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Persistence of a Pattern of Surface Gravity Waves 

KENNETH M. WATSON 

Marine Physical Laboratory of the Scripps Institution of Oceanography, 
University of California, San Diego 

The observation of ship Kelvin wakes by the Seasat synthetic aperture radar raises a question 
concerning the persistence of patterns of surface gravity waves. Time scales vary with wavelength 
and environmental conditions. The range extends from fractions of a second at the shortest 
wavelengths to many days for ocean swell. Several mechanisms for destroying a wave pattern are 
investigated here. These are viscous dissipation, direct wind-wave interaction, and nonlinear 
hydrodynamic interaction with ambient surface waves. The nonlinear hydrodynamic interactions 
appear to be the most significant. 

1. INTRODUCTION 

The imaging of surface ship Kelvin wakes by the Seasat 
synthetic aperture radar (SAR) raises an interesting 
question: How long will a given "pattern" of surface waves 
persist? Under conditions of light wind and low sea state 
the Kelvin wake of a vessel may be seen to persist astern 
for some kilometers. Under more robust sea conditions 

the wake persistence seems to be greatly reduced. In this 
paper we shall discuss several mechanisms contributing to 
the decay of such a "pattern." 

Deterministic mechanisms, such as linear wave 
propagation and dispersion and the interaction with known 
large-scale currents, can distort a wave pattern. This, 
however, is in principle predictable and will not be 
considered as "pattern decay." Stochastic mechanisms, 
such as interaction with wind and ambient sea, do lead to 
a genuine decay of the pattern. We note, however, that 
the quantitative criteria for decay may be sensitive to the 
detection algorithm used. 

We shall be principally concerned here with the decay of 
gravity waves in the 0.1- to 4-m range of wavelengths. 
The mechanisms considered for decay imply a strong 
sensitivity to wavelength. For wavelengths less than 10 
cm the time scales as predicted are too short (of the order 
of a second, or less) to be of interest in the present 
context. For wavelengths greater than a few meters the 
predicted time scales become so long that changing 
environmental conditions may be a factor. Patterns of 
swell have been observed to propagate across ocean basins 
[Snodgrass et al., 1966]. The Bragg wavelengths for the 
Seasat SAR were in the 30-cm range i Veseclcy ancl Stewart, 
1982], which is well within the scope of our analysis. 

There are evidently several mechanisms that contribute 
to wave pattern decay. Viscous dissipation seems to be 
the simplest of these. Wind-wave interaction, while 
physically complex, is phenomenologically modeled as a 
simple exponential pattern decay. These mechanisms are 
reviewed in section 3. 

Nonlinear hydrodynamic interactions of the pattern with 
ambient surface waves provide other decay mechanisms. 

Copyright 1986 by the American Geophysical Union. 

Paper number 5C0699. 
0148-0227/86/005C-0699505.00 

In the terminology of wave-wave weak interaction theory, 
both "three-wave" and "four-wave" interactions must be 

considered. It is well-known that for gravity waves the 
three-wave interactions do not admit resonant frequency 
conditions. We shall see that these lead to only partial 
pattern decay. Only if this decay brings the signal-to-noise 
level below the threshold for detectability, can we consider 
the pattern destroyed. The four-wave interactions act on a 
slower time scale than do the three-wave interactions, but 
lead to total decay of the pattern (according to weak 
interaction theories). 

In section 4 we discuss first the three- and four-wave 

interactions of pattern waves with ambient waves of much 
longer wavelengths. The response to a matched filter in 
the space time domain will be described using a technique 
due to Van Kampen [1974]. 

In section 4 we also analyze the pattern response to 
interaction with waves of similar wavelengths. A 
formulation of the Hasselmann [1967] equations given by 
Dungey and Hui [1979] is used for this. 

The evolution of the pattern spectrum is investigated in 
section 5. For the case of three-wave interactions this is 

done explicitly. The effect of four-wave interactions with 
long waves is formulated in terms of diffusion equation in 
wave number space. 

The conclusions of this paper are summarized in section 
6. It is observed that the fastest decay rates obtained 
result from three-wave interaction with long ambient 
waves. When this mechanism is not effective, the 
dominant decay mechanism is four-wave resonant 
interactions with long ambient waves, with the wind 
mechanism being somewhat comparable. 

