to use the parameters given in (6.12).
We have seen that waves having type (1) trajectories

may be excluded from the integrand in (6.10). We

also exclude those type (2) waves for which the time

FIG. 16. The modulation function M (K, £) is shown for the pa-
rameters (6.12) and a location corresponding to K¢ = 3. The curves
are labeled by the direction of k. The solid curves obtained using
nonlinear theory, the dashed curves from the linearized equation
(4.3).

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

T; to propagate from £ = «/(2K) to the turning point
exceeds 37" [condition (6.1)]. We see, then, that just
as in the linear theory of the last Section, the triad
resonance condition must be met in order that energy
be exchanged between the two fields.

Surface waves reaching the packet (6.13) encounter
an IW current in the negative x-direction. This current
tends to drive the surface waves back out of the packet.
If there is a turning point, corresponding to d€/dt = 0,
this will occur in the interval n/2 < K¢ < w. The ad-
verse current does work on the SW field, so tends to
increase the SW energy. This is seen mathematically
in (6.10), since M > 1 and sin(K¢) is positive in the
interval 7 /2 < K¢ < «.

For the parameters given in (6.12) the expression
(6.10) was evaluated. A characteristic time was ob-
tained:

T, = [Ei(j, K)/E(j, K)]™' = —24 days. (6.14)

For a mixed layer depth D = 80 m, we would have
obtained 7; = —70 days. We note (see Fig. 16) that
for this case waves near the spectral peak do not con-
tribute to the energy exchange.

Because (6.9) is nonlinear, the coupling leads to
spectral transfer within the IW field. For example, let
us consider a second IW mode (j, K') for which

U = Upcos(K'x — cit + o). (6.15)

The total IW current is the sum of (6.13) and (6.15).
If, however, Uyp is too small to significantly modulate
F, then

17)
EG, K) = ~UpkK' [ at /
&

L, f d?kk.c, sin(K'EYF(k, £) (6.16)

where Fj is determined by (6.13) only. Evidently, de-
pending upon the mode (j', K’) either sign may be
encountered in (6.16). The implication of this is that
in the nonlinear regime, energy may be transferred
among the IW modes through SW coupling.

7. Conclusions

We have described mechanisms for energy exchange
between internal wave and surface wave fields. The
important effect in the case of wind waves is the drain-
ing of energy from the IW field in the high frequency,
long vertical wavelength domain. This would seem to
be significant in assessing the factors which determine
the total energy budget of the internal waves. In re-
viewing existing models which describe energy fluxes
into and within the IW spectrum, we have tentatively
identified mixed layer flows as a possible source of the
required energy. Partial depletion of the IW spectrum
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in the region of high energy loss and at times of high
energy loss might occur.

We have not explored here the dependence of the
energy exchange rates on the Viisilid profile. To real-
istically assess the implications for internal wave energy
balance, measured upper ocean profiles of N for se-
lected locations and seasons should be used. Also, this
should be related to historical records of wind speed
for these locations.

As concluded by DD, a well collimated ocean swell
may play a different role in that this can lead to rapid
IW growth. Although this may be locally significant,
it is not expected to be important for the IW total en-
ergy budget.

We have mentioned that external sources of SW
modulation, such as the envelope of swell, wind vari-
ability, and Langmuir cells, may lead to IW generation.
Nonlinear modulation, such as SW blocking, has been
seen to introduce new aspects relating to SW-IW cou-
pling.
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APPENDIX
Derivation of Equation (3.5)

To derive (3.5) we first note that in the mixed layer
the flow can be represented by a velocity potential &
of the form

¢=¢g(x3 z, t)+¢i(x’ Z, t) (Al)

Here x = (x, y) is a vector in a plane of constant z.
The term ¢, contains the high frequency, high wave-
number part of ® associated with gravity waves, while
¢; contains the low frequency, low wavenumber part
of ® associated with internal waves. The vertical dis-
placement of the ocean surface ¢, due to wave motion,
can likewise be represented as a sum of a high frequency
part {, and a low frequency part {;:

§0x, 1) = $elx, 1) + §ilx, 1), (A2)

The SW-IW coupling was obtained in WWC from
Bernoulli’s equation at the surface (here V, is the hor-
izontal component of V):

a{

—+V((V®)=w at z=¢,

3 (A3)

where w is the vertical component of fluid velocity. On
averaging ( A3) over many realization of the SW field
and on extracting the low frequency and low wave-
number part, WWC and DD obtained the relation [ Eq.
(2.12) of WWC or (6.3) of DD]
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9¢;
w; = '5% = <VS'(§.5VS¢S)>LF

=TI(x, 1), (A4)

The symbol { Yor here implies both the ensemble
average over SW field realization and the low pass filter
in frequency and wavenumber. Also, in (A4) only the
second order triad terms are kept.

We may use (2.14) to re-express (A4) in terms of
the SW action density (as was done by DD):

at z=0.

I'(x, 1) = Vs-f d’kkFi(x, k, t)/po.  (A5)

This will be recognized as the gradient of the SW mo-
mentum per unit area. It represents the driver of in-
ternal wave excitation.

To satisfy the condition (3.6) WWC generalized
(2.4):

wi(x, 0,7) = 2 ™ *A4;x W, x(0) + T'(x, t).

Jj.K

(A6)

They then obtained a set of differential equations for
the amplitudes 4j, k. On rewriting these in terms of
the U of (2.7) we obtain (3.5).
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