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In this study the assimilation of HF radar data into a high resolution, coastal Wavewatch III model is
investigated. An optimal interpolation scheme is used to assimilate the data and the design of a back-
ground error covariance matrix which reflects the local conditions and difficulties associated with a
coastal domain is discussed. Two assimilation schemes are trialled; a scheme which assimilates mean
parameters from the HF radar data and a scheme which assimilates partitioned spectral HF radar data.
This study demonstrates the feasibility of assimilating partitioned wave data into a coastal domain.
The results show that the assimilation schemes provide satisfactory improvements to significant wave
heights but more mixed results for mean periods. The best improvements are seen during a stormy per-
iod with turning winds. During this period the model is deficient at capturing the change in wave direc-
tions and the peak in the waveheights, while the high sea state ensures good quality HF radar data for
assimilation. The study also suggests that there are both physical and practical advantages to assimilating

partitioned wave data compared to assimilating mean parameters for the whole spectrum.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Observing and modelling waves in coastal regions is important
for applications such as shipping, offshore engineering and devel-
opment of sea defences. Data assimilation is a process by which
models and observations are combined to give the best estimate
of the true state, known as the analysis. It is a useful tool for initial-
ising forecasts and optimising hindcasts which in turn can improve
our understanding of the ocean and coastal conditions.

Data assimilation into wave models is a relatively new subject.
While data assimilation into atmospheric models began in the
1950s and 1960s, data assimilation into wave models was not ad-
dressed until the 1980s. In the 1980s the higher quality of the wind
fields being produced by atmospheric models and the increase in
wave observations through the introduction of ocean satellite ra-
dars such as the SAR (Synthetic Aperture Radar) were instrumental
for the extension of assimilation to wave models. The majority of
wave models in operational use are third generation spectral wave
models. In general it is not practical to assimilate the whole two
dimensional wave spectrum into these wave models. The main
reason is due to the difficulty of calculating an analysis for all the
spectral components and the high computational cost involved
with doing this. The limited availability of full frequency-direction
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spectra from observations has also restricted the possibility of
assimilating the whole spectrum. Furthermore, correlation exists
between spectral components and ideally this would need to be
specified if assimilating the spectrum directly. This correlation
would be difficult to define and would further increase the cost
of the scheme. So as an alternative most authors have chosen to
assimilate a selection of mean parameters and wind parameters
such as significant waveheight (Hs), mean period (7z), wind speed
and wind direction. But since the wave models are spectral models,
an analysis spectrum needs to be generated by adjusting the origi-
nal model spectrum using the assimilated parameters.

Various schemes have been proposed, some are as simple as
scaling the whole model spectrum to the analysis wave height,
for example Esteva (1988) and Bauer et al. (1992), while others
(Thomas, 1988; Foreman et al., 1994; Francis and Stratton, 1990)
consider the windsea and swell parts of the spectrum separately.
Lionello et al. (1992) classified a spectrum as either windsea, swell
or mixed windsea and applied different techniques for scaling the
spectrum dependent on the classification.

By the mid 1990s the idea of assimilating partitioned spectral
wave data had been proposed (Voorrips et al., 1997; Hasselmann
et al,, 1997). The idea was that rather than splitting the wave spec-
trum into a windsea and swell component using methods for char-
acterising a windsea from the local wind, a more elegant
partitioning method based on the topography of the spectrum
could be used to identify all the component wave trains present
(allowing for more than one swell wave train). It is then assumed
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that each partition within the spectrum represents a different
wave train with a unique meteorological origin and thus, that each
partition is uncorrelated. The analysis mean wave integrated
parameters for each partition can then be calculated and each par-
tition can be adjusted separately.

Voorrips et al. (1997) assimilated partitioned pitch and roll
buoy spectra into a North Sea implementation of WAM. The frame-
work for the assimilation was an optimal interpolation method and
each partition was scaled in energy and shifted in frequency and
direction to obtain the partitioned analysis energy, mean fre-
quency and direction. Hasselmann et al. (1997) also used an opti-
mal interpolation method and assimilated partitioned Atlantic
ERS-1 satellite radar data into the WAM model.

To date, most assimilation into wave models has been con-
cerned with global or ocean scale models; there has been little con-
sideration of data assimilation into coastal regions until recently
(Siddons, 2007; Siddons et al., 2009; Portilla, 2009; Sannasiraj
and Goldstein, 2009). Data assimilation into a coastal model poses
specific problems compared to a global model. Wave conditions in
regional models vary on much shorter temporal and spatial scales
and are sensitive to changes in bathymetry and sheltering from
coastlines. The error covariances therefore need to be designed to
reflect the complex coastlines and bathymetry of a region. It is
important that deep water points are not strongly correlated with
shallow water locations to avoid instabilities in the data assimila-
tion results. Much like global models, an important source of error
comes from the wind forcing but this will occur at different scales
in a regional model and regional models may also expect errors
from their boundary conditions.

Siddons et al. (2009) assimilated Hs and Tz data from an OSCR
(Ocean Surface Current Radar) HF (High-Frequency) radar located
off the East Coast of England into the SWAN model. He tested three
different assimilation techniques; 3D-VAR, an ensemble optimal
interpolation (ensemble-OI) and an ensemble Kalman Filter
(ensemble-KF). The results showed some overall improvements
for the 3D-VAR and ensemble-OI methods, however, results from
the ensemble-KF method were inconsistent. Siddons et al. (2009)
suggested that incorporating spatially correlated errors and
removing biases could improve the performance of the data assim-
ilation schemes. He also stressed the need to apply strict quality
control to the HF radar data. Portilla (2009) assimilated data from
a single buoy off the Belgium Continental Shelf into a near shore
configuration of the WAM model. He assimilated mean parameters
(Hs and Tz) using an optimal interpolation scheme and investigated
some different methods for parameterising the gain matrix. The
parameterisation of the gain matrix allows for information to be
spread in way which is consistent with the wave conditions in
the region, but makes it difficult to extend the method to multiple
observations. Portilla (2009) found improvements to the scatter in-
dex and RMSE and showed that in moderate wind conditions the
benefit of assimilation could last for several days. Portilla also dis-
cussed assimilation of partitioned data and highlighted that the
main task for this application would be the specification of an
effective partition cross-assignment scheme.