2. DESCRIPTION OF THE DECAY PHENOMENA 

In a specified "rectangular area of ocean" we use a 
Fourier expansion for the surface wave displacement 
/• (x, t) (x--x, y, a vector in the plane of the quiescent 
ocean surface): 

• (x, t) -- -Im [z (x, t)] 

Z (x, t) = •tbt exp [il.x - tort)] (1) 
Here rOl - (g/) '•. In the approximation that the waves are 
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linear and not forced, the bt are constants. In general, 
bt (t) is time dependent. 

We shall suppose that (1) refers to the ambient sea. 
For the pattern waves we take as a special case of (1), 

•p (x, t) = --[m (Zp) 

Z•, = •Bt, (t) exp [i (k ß x- tokt)] (2) 
We shall suppose that the Bk (0) are fixed, specified 
amplitudes (they determine the pattern) at some reference 
time, say, t = 0. 

Over an ensemble of realizations of the ocean surface 

the bt will be considered to be uncorrelated Gaussian 
variables. The ensemble averaged spectrum W, of vertical 
displacement is 

xIt a (i) d21 = Z • < Ib•l 2 > (3) 
t 

In this paper we shall use a Pierson and Moskowitz [1964] 
spectrum for the ambient sea: 

•(i) = (-•4-4) exp [-0.74 (-•-)2]G(0) 
•q - 4.10-3, lo = g/W 2 (4) 

Here I4' is the wind velocity, g ---- 9.8 m/s 2, and 0 is the 
angle between I and I4 r. We shall specify models of 
G (0) later, but now note the normalization 

•G(O) a0 = • (5) 
For the pattern waves, we introduce the Wigner [1932] 

correlation function 

F, (r, x, t)= • < Z, (x- r/2, t)Zj(x + r/2, t) > (6) 

Here < > represents an ensemble average over the 
ambient sea, as in (3). In performing this ensemble 
average the pattern amplitudes B•,(0) are considered 
deterministic and fixed. The spectrum of vertical 
displacement is 

•p (k, x, t)= f Fp exp (ik.r) d2r/(2rr) 2 (7) 
(It is assumed that x varies slowly over distances 
comparable to pattern wavelengths of interest.) 

The spectrum of wave action F and energy E are related 
to the spectrum of vertical displacement • by the relations 

F = (gpo/tO•)• = E/to• (8) 

where p o is the density of seawater. The Hasselmann 
[1967] equation for the evolution of F is of the Form 

OF 
+ iC.VxF = &• + Sv + Sw (9) 

Ot 

Here 5: -- W•tok, and Sn•, Sv, and Sw represent the effects 
of wave-wave interactions, viscosity, and wind, 
respectively. We have omitted the term in (9) describing 
diffraction by large-scale surface currents or shoaling. To 
the extent that such effects are known, their influence on 
the pattern is predictable and would not lead to pattern 
decay. These effects are sensitive to detail and seem best 
omitted in the present general discussion. 

We may write 

F = Fa + F, (10) 

where Fa refers to the action spectrum of ambient waves 
and Fp to that of the pattern waves. For simplicity, we 
take F• to be a (quasi) stationary solution to (9). Then, 
on inserting (10) into (9) and linearizing in Fp, we obtain 

OFp -1- •C'•xFp = Sn' + S•' + Sw' (11) 
Ot 

The quantities on the right depend linearly on F, and will 
be specified later. 

3. EFFECTS OF VISCOSITY AND WIND 

Viscosity will lead to exponential damping of the pattern 
waves. In the notation of (11) this is expressed as 
[Phillips, 1977] 

(12) 

where •'o • 1.1.10 -6 m2/s 
seawater. The decay time 

= 4vok 2 

is the kinematic viscosity of 

Ta (v) -- l• -• (13) 

is shown as a function of wavelength X = 2rc/k in Figure 
1. 

The rate of wind-induced growth for surface waves has 
recently been reviewed by Plant [1982; see also, Mitsuyasu 
and Honda, 1982]. He concludes that for the growth rate 
of small amplitude waves, 

Sw ' = l• w F, (14) 
in (9). Here 

•w = 0.04u.2k 2 cos 0/to• (15) 

where u. is the friction velocity of the wind and 0 is the 
angle between k and W. 