Sannasiraj and Goldstein (2009) also used the optimal interpo-
lation method to assimilate buoy data into WAM. They considered
the Arabian sea region and assimilated significant waveheights
from 3 different buoys into their model. They found their method
to be computationally efficient and noted that the root mean
squared error in the analysis waveheights was reduced by 30-
50% in their study.

This study considers the assimilation of both mean parameters
and partitioned wave data from an HF radar into a Celtic Sea wave
model. An optimal interpolation (OI) method is used to assimilate
multiple HF radar observations and a technique based on the Quick
Canadian (QC) covariance method (Polavarapu et al., 2005) is used

to estimate the wave model background error correlations for the
region. The background error covariances are parameterised using
these correlation lengthscales and parameterisations based on the
bathymetry and climatological conditions of the region. Unlike the
studies of Portilla (2009) and Sannasiraj and Goldstein (2009), this
study implements data assimilation of wave partitions in a coastal
region and compares the results to a twin study which assimilates
mean parameters of the whole spectrum.

2. Wave model and observations
2.1. Wavewatch III

The model used in this study is Wavewatch III version 2.22
(hereafter WW3). It is a third generation spectral wind-wave mod-
el which solves the action balance equation. The full details of the
numerical expressions used in WW3 are provided in Tolman
(2002), Booij et al. (1999) and Ris et al. (1999). WW3 uses an expli-
cit numerical scheme and in this study the Tolman and Chalikov
(1996) combined input and dissipation source term is applied,
the Hasselmann et al. (1973) empirical JONSWAP model is used
for the bottom friction and the discrete interaction approximation
(DIA) of Hasselmann and Hasselmann (1985) is used to model the
quadratic non-linear wave-wave interactions.

For this study the WW3 model was run for the Celtic Sea region
using NGDC GEODAS bathymetry data from 9 W to 4 W, 50 N to
55N, with a resolution of 3%” (see Fig. 1). WW3 was forced with
hourly 12 km resolution analysis winds from the UK Met Office
atmospheric model and 12 km current and water level fields from
the POLCOMS shelf sea model. The Celtic Sea model was nested
within a %” North East Atlantic model, which in turn was nested
in a lower resolution North Atlantic model. The North Atlantic
model was run from 15/12/2004 and provided hourly boundary
conditions for the North East Atlantic model which was run from
11/01/2005. The Celtic Sea model was initialised from zero at
11/01/2005 (the first 2 days were considered as spin up) and was
forced with hourly boundary conditions from the North East Atlan-
tic model. The WW3 model used spectra with 25 frequencies

Bathymetry (m)

Fig. 1. The Celtic Sea model bathymetry.
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covering a range from 0.041-0.404 Hz, and 24 equally spaced
directions. For the WW3 Celtic Sea Model a global time step of
1 h was used along with a Courant Friedrichs Lewy (CFL) time step
of 60 s. The model produced spectral and field outputs at hourly
intervals.

2.2. Observation network

HF radars are remote sensing tools which are capable of mea-
suring waves, currents and winds from electromagnetic back-
scatter from the ocean surface. Two radars are required to
derive current vectors and perform a full directional wave inver-
sion (Wyatt, 1987). They produce good spatial and temporal cov-
erage in coastal regions and are land based so are easy to access
and maintain. A dual Pisces radar system was trialled in the Cel-
tic sea between South Wales and North Devon between Decem-
ber 2003 and June 2005. The two radars were located at Nabor
Point in North Devon and Castlemartin in South Wales and each
had 3 beam directions giving a total of 9 intersection points
where directional data is available. Fig. 2 shows the radar sites
and cell locations. The radar operated for around 19 min at each
beam location. This provided 3 bin locations where data was
measured simultaneously, data for the other 6 points were com-
bined using an assumption of wave field stationarity over the
timescale of an hour to give hourly coverage for the whole re-
gion. The range resolution of the radar was 15 km and the radar
was operational at various frequencies between 5-11 MHz. A re-
port on the Celtic Sea Pisces radar by Wyatt et al. (2006) found
that the radar data was available for 96% of Nabor Point obser-
vations and 97% of Castlemartin observations and that dual ra-
dar wave data was consistently available 50-60% of the time.
This does not include observations at radar bin 3 where the sig-
nal to noise ratio was persistently low with only 16% dual radar
wave data availability.

There are also various buoy locations marked on Fig. 2 which
are independent observations used for validation. All of these are
non-directional buoys with the exception of the Lundy Waverider
buoy which is collocated with radar bin 4 and the St Ives buoy. The
Lundy buoy produces the frequency spectrum at 64 frequencies
between 0.024 Hz and 0.58 Hz.

Fig. 2. The Pisces Celtic Sea HF radar. The two radar locations are marked along
with the 3 beam directions and 9 dual radar bins. The St Ives, Turbot Bank, M5 and
FS1 buoys are marked by circles on the map and the Lundy directional waverider
buoy was collocated at radar bin 4.

2.3. Experiment set up

The WW3 Celtic Sea model was run for a 36 day period (plus
2 days of spin up) from the 13/01/2005. Fig. 3 shows the model
wind direction and speed during this period. The winds are pre-
sented in oceanographic convention (waves travelling towards
the direction). The winds travel in a variety of directions during
the period, although the predominant wind conditions are winds
travelling towards the North-Northeast with a mean wind speed
of 9 m/s. There are 2 stormy periods identified in the winds, a per-
iod between 16/01/2005 and 20/01/2005 which coincides with a
period of no Lundy buoy data and a period between 10/02/2005
and 15/02/2005. This study trials the assimilation of partitioned
and mean parameter HF radar data from the Pisces HF radar into
the Wavewatch Il model for a 7 day period between 22:00 08/02/
05 and 22:00 15/02/05. This period was chosen because of the stor-
my conditions which caused high Hs and ensured higher quality HF
radar data (see Wyatt et al., 2006 and Section 2.4). There was also
good continuous availability of buoy data for validation during this
period. Data was assimilated from 8 radar bin locations (radar bin 3
was excluded for the reasons given above). Fig. 3 also shows a close
up plot of winds for the trial period. During the period the mean
wind speed is 11.5 m/s and the winds are turning from a North-East
direction to a South direction. The plot of bathymetry in Fig. 1
shows the shape of the coastline in the region of interest. The region
is sheltered to the North-West and East, and therefore typical swell
systems in the region will be travelling East to North-East.

2.4. Comparison of observations and model during the experiment
period

Fig. 4 shows time series of the HF radar bin 4, Lundy buoy and
collocated WW3 data over the 36 day WW3 period. For Hs, the
buoy, radar and model data compare well. Peaks in the Hs associ-
ated with the two stormy periods shown in Fig. 3 are identifiable
in the data. WW3 has a tendency to underestimate the Hs, partic-
ularly during peak events. This is in agreement with results from
Cavaleri (2009) who showed that wave models miss extreme
events. The results for Tz are more variable. During periods of
low Hs the radar Tz is very scattered. However, better correlations
are observed in the radar data during the stormier periods. A de-
tailed analysis of the HF radar data was provided by Wyatt et al.
(2006), and this showed that the HF radar produces higher quality
results in high sea states. The mean directions from the buoy, radar
and WW3 are quite well correlated. Again, results are improved in
the HF radar during high sea states.

3. Spectral partitioning

Spectral partitioning separates a wave spectrum into it’s com-
ponent wave trains. It is a useful technique which allows a spec-
trum to be represented with a reduced set of statistics without
being averaged over the entire spectrum. It has practical applica-
tions for windsea and swell identification, swell tracking, noise re-
moval, system validations and comparisons. It can also be used in
data assimilation to develop more sophisticated schemes. It is
common to assimilate mean parameters such as Hs and Tz into
wave models but assimilating integral parameters from partitions
allows for more information on directional characteristics and
spectral shape to be included in the analysis spectrum in a physi-
cally meaningful way.

The spectral partitioning technique used in this study is a steep-
est ascent method applied in 8 directions, see Hasselmann et al.
(1996), Voorrips et al. (1997) and Hanson and Phillips (2000). It
is necessary to apply some post processing of the partitioned
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Fig. 4. Time series of data from the HF radar, Lundy buoy and WW3. The top plot is Hs, the middle plot is Tz and the bottom plot is mean direction.

spectrum to remove and/or combine spurious partitions. In this
study the following criteria for combining and discarding parti-
tions are used (based on those of Hasselmann et al., 1997; Hanson
and Phillips, 2000):

1. The peaks are too close - the partitions should be combined if
their peaks are only a grid point apart

2. The trough separating the peak is not low enough - the partitions
should be combined if the lowest point between the two peaks
is higher than A% of the lower of the two peaks.

3. The spread is larger than the square distance between the peaks -
the partitions should be combined if B5f? > Af? for either of the
partitions. See the appendix for definitions of 5f2 and Af2.

4. The partition’s energy is too low - discard partitions with energy
below 1% of the total energy. This eliminates any peaks in the
noise floor.

For the HF radar spectra, A = 70 and B = 0.5, for the WW3 spectra
A =75 and condition 3 is not applied. These parameters were cho-
sen based on the characteristics of the spectra and by consideration
of the results produced and number of partitions determined from
hourly spectral data over a 36 day period. Further details of how
these criterion have been chosen see Waters (2010). The key find-
ings were that the HF radar produces noisy spectra with a high
noise floor and the parameters are tuned to deal with these char-
acteristics. Meanwhile WW3 spectra have a tendency to be
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smoother than observed spectra with less spurious information
and thus condition 3 is not applied and A is set at a larger value
to prevent over-combing of wave trains.

4. Data assimilation method

Ol was first introduced in the 1960s by Gandin (1965). The anal-
ysis x, is calculated with the following equation

x* = xb + BH"(HBH' + R)"' [y° — HX'] 1)

where x? is the background state and y° is the observed state. The
matrix B is the background error covariances, R is the observation
error covariances, H is the linearised observation operator which
maps the model onto observation space.

4.1. Error covariances

One of the fundamental challenges of the OI scheme is the spec-
ification of the error covariances. In general the observation errors
are assumed to be spatially uncorrelated which reduces R to a diag-
onal matrix of variances. In order to maximise the benefit of a data
assimilation scheme, it is necessary to define a spatially correlated
B matrix. Defining the spatial correlations of the errors is a non-
trivial task. In the majority of studies on wave data assimilation
standard statistical correlation functions such as Gaussian func-
tions have been used to parameterise the background error covar-
iances. Some authors have simply estimated an appropriate
correlation lengthscale, for example Bender and Golwacki (1996)
chose an arbitrary lengthscale of 350 km which corresponded to
6 grid points in their model. Others have applied techniques such
as the Hollingsworth and Lonnberg method (Wittmann and Cum-
mings, 2005) or forecast difference ensemble methods (Greenslade
and Young, 2005) to estimate the lengthscales.

The above mentioned cases are examples where observations
are being assimilated into regional or global models. In this study
the model configuration is a high resolution coastal run where
background error correlations are more difficult to accurately mod-
el. Assimilating into nearshore or coastal regions is problematic be-
cause it is difficult to define a background error covariance
structure which can well represent a complex coastline and
bathymetry. There are also particular issues in how deep and shal-
low water model points should be correlated. Initial test runs in
this study found that if a simple isotropic function is used to gen-
erate the background error covariance matrix in a coastal region,
problems can arise when assimilating into shallow water locations.
For example, the analysis Hs correction can be larger than the mod-
el’s waveheight at a particular location. Care thus needs to be taken
to ensure that the analysis waveheights do not become negative
and that changes to Tz are not unrealistic.