It seems plausible for our purposes to interpret 

Td (w) --/• (16) 

as a pattern decay time. 
To evaluate (16) we use the analysis of Garratt [1977] 

to relate u. to the wind speed I4,' at 10-m height. The 
resulting time Td (w) is shown in Figure 2 as a function of 
W for several wavelengths X and angle 0 = 0. We note 
from Figures 1 and 2 that for W> 2m/s, Ta(w) < 
Ta(v) when X > 0.1 m. 

4. EFFECTS OF WAVE-WAVE INTERACTIONS 

One simple descriptor of pattern decay is given by the 
correlation function, which we may consider as the output 
of a "matched filter." 

F0(t) = < P[•, (x, 0); t]•, (x, t) > (17) 
Here t - 0 is considered to be the reference time at which 

the pattern is first observed. The quantity 

P[•, (x, 0; t)] 
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Fig. 1. The decay time (13) due to viscous dissipation as a 
function of wavelength. 

represents the predicted field at t, given the initial field 
•, (x, 0). The prediction is to be obtained using known 
deterministic phenomena that may distort the pattern. For 
example, if linear wave propagation is the only 
deterministic phenomenon, then 

P[•p(x,O);t]---Im•{Bk(O)exp[i(k.x-o•kt)]} (18) 
where B•, (0) is the value of B• at t = 0. 

The ensemble average in (17) is considered to be one 
over realizations of the ambient field amplitudes bt, (see 
(1)) with the initial pattern amplitudes Bt, (0) being fixed, 
as in (6). If the pattern could be predicted exactly at time 
t, then F0(t) would represent the mean square pattern 
vertical displacement. Interaction of the pattern with the 
ambient wave field reduces the accuracy of this prediction 
and leads to a mismatch between i•he predicted and aciual 
patterns, causing the correlation, or "filter output," F0 to 
decay with time. 

In this paper we shall assume that (18) applies to 
evaluating (17). Then it is sufficient to calculate the set of 
correlations 

= <& (t)&,,(0)> = <& (t)> &,,(0) (]9) 

We shall refer to a given Fourier amplitude in the pattern 
as a "test wave." 

Under certain conditions we might expect < Bt, > to 
be determined from a Langevin equation of the form 

< & > < &> (20) 
dt 

where v (k) is the Langevin "rate constant." In this case 
we would evaluate (19) as 

yt, t,, = B• (0)B•,(0) exp [-v(k)t] (21) 

We shall see that four-wave interactions, with frequency 
resonance, lead asymptotically to equations of the form 
(20) and (21). 

4.1. Interaction with Ambient Wave Orbital Currents 

As a first illustration of (17) and (19) we consider the 
advection of a test wave k due to the orbital velocity 
U(x, t) of the ambient waves. This current is of the 
form 

U(x,t)=• (•)•o•,[b, exp[i(l.x-o•tt)]-c.c} (22) 
where •--= !/!, using the notation of (1). We may 
assume here that the ambient waves are linear, so the bt 
are constants. We shall also assume that 

I << k (23) 

or the wavelength of the test wave is small compared with 
that of those ambient waves which are of most importance 
for pattern decorrelation. This assumption can be tested 
for verification when we evaluate the decay using the 
spectrum (4). 

If the test wave is advected with the local velocity U, 
we use (23) to write 

B• (t) • B• (0) exp [-ik. U (t') dt'] (24) 

1.0 

0.1 I I I I I • 
0 2 4 6 8 10 12 14 

V•nd speed (nVsec) 

Fig. 2. The decay time (16) due to wind-sea interaction as a 
function of wind speed for several wavelengths. 
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Using the assumed Gaussian distribution of the bk's and 
the relation (3), we obtain 

< Bt, (t) > = Bt, (0) exp I-D3 (k, t)] (25) 
where 

D3(k, t) = f del (k.7) e [1 - cos (rolt)]xIra (I) (26) 
For small t this becomes 

where 

D3 (k t) • cr2t2/ 2 (t ) << 1 (27) , , ro ! o 

For t --• oo, on the other hand, we have 

D3(k, oo) = f d21 (k.•)2•a (I) 

(28) 

(29) 

We note that for the spectrum (4) the assumed condition 
(23) appears to be valid for the evaluation of D3. 