Portilla (2009) assimilated data from one buoy into a nearshore
model run of WAM off the coast of Belgium. In order to deal with
the complexities of assimilating into a coastal region he tested two
techniques for parameterising the gain matrix. The first method
used long term model estimates. For various mean parameters,
correlations between the different model locations were calcu-
lated. The gain matrix was then generated as the product of the
Hs, Tz, mean first moment period (T1), wind speed and peak peri-
od correlations and a bathymetry and distance factor. The bathym-
etry factor prevented assimilation in shallow waters and the
distance factor was a Gaussian function dependent on distance of
separation. The second method was a dynamic technique where
the gain matrix was calculated at each time step using a similar
structure but short-term model data. These techniques provide a
correlation structure which better suits the shape of the coastline,
however, the correlations are based on the spatial variation of the

mean parameters, not on their errors. It should also be noted that
although this technique uses the framework of an optimal interpo-
lation method, the parameterisation of the gain matrix (the gain
matrix is calculated directly rather than from the model and obser-
vation errors) reduces the technique to a successive correction
method.

Sannasiraj et al. (2006) tested a data assimilation scheme where
the background error covariance structure was calculated from an
ensemble of model runs generated by an ensemble of windfields.
In that study it was assumed that the model was perfect and that
errors are due to errors in the input winds.

The methods for calculating the error covariance used in the
experiments presented are now described.

4.1.1. Error variances

The variances for the HF radar and WW3 are estimated by tak-
ing the mean squared difference (MSD) with the Lundy buoy data.
It should be noted that the variance is only equal to the MSD when
there is no bias. The HF radar MSD is calculated using the radar bin
4 data and the same variance is assumed for all radar bin locations.
The errors in the radar may vary depending on distance from the
radar stations and location in the region. However, at this time
there is only quantitative data for radar location bin 4 since this
is the only location collocated with buoy data. In WW3 the MSD
is also calculated from data at the radar bin 4 location and the
background error covariance is then scaled to ensure that the var-
iance is equal to that calculated from the data. In this study the
MSD calculated over the data assimilation period is used rather
than the MSD from a larger data set. This is because the period
for the data assimilation has been chosen as a period where the ra-
dar performs well; if errors from a longer period were used they
are likely to be much larger. The errors are presented in Table 1.
The HF radar errors are larger than those from the model, but this
does not mean that assimilating the HF radar can not be beneficial.
The model and HF radar both have skill in different conditions.

4.1.2. Observation error and the observation operator matrix

In this study the HF radar errors are assumed to be spatially
uncorrelated, this reduces the observation error covariance to a
diagonal matrix with the variance along the diagonal. Since the
same variance is assumed for all observation locations the observa-
tion error covariance matrix can be written as:

R=VI )

where V is the HF radar variance (see Table 1), I is an m by m iden-
tity matrix and m is the number of observations (which is at most
8).

The observation operator matrix, H, is an n by m matrix, where
n is the number of model points and m is the number of observa-
tions. In this case it is specified as a simple matrix consisting of
ones and zeros. The ones correspond to model points where obser-
vations exist. In general, the observation locations are not exactly
collocated with the model points, but to maintain the simplicity
of H the nearest model point is matched to the observation loca-
tion. The form of H means that BH' reduces to an n by m matrix
where each column consists of the error covariances of a model
point collocated with a radar bin with all other model points in

Table 1

MSD for the HF Radar and WW3.
Parameter Radar MSD WW3 MSD
Hs (m) 0.198 0.148
Tz (s) 2272 0.390
fm (1]s) 0.001373 0.000293
Om (rads) 0.305 0.070
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the domain (e.g. such as the data shown in Fig. 5). This reduces the
cost of Eq. (1) since the largest matrix to compute and store is an n
by m matrix.

4.1.3. Background error correlations

The method used for calculating the background error correla-
tions in this study are based on the Quick Canadian covariance
method. The Quick Canadian covariance method (QC) was imple-
mented by Polavarapu et al. (2005) in the Canadian Middle Atmo-
sphere Model data assimilation scheme. In their application,
background error covariances were calculated from 6 h difference
fields. Jackson et al. (2008) tested the QC method in a tropo-
sphere/stratosphere configuration of the Met Office assimilation
system. The authors compared the covariances with those pro-
duced using a technique referred to as the NMC method (Parrish
and Derber, 1992). They found that as well as being a much quicker
method, the QC also produced covariances which were of similar
quality (and in some cases better quality) than those from the
NMC.

The version of the QC method in Eq. (3) was used to calculate
the error covariances using Hs field data from WW3 outputted at
1 h intervals. The model data was from the 36 day WW3 run de-
scribed in Section 2.1 and there were a total of 853 output times.
Fig. 3 shows that the 36 day period covers a range of different wind
conditions. In Eq. (3), B; is the background error covariance be-
tween model grid locations i and j, the subscripts t and t + 1 refer
to time and time plus 1h, respectively and (Hs;,; — Hs;) denotes
the mean of the 1 h Hs difference over the 36 day period:

Bij = ([(Hsci1 — Hsi) — (Hseo — Hso)J[(Hser — Hse) — (Hseir — Hso)l)
()

Using the 1 h difference fields is consistent with the temporal reso-
lution of the forcing fields and the high temporal variability of a
coastal region.

The spatial background error covariance structure for each of
the 8 HF radar locations calculated using Eq. (3) are shown in
Fig. 5. The covariances are fairly Gaussian in their structures but
small close to the coastline and in shallow waters. The correlations

are strongest in the North-East direction and there are weaker cor-
relations to the North of the region. This is related to the prevailing
wind conditions and direction of swell in this region. The QC meth-
od does generate some negative covariances and these were set to
zero. Although it is possible to have negative covariances, it is as-
sumed that these regions will generally be far from the observation
locations and thus these locations are decorrelated to avoid spuri-
ous results. Fig. 5 shows that regions with zero covariance are
either close to the coast or far from the radar bins.