When (27) is valid, we may define an e-folding decay 
time as 

rs (3) = 2'•/cr (30) 

More generally, we may define the decay time with the 
relation 

D3[k, Ta (3)] = 1 (31) 

This equation may or may not have a solution. When 
there is no solution, the advection mechanism is 
ineffective in destroying the pattern. The single e-folding 
condition (31) is arbitrary, and one may wish to define the 
decay time to correspond to several e-foldings. 

The decay relation (25) is not of the form (21). This is 
due to the lack of a frequency resonance in the wave 
interactions. 

4.2 Decay Due to Three-Wave Interaction 

A more systematic and formal description of the decay 
of (19) can be obtained using the method of Van Kampen 
[1974]. To develop this, we begin with the formulation of 
Watson and West [1975]. Their equation of motion, when 
linearized in the pattern amplitudes Bt,, is of the form 

& = T2(B, b) + T3(B, b) + ... (32) 

Here Te and T3 are quadratic and cubic, respectively, in 
wave amplitudes. If we ignore all but the Te term, (32) 
takes the form 

J•tc -' Z AkPBp (33) 
p 

where 

Z t {2rb exp [(ro• -ro, 
+ F•-tb'_t exp [i (ro•: - ro e - rot)t]} (34) 

The coefficients F are defined in Appendix A of Watson 
and West [ 1975]. 

The Van Kempen equation is 

d 
< B• > =-K(t) < B• > 

where 

t 

K (t) = -f 
0 

dr < A• p (t)Ap t' (t - r) > 

(35) 

(36) 

Evaluation of this is straightforward, assuming that the bt 
are constant and Gaussian and that I << k, p. The result 
is 

K (t) - f de/(k. 7)ero sin (6o t)•,• (I) (37) ! ! 

Integration of (35) leads to the expression (25) with D3 
given by (26). 

The three-wave interaction model (33) is thus 
equivalent to the simple advection model described by 
(24). The fact that our decay function D3 does not 
increase indefinitely with time reflects the lack of a three- 
wave resonance. To find true decay to a vanishing pattern 
amplitude, we include the effects of T3 in (32). This 
contains four-wave interactions. Higher order terms 
arising from T2 also contribute four-wave interactions and 
must also be included. 

4.3. Decay Due to Four-Wave Interactions 

Taking account of the four-wave interactions with long 
wavelength ambient waves, we again have an equation of 
the form (33), but with the definition 

i Af = -•- 5'. !,n 

ß exp [i (ro• - ro. + ro, - rot)t] (38) 

The coefficients C here are defined in Appendix B of 
Watson and West [1975] (see specifically their equation 
(47)). Some rapidly oscillating terms have been dropped 
from (38), since these do not contain frequency resonance 
and so do not lead to a true pattern decay. It is assumed 
in (38) that l, n << k, p. 

Evaluation of (36) using (38) now gives the decay rate 
v(t) = Re [K(t)] 

128 

. sinCt) 
B (39) 

where 

• rot- ro,, + c(k).(n- I) (40) 

and c (k) - V•,ro•,. As t --, oo, we obtain 

v(oo) = 49'rr f de I de n •a (I)•a (n) 128 

[k (ronl + roln)] e ß •5(•) (41) 

We see that asymptotically the four-wave resonance leads 
to a Langevin decay law of the form (21). 

For finite times, we have the relation 
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Fig. 3. The limiting decay function (29) due to three-wave 
interactions as a function of wind speed for several wavelengths. 

< Bt• (t) >: Bt• (0) exp [-D4(k, t)] 

where 

t 

D4 (k, t): • •, (t') dt' 
: 49 •d21 d2n • (I)•a(n)[k.(Ioon+noo/)]• 128 a 

(42) 

ß [1- cos (/3t)]/132 (43) 

As t --•oo , we obtain 

D4(k, t)-- •, (oo)t (44) 

To describe the implication of (26) and (43), we first 
assume an isotropic ambient spectrum 

G (0) = 1/(2rr) (45) 

Although not realistic as a wind wave spectrum, (45) leads 
to reasonably accurate decay rates because of the 
integration over wave angles. A more realistic spectrum 
will be considered later. 

Using (45), we can readily express (26) in the form 

D3(k, t)= (•)(k/lo)2J3(s) 

J3(s)--J• [1- COS (X'•S) dx/x 3 
1 

(46) 

where 

s: OO/ot (47) 

and we have replaced the exponential factor in (4) by a 
simple cutoff at I = 10. Similarly, we may evaluate (43) as 

49 2 (k/ lo )2SJ4 (S ) D4(k, t): (•-•r I 

rr 3 J'0 [1 - cos u ]du (48) J4 (s): •- -J- s (u-J-s)3u2 

In Figure 3 we show the limiting decay (29) for three- 
wave interactions for several wavelengths h = 2rr/k as 
functions of wind speed W. When D3(k, oo) is small 
enough that the pattern cannot be considered destroyed, 
the three-wave mechanism is ineffective. We have 

arbitrarily chosen here 

D3 (k, oo) >/ 1 (49) 

as the condition of pattern destruction by three-wave 
interactions. 

We now define a decay time Td as being the smaller of 
T3, T4 where 

D3(k,T3) = 1 

D4(k,r4)-- 1 (50) 

In Figure 4 we show Td as a function of wind speed for 
several wavelengths h. The dashed lines represent an 

1000.0 

100.0 

10.0 

1.0 

0.1 

0 2 4 6 8 10 12 14 
yam • (m/see) 

Fig. 4. The decay time (50) due to three- and four-wave 
interaction. 
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Fig. 5. The decay time (58) due to four-wave interactions. 

interpolation made from T4 (upper region)to T3 (lower 
region). 

A more realistic spectrum than (45) is that of Tyler et 
al. [1974]: 

G (0) = cos s (O)/L (S) 

L (S) = 2(=)'•r (,•s + ,•)/r (,•s + 1) 

where S is a function of k. 

Using (51) we evaluate (28) as 

•r 2 -- •g (k2/lo) [0.8 cos 2 a + 0.2 sin 2 a ] 
or 

cr -'- 0.4(W/X) (cos 2 a + 0.25 sin 2 a) '• 

(51) 

(52) 

Here a is the angle of k with respect to W. Use of (45), 
on the other hand, would replace (52) by o-= 0.3(W/X). 
The consequence of using the spectrum (51) does not 
seem very significant. 

The decay time (30) obtained using the simple 
expression (52) is expected to be valid when 

Ta << W (53) 
g 

4.4. Decay Due to Waves of Comparable Wavelength 

For our discussion of three- and four-wave interactions 

we have assumed the ambient waves to have wavelengths 

much longer than the pattern wavelengths. This has been 
justified because of the peaking of the spectrum (6) at 
wave numbers near 10. To further clarify this, we return 
to the Hasselmann equation (11). We have already 
considered the effects of wind and viscosity, so we now 
write this as 

Ot 
= S•' (54) 

If we assume that F, represents a very small perturbation 
on the ambient spectrum, we can write 

s.•'= - 2,, (k)F,, (k, t) (55) 
where 

2v (kl) -- J' d2k2 d2k3 d2k4 G (kl, k2, k3, k4) 

' {Fa (k2)[Fa (k3) + Fa (k4)] - Fa (k3)Fa (k4)} 
ß •(kl -1" k2- k3- k4) • (O,}k 1 -1" •k 2 -- •k 3 -- •k 4) (56) 

Here G is a function of the indicated four wave numbers. 

A convenient simplification of this equation is given by 
Dungey and Hui [1979] for the case that Fa describes a 
narrow spectrum centered near k•. These author s also 
show that evaluation of (56) can be reduced to a single 
numerical integration when Fa can be represented as a 
sum of Gaussian functions. 

To use the method of Dungey and Hui [1979], we have 
written 

Fa (•)= 
pog 

2•ro• 
exp - 

[;- k•- (-5-)]2 
,82k? 