4.1.4. A SOAR model for the background error correlations

In this study, the covariances in Fig. 5 are used to determine
correlation lengthscales and a parameterisation for the background
covariance. Fig. 6 shows a plot of the covariances against distance
of separation for all 8 locations. Functions can be fitted to the data
to attempt to produce a model for the covariance. Gaussian and
second-order autoregressive (SOAR) functions with both one corre-
lation length scale and two length scales are shown on the plot.
The SOAR function with two length scales appears to give the best
fit to the shape of the data (by eye), this has the form:

_ i T 7] T
P(r)_V1(1+Ll)exp( L]>+V2(1+L2)exp( Lz) (4)

where P(i,j) is the covariance of model points i and j, V denotes var-
iance, L denotes correlation lengthscales and ry is the distance be-
tween model points i and j. A chi-squared method was used to
find the best fit for the lengthscales. These were found to be
L; =11.35km and L, =99.53 km and this function is shown as
the thick black line in Fig. 6. It is generally assumed that the errors
within wave model outputs are highly dependent on errors in the
windfields. It is therefore interesting that the lower correlation
length scale 11.35 km is very close to the 12 km resolution of the
Celtic sea winds. It is also possible that the higher length scale could
be related to the resolution of the North Atlantic winds which is
70 km. The length scale is possibly larger than this value due to
the fact that waves are dispersive and these lower resolution winds
will be responsible for swell seen in the Celtic sea region. However,
the results in Fig. 6 do appear quite scattered, this is partly due to
the assumption of the function fitting that the spatial covariances

Cell 4

Fig. 5. The background error covariances calculated from the QC method. The covariances are valid at the 8 HF radar locations.
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Fig. 6. The QC covariances plotted against distance of separation for all 8 radar bins.
L refers to the correlation lengthscales.

are isotropic and homogenous throughout the region. This is unli-
kely to be true due to the shape of the coastline, but the assumption
does provide an indication of the likely correlation length scales.

The correlation function in Eq. (4) is scaled to have a total var-
iance equal to the MSD in Table 1. Thus, for Hs the chosen back-
ground error covariance is:

Pi(ij) = 0.063(1+ 17 5-) exp (- 17 42)

+0.085(1 + ggr%) exp (- ggr%) 5)

Where r;; is in km and P, (i,j) is in m? Eq. (5) models the spatial
covariance structure, however, it does not take into account the var-
iability in depth. Shallow water points are poorly correlated with
the observation locations (which have depths between 54 and
104 m) and thus it is necessary to decorrelate observations in shal-
lower water. In order to deal with this an exponential function of
the following form is used:

- 1 d; > 50m
Py(i,j) = { exp [_([50 —dj] /23)4} d; <50 m

(6)
where P, (i,j) is a covariance between the model point i (assumed to
be collocated with a radar bin), j is any other model point and d; is
the depth at the model point j. The depth threshold of 50 m was
chosen as a value just below the depth of the shallowest observa-
tion (it is assumed that the depth does not have an impact at the
observation locations). The power of four used in the function
was selected to ensure a slow fall off in the correlations for depths
between 30 and 50 m but correlations converging to zero at depths
below 15 m. For model locations with depth below 15 m, assimilat-
ing information was found to cause unstable results. Waves in these
shallow water locations will be governed by very different pro-
cesses to those at the observation locations.

A test study assimilating mean parameters from the Lundy buoy
using the QC background error covariance found that assimilating
into the northern region of the Celtic Sea had a tendency to cause
unrealistic results in the Tz. This is because this region is much
more sheltered from swell and thus does not correlate well with
observation locations. In fact, when the QC method is applied with
Tz rather than Hs, shorter spatial correlation length scales are
found, particularly to the north. However, the QC method applied
with periods is much more sensitive to noise and gave a more spi-
ky covariance structure and thus has not been used. Analysis of the
Tz covariances and results from the buoy assimilation test suggest
that the covariances need to be reduced North of 51.9 N. The

following exponential function is used to gradually decorrelate
the Northern part of the domain:

{ 1 ¥y <51.9N

ij) =
J.J) exp[-3.6(51.9 —y(,-))z] Y > 519N

)

where f(i,j) is a covariance between the model point i (assumed to
be collocated with a radar bin), j is any other model point and y; is
the latitude at the model point j. Egs. (5)-(7) are combined to pro-
vide a description of the error covariances at the model points col-
located with radar bins and all other model points in the domain.
This can be written as follows:

P(i,j) = P1(i.j)P2(i,j)f (i.) 8)

Furthermore, any covariances between the radar bin locations and
the North West of Ireland and South of Cornwall are set to zero
since these regions are separated from the observation locations
by land. Finally, covariances values below 0.09% of the maximum
covariance are set to zero to prevent inefficient data assimilation
into areas with very low correlation. This value is chosen to have
a small impact on the results but to improve the efficiency of the
data assimilation. It is a rather arbitrary choice and could be subject
to further tuning.

4.2. Data assimilation method

Two data assimilation schemes are tested: a mean parameter
assimilation scheme and a partitioned integral parameter assimila-
tion scheme. The methods are described in this section.

4.2.1. Mean parameter (MP) data assimilation

In the MP assimilation the parameters assimilated are Hs and Tz
for the whole spectrum. The analysis mean parameters are calcu-
lated from the OI equation (see Eq. (1)). Since WW3 is a spectral
wave model it is necessary to calculate an analysis wave spectrum
from the analysis Hs and Tz. This is done by stretching the spec-
trum in the frequency domain and scaling its energy. The analysis
spectrum is calculated from the background model spectrum using
the following equation:

- (5 5P}

Since the model wave spectra are discretised it is necessary to inter-
polate the spectrum in order to calculate the analysis. In this study a
simple linear interpolation technique is used; it is not possible to
use polynomial or spline interpolation techniques as they may al-
low negative spectral values in low energy regions of the spectrum.
In order to deal with cases when the adjusted spectral frequency is
outside the model’s frequency range an exponential function of the
following form is used:

Foif gy | FUnins0) xD(100F o) f < fo
P o 0) xD(1000 s =) > f

The exponential function creates a high and low frequency tail for
the spectrum.