ß exp [-0.74(1o/kl) 2] (57) 

Here a and/3 are considered to be small parameters and 

(57) represents a "cut" out of the spectrum (4) for I near 
ki. 

Equation (56) was evaluated for a range of values of a 
and fl. The results are illustrated in Figure 5 for the case 
a = 0,/3 = 1/3. The quantity shown is 

T• = Iv(k)] -• (58) 

We estimate that the "narrow band" approximation of 
Dungey and Hui is valid for 0 < fi < 0.5. Over this 
range the decay time (58) scales approximately as 
The variation of (58) with a is less than a factor of 2 for 
a/ko •< 1. We are thus led to conclude from the results 
given in Figure 4 and 5 that the decay rate is dominated 
by contributions from long ambient waves. 

5. EVOLUTION OF THE PATTERN SPECTRUM 

In this section we first study the evolution of the 
pattern spectrum (7) due to the three-wave mechanism. 
Using (24) we write 

Z, (x, t) = Bp (0) exp [i (p.x - ropt - p.R)] (59) 

where 
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Fig. 6. The pattern spectral function (65) integrated over ky, for 
the case that X = 0.1 m and py -- 0. Wind speeds and times are 
indicated. 

p.R = p.j½ U dt' 
o 

= •![(p'•)/] {bl eil'x [exp (--itolt)--l] +c.c.} (60) 
In (59) we have assumed the initial pattern at t- 0 to be 
a plane wave of wave number p. A more general pattern, 
representing a superposition of plane waves, can readily be 
analyzed by the present method. 

The wind velocity vector W= •'W is assumed to be 
directed parallel to the x-axis. The b/'s are supposed to be 
constant and to have a Gaussian distribution, with the 
ambient spectrum described by (4). The expression (6) 
can be evaluated analytically. It is consistent with the 
condition (23) to assume that rl << 1, so we obtain 

Fp(r, t)= •IBp (0)l 2 exp (-ip.r)exp{-fd2l•a(I) 
ß (r.•)2(p./) 2 [/- cos (to/t)]} (61) 

Equation (7) may also be evaluated analytically using the 
expression (61). The result gives the pattern spectrum as 
a function of time: 

ß e(k, t) = •p (O)12/[Srr(cic2) '•] 

ß exp [-(Kx cos 6 - Ky sin 6)2/(4cl) 
- (K,• sin • + Ky cos •) 2/(4c 2)] (62) 

Here 

K=k-p 

cl = cos 2 •bal + sin2•ba2- 2sin •bcos 

c2 = sin 2 •bal + cos2•ba2 + 2sin •bcos 

tan2•6= 2 b / ( a 2 - a l ) rt < ch < rt ' 4 4 

al = f d2lxIta (I)•i'•)2(p'l) 2 [1- cos (to/t)] 
a2 = j•d21xlta (/)(j.•)2(p./)2 [1 - cos (to/t)] 
b - •d21• (I)•i'•)•d"•)(p'l) 2 [1 - cos (to/t)] (63) 

It is straightforward to evaluate these expressions for 
the spectral form (51). This is tedious and seems overly 
elaborate for our purpose. We therefore consider only the 
"peaked" spectrum corresponding to 

G (0) = 8 (0) (64) 

and the isotropic spectrum (45). 
For the peaked spectrum (64) we may simplify (62) to 

the form 

In this case 

•p (k t) - IB•, (0) 12 , 4(rral), • 8 (ky - py) 
ß exp [-Kx2/ (4al)] (65) 

(66) 

1.0 

10-• _ 
-- 

-- 

-- 

-- 

-- 

-- 

-- 

o 

),=0.4 m, t >1 sec 

w = lO m/sec 

-o- w =2o m/sac 

I I 

5 10 15 2O 25 3O 35 

k (m -•) 

Fig. 7. The pattern spectral function for the conditions of Figure 
5 for the case X = 0.4 m. 
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Fig. 8. The decay rate constant/• of (74) as a function of wind speed for several wavelengths 

where 

h •- exp [-0.74 (/o//) 2] [1- cos (tort)] (67) 

For the isotropic spectrum (25) we suffer no loss of 
generality in setting py = 0. Then 

ß p (k, t) = lBt' (0)12 8rr (ala2), • exp [-(kx - p)2/(4al)] 

Now, 

ß exp [- ky2/(4a 2)] (68) 

3 2 1 2 
a•= •p,;h , a2= •P,;h , b= 0 (69) 

where h is given by (67). 
The integral (67) requires a cutoff at large I and 

depends logarithmically on this cutoff. Thus the scale 
separation condition (23) is not automatically satisfied by 
the spectrum (4), but must be imposed. For numerical 
evaluation we have done this by inserting a factor 
[1 + (21/p•)2] -• into the integrand in (67). In spite of the 
arbitrary imposition of a scale separation, our spectral 
evolution equations appear to be of some interest. 

As was the case with the decay, as described by (29), 
the spectral spreading reaches an asymptotic limit for large 
t. To illustrate our model, we consider the peaked model 
(65) for the case that Py = 0. The spectrum is shown in 
Figure 6 fork= 2rr/P=O. lm and W= 1 and 10 m/s. 
In Figure 7 we show the spectrum for X- 0.4 m and 
W= 10 and 20 m/s. The spectrum described by (68) is 
similar but evolves in both horizontal dimensions. 

For these examples the asymptotic variance in the wave 
number is much less than the initial wave number of the 

wave train. Nevertheless, this spreading can decorrelate 
the wave phase coherence for a wave train of many 
wavelengthsß 

We have seen that four-wave interactions lead to an 

irreversible redistribution of wave energy in wave number 
space. This is described by the term S,t' in (11). In the 
general case this is a very complex phenomena and 
beyond our present scope to discuss. For the case that the 
scale separation condition (23) can be assumed, S,/' 
reduces to a simple diffusion mechanism 

S,'= D,• Ok• (70) 
Weak interaction theory leads to the expression (see, for 
example, Appendix A of McComas and Bretherton [1977] 

t t 

o'=T < , 
Here U is given by (22). For our application with the 
spectrum (4), the scale separation condition must be 
imposed by introducing a cutoff for wave numbers greater 
than some value, say, /max. For this reason, only a brief 
qualitative discussion of (70) and (71) seems justified. A 
scalar diffusion coefficient, D = •[Dll + D22] , appears 
sufficient, then, to characterize the diffusion. For the 
spectrum (51) we obtain 

D • 3.10-4k2roc , rOc = (glmax) • (72) 
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The variance Ak in an initial wave of wave number k is 

estimated at time t as 

Ak = (Dr) '• = 2.10-2k(o•ct) '• (73) 

If we assume o•c • 1 s -1 as reasonable, (73)implies 
times of the order of 103 s for significant pattern 
distortion. This is not incompatible with the four-wave 
time scales of Figure 4. 

6. SUMMARY AND CONCLUSIONS 

We have seen that persistence times for surface gravity 
waves can vary from fractions of a second to many days 
for ocean swell [Snodgrass et al., 1966]. Mechanisms 
studied in this paper that lead to wave pattern decay are 
viscous damping, air-sea interaction, and three-wave and 
four-wave interactions. 

The three-wave interactions tend to have short time 

scales but do not lead to wave decay or energy transport 
across the surface wave spectrum. As is seen in Figures 6 
and 7, these interactions lead to only a very limited 
spreading in wave number. If this fine spectral detail is 
not important for a specific application, the three-wave 
process should be omitted in assessing decay rates. 

In this case it is convenient to summarize our 

calculations of surface wave relaxation in the form of 

single decay constant /3 (see Hughes [1978] and Phillips 
[1984] for a related model): 

Sn• + S•, + So, =-t3F. (74) 
Here we have set 

t• =/• + t•w + 2• (75) 

(see (12), (15), and (39)), neglecting the three-wave 
contribution. The assumption of additivity made here 
appears reasonable, since for any given set of wavelengths 
and wind speeds, one of the three terms in (75) tends to 
dominate. 

The relaxation rate fl is shown in Figure 8 as a function 
of wind speed w for several wavelengths h. At the two 
longest wavelengths shown the air-sea interaction gives 
the most significant contribution to 0. (The four-wave 
contribution in Figure 8 is negligible unless 
h << 2•' w2/g). 
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