The radar data is assimilated into the nearest hour and when
observations are at half past the hour they are assimilated at the
hour preceding them (for example an observation at 01:30 is
assimilated at 01:00). Since each radar has three beam locations
throughout an hour, the time for a radar bin observation is calcu-
lated as the average of the two beams’ start times. There is there-
fore enough temporal uncertainty in the observation time to
assume that the observations are valid on the hour.

In order to prevent spurious results from the HF radar from
being assimilated into WW3, various quality control thresholds

(10)
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are used. For the radar data to be assimilated it needs to satisfy the
following criteria:

e The Radar Hs is greater than 1 m.

e The difference between the Radar and WW3 Hs is less than 50%
of the WW3 Hs.

o The difference between the Radar and WW3 Tz is less than 50%
of the WW3 Tz.

The top criterion is based on the findings of Wyatt et al. (2006),
who showed that waveheights of 1 m are required to ensure rea-
sonable quality HF radar data. The other criteria are chosen to pre-
vent spurious radar data from being assimilated but to allow for
reasonable differences in the data. These thresholds are quite
restrictive but in general it is better to assimilate no data rather
than assimilate very poor data. It may be necessary to further tune
these thresholds in future applications.

4.2.2. Partitioned integral parameter (PIP) data assimilation

In the PIP data assimilation scheme integral parameters from
the partitioned data are assimilated. The scheme is applied as
follows:

1. Partition the WW3 and observation spectra using the partition-
ing scheme specified in Section 3. Any partitions in the WW3
spectra which fall below the energy thresholds are superim-
posed onto the analysis spectra.

2. Calculate and store the integral parameters for each partition.
These are energy (E = [4Hs]*), mean frequency (le) and mean
direction (0).

3. Cross-assign partitions, this means finding which partitions cor-
respond to the same wave train. Two cross-assignments are
necessary: a cross-assignment between the partitions in the
observation spectrum and WW3 spectrum at the observation
location, and a cross-assignment between the cross-assigned
partitions in the WW3 spectrum at the observation location
and the partitions in all other WW3 spectra. At the model loca-
tions away from the observations, the partitions are cross-
assigned with WW3 partitions rather than observation parti-
tions because it is assumed that there will be more consistency
between WW3 spectra. If a partition exists in a WW3 spectrum
which can not be cross-assigned with a partition in the WW3
spectrum at the observation location, no alterations to that par-
tition will occur.

4. Analysis integral parameters for each cross-assigned partition
are calculated using the OI equation.

5. The cross-assigned WW3 partitions are adjusted to have the
analysis integral parameter values.

6. WW3 partitions which can not be cross-assigned are simply
superimposed onto the analysis wave spectrum. For observa-
tion partitions, the first step is to attempt to combine the parti-
tion with another observation partition which is cross-assigned.
This is done by looking for partitions which satisfy
‘”gg’l“’ +£ng < 1. If observation partitions are still non-assigned
then theylare superimposed with a scaled energy. The scaled
energy is calculated from the OI equation assuming that the
background state is zero so that Eq. (1) reduces to
E* = BH"(HBH" + R) 'E.

The scheme is similar to the formulation used in Voorrips et al.
(1997), however, the overall scheme used here differs in its treat-
ment of non-assigned observation partitions and the cross-assign-
ment of wave trains. Voorrips et al. (1997) required that two wave
systems must be of the same type (both windsea or both swell) in
order to be cross-assigned. However, an initial data assimilation
test using a similar framework was performed and it was found

that this condition is unsuitable. In this case all the swell was com-
bined into one partition for simplicity. In many cases a wave sys-
tem which is classified as windsea at one location, becomes swell
at a distant location. Although the overall characteristics of the
two wave systems are very similar, and to an observer the parti-
tions would be classified as the same system, small differences in
the mean frequency and direction or in the winds can cause a dis-
crepancy. The result of this is that the analysis information is
spread poorly across the region and large ridges in the Hs fields
can arise over a boundary where the wave system’s classification
suddenly changes.

4.2.3. Cross-assignment 1

The criteria chosen for cross-assigning observation and WW3
partitions for co-located spectra are based on the criteria defined
by Voorrips et al. (1997). Partitions are cross-assigned if

10: = 0;  fi—J;

=5 +0~4f,-<1 (11)
and
Enin 02 (12)
Emax

Voorrips et al. (1997) used an energy threshold of 0.05 in his study.
This has been increased to 0.2 as it was found that allowing less var-
iability between the radar and model partitions is necessary to pre-
vent noise from the HF radar being cross-assigned with WW3
partitions.

If for a particular observation (model) partition, more than one
model (observation) partition satisfies this condition, the partitions
with the smallest value of D; are cross-assigned, where

Dy (ij) = 1Y

fi 7fj Emax
50 + 0.4f, +0.2 E,. (13)
This is similar to the cross-assignment criterion but uses frequency,
direction and energy together to determine how similar two parti-
tions are. It is not always the case that the 2 closest partitions in
spectral space correspond to the same wave system (for example,
some partitions may be noise).

4.2.4. Cross-assignment 2
For cross-assigning WW3 partitions with WW3 partitions, the
criteria are:

0 =61 fi—fi 4

500 | 0.4f, (14)
and
Enin _ 0,05 (15)
Emax

If several partitions can be cross-assigned with one partition, the
partitions with the smallest value of D, are cross-assigned, where
_ 10— 6

- i —f; En
Da(iJ) = =55 +{‘).4ff{ +0.05% =

(16)

The prevalence of the energy weighting is reduced in this metric as
at distances far from the observation location the energy of a corre-
sponding wave train may vary quite significantly.

4.2.5. Adjusting the partitions

Once the analysis integral parameters for a partition have been
calculated the model partition needs to be adjusted to become the
analysis partition. A slightly different technique is used than in the
MP assimilation scheme. In the MP assimilation method the Tz
analysis was calculated and the frequencies were scaled to obtain
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Fig. 7. Wave spectra in m? /Hz/degrees at 05:00 15/02/05. Plot (a) is the buoy spectrum, (b) is the WW3 spectrum without assimilation, (c) is the WW3 spectrum with MP
assimilation, (d) is the WW3 spectrum with PIP assimilation. Maximum spectral density for (a) =0.73, (b) =3.79, (c) =2.67, (d) =1.49. The contours plotted are [0 0.005 0.01

0.05 0.1 0.2 0.4 0.6 0.8 1] times the maximum spectral density of (b).

the analysis period. In the PIP assimilation the mean frequency,
fm = (1/T2) is used instead, the analysis partition, F{(f, 0) is calcu-
lated as

a
Fi(f,0) = (%)F?(HAf,()JrAO)

i

(17)

where Af =fb — o A0 = 6%, — 0% and 0, is the mean direction.
Tests assimilating the Lundy buoy data found that using the
scheme in Eq. (9) produces the best results for the MP assimila-
tion while the scheme in Eq. (17) produces the best results for
PIP assimilation. This is probably due to the fact that in MP
assimilation, the whole spectrum is simply being adjusted to pro-
duce the analysis Tz and thus scaling in terms of the Tz produces
the best results. However, in the PIP each partition is being
moved in spectral space and it is thus more consistent to make
adjustments in terms of a mean frequency. Note that in Eq.
(17) the frequencies are now being shifted rather than scaled, this
is so that adjustments in frequency and direction space are con-
sistent. In the case where a negative analysis energy or mean fre-
quency occur for a partition, the partitions analysis energy is
assumed to be zero.

All 8 radar bins are assimilated in a PIP assimilation scheme.
The same quality control thresholds used for the MP assimilation
are applied and additionally if no partitions can be cross-assigned
at the observation location then that observation is not assimilated
at that time. The treatment of non-assigned partitions has proved
to be more problematic when dealing with all 8 radar bins. Simply
superimposing the data leads to significant over estimation of the
waveheights and poor Tz results. This is probably due to cases
where numerous erroneous partitions are superimposed. In order
to deal with this problem a new condition was introduced: parti-
tions can only be superimposed if they are considered persistent.
When a non-assigned partition arises in a radar spectrum all other
available radar locations are considered and if a similar partition
occurs in at least one of the other locations the partition is consid-
ered persistent. Otherwise the partition is simply discarded. Two
partitions are considered similar if they satisfy %%/ iJ <1, this

f
500 1045

is based on the cross-assignment criterion used for cross-assigning
WW3 and radar partitions.

4.3. Spectral results

In this section some spectral results from the assimilation will
be presented. The plots will be analysed to ascertain if physically
realistic wave spectra are constructed in the data assimilation
scheme and whether the new spectra better correspond to the
buoy results. All the spectral plots shown in this section are from
the Lundy buoy location. The direction convention for the spectral
plots is oceanographic and 0° is North, 90° is East, 180° is South and
270° is West.

In Fig. 7 there are three wavetrains visible in the buoy spectrum
but only two in the original WW3 spectrum. The maximum spec-
tral density in the original WW3 spectrum is also considerably lar-
ger than that in the buoy spectrum. The MP run produces limited
change to the spectral shape from that produced in the original
WW3 run, although the size of the spectral peak is reduced. In
the PIP run there are more changes to the spectrum. The spectrum
appears to contain the two lower frequency wavetrains seen in the
buoy spectrum, but is missing the higher frequency wavetrain. This
high frequency wavetrain is predominantly outside the frequency
range of the HF radar, which observes a maximum frequency of
0.23 Hz at this time.

Fig. 8 is an example where there are two dominant distinct par-
titions in the original WW3 spectrum, travelling towards the East
and South. In the buoy spectrum the energy is less disjointed with
the higher frequency wave train having a lower frequency than
that in the WW3 spectrum, and travelling in a South-East direction
rather than a Southward direction. In the MP spectrum the spectral
shape is surprisingly good, with the energy distribution between
the two wave trains better than that in (b). The frequency of the
higher frequency wavetrain is improved but the frequency of the
lower frequency wavetrain is now too low and there is no improve-
ment in the direction of the higher frequency partition. The PIP
case gives a good spectral shape which now quite closely matches
that of the buoy.
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Fig. 8. Wave spectra in m?/Hz/degrees at 15:00 14/02/05. Plot labels are the same as in Fig. 7. Maximum spectral density for (a) =3.27, (b) =5.17, (c) =5.38, (d) =4.39.

The spectral results for the data assimilation are quite good. It
might be supposed that making adjustments to the spectral shape
and superimposing observation partitions could cause irregulari-
ties in the spectra such as spurious energy and unrealistic results.
However, this has been found not to be the case. The changes in the
spectral shape in the MP case are generally quite small. This is to be
expected as the only alterations really being made to the spectra
are a scaling of energy and a shifting of all energy in the frequency
domain. Where larger changes are present it is likely that these
arise because the small changes in the wave spectra impact on
how the spectrum has evolved over time. So, for example in
Fig. 8(c) a change at a previous time may have improved the distri-
bution of the energy of the two wavesystems at this time. The PIP
assimilation allows more dramatic changes in the spectral shape.
The results for PIP show some encouraging results, with the spectra
often more closely representing the buoy spectrum. There are
likely to be cases where results are not as good and this will be
due to poor HF radar data, but in general the quality control
thresholds are quite rigorous and ensure good overall results.
Overall, the results for the PIP assimilation tend to be subtle and
the spectral shapes produced are smooth and realistic.

5. Results

The results for the data assimilation runs are now presented.
The Hs and Tz time series results will first be considered at five
buoy locations: the Lundy buoy, St Ives buoy, M5 buoy, Turbot
Bank and FS1 buoy. No spectral data were received for the M5, Tur-
bot Bank and FS1 buoy and hence the buoy data in these cases can
not be restricted to the WW3 frequency range. Thus at all five buoy
locations a high frequency tail is added to the model data in order
to extend the outputs to the buoys’ frequency range and to main-
tain consistency throughout comparisons. Spectral and field results
are also presented in order to give a thorough overview of the im-
pact of the data assimilation and to highlight possible weaknesses.

The time series plots (Figs. 9 and 10) and statistics (Tables 2 and
3) are now presented for each of the five buoy locations. The root
mean squared difference (RMSD) and correlation statistics with re-
spect to the buoys’ data are presented. The RMSD is considered the

most important statistic within this study. The optimal interpola-
tion technique seeks to minimise the analysis error variance and
thus it is assumed that the RMSD gives the best indication of the
success of the data assimilation scheme.

From Fig. 9 and Table 2 there is generally a good improvement
in the Hs, for example the Hs RMSD is reduced by 35% in the PIP
run compared to free run at the M5 location and the Hs correla-
tions are improved at all locations by assimilation. The only loca-
tion where the Hs RMSD is not improved is the St Ives buoy. The
St Ives buoy output data at 25 min past the hour, every 2 h. This
time lag and lower temporal resolution could be one reason for
the mixed results seen at this location. Also, the St Ives buoy is
one of the farthest from the radar bins and is in a sheltered region
close to the coast which may make it poorly correlated with the ra-
dar locations.

The Tz results in Fig. 10 and Table 3 are more mixed. The Tz
is consistently over-predicted at the Lundy buoy, St Ives and FS1
buoy locations in the assimilation runs. However, there are
improvements in Tz for the Turbot bank and M5 buoy locations.
At the Turbot bank location there is a 39% reduction in the MP
assimilation run compared to the free run. The improvement at
this location may be due to the close proximity of the Turbot
bank to 3 radar bin locations. The Celtic Sea HF radar has a ten-
dency to over-predict Tz while the WW3 free model run at the
M5 and Turbot bank locations tends to under-predict the Tz dur-
ing this period. These relative biases appear to have cancelling
affect which results in a good improvement to the model Tz in
the assimilation experiments. The correlations in Table 3 show
an improvement in correlation in the assimilation experiments
at all locations except the Lundy buoy. This implies that the
HF radar assimilation is improving the modelling of variability
in the Tz even if it is over-predicting the magnitudes. Overall
it is not surprising that the Tz results are worse than the Hs re-
sults as it known that the quality of Tz data is poorer from the
HF radar (see Table 1).

Comparing the Tz results from the MP and PIP assimilation
cases shows that when the Tz results are poor in the MP assimila-
tion case, they are comparatively much better in the PIP case. For
example, in Fig. 10 the Tz is significantly over-predicted during
the end of the period in the MP results for most of the locations.
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Fig. 9. The thick light grey line is the buoy Hs, the black line is the WW3 Hs without data assimilation and the thin dark grey line is WW3 Hs with assimilation. The plots are
for different buoy locations, (a) and (f) are the Lundy buoy, (b) and (g) are the St Ives buoy, (c) and (h) are the M5 buoy, (d) and (i) are the Turbot Bank buoy, (e) and (j) are the
FS1 buoy. The left hand plots are using the MP assimilation scheme while the right plots are using the PIP assimilation scheme.

However, the results during this period are much better in the PIP
assimilation case. This is also seen in the statistics in Table 3 where
the RMSD in significantly smaller for the PIP case compared to the
MP case at the Lundy, St Ives and FS1 locations. This is because
assimilating partitioned data introduces a new threshold level.
Data is only assimilated when at least one partition can be
matched. If no partitions are matched the spectral shape is consid-
ered too different and the data is not used. Also, one of the main
causes of bias in the radar Tz is the radar’s low frequency cut off,
but assimilating partitions removes much of the impact of this.
When assimilating the partitioned data, only the parts of the
WW3 spectrum which correspond to partitions in the radar spec-
trum are adjusted. Since the high frequency cut off in the radar
spectrum is generally lower than that in the WW3 spectrum, when
assimilating partitions, only the region below the radar’s maxi-
mum frequency will be adjusted. Furthermore, the condition with-
in the PIP scheme which only allows non-assigned radar partitions
which are considered spatially persistent to be superimposed into
the analysis spectrum is also thought to have a positive impact. The

technique allows for spurious radar partitions to be removed,
hence reducing the error in the assimilation results. Finally, poorer
results in the MP run compared to the PIP run may be related to the
correlation lengthscales. When assimilating partitioned data,
changes to partitions will only be applied for as long as the parti-
tion persists. Thus in some sense, assimilating partitions allows a
natural length scale based on the persistence of partitions to exist.
This can prevent unrealistic assimilation at locations far from the
observations.

In general, the largest improvements in the assimilation cases
for both the MP and PIP assimilation are seen during the peak
storm period between 13/02 and 14/02 (see Fig. 3). There are
potentially several reasons for a more significant improvement at
this time. Since the HF radar performs best at high sea states, the
quality of the HF radar data peaks during this event (see Fig. 4).
Fig. 4 also shows that WW3 under-predicts the Hs during this ex-
treme event. As well as the storm event there may be other reasons
for the model to perform poorly during this period. The wind direc-
tions in Fig. 3 show that winds are turning throughout the storm
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Fig. 10. Same as Fig. 9 but for Tz.
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Table 2
Hs RMSD (correlation). The RMSD is in m.
Buoy location No assim MP PIP
Lundy 0.39 (0.94) 0.31 (0.98) 0.29 (0.97)
St Ives 0.40 (0.91) 0.55 (0.94) 0.46 (0.94)
M5 0.51 (0.87) 0.38 (0.92) 0.33 (0.94)
Turbot Bank 0.55 (0.93) 0.40 (0.96) 0.43 (0.95)
FS1 0.36 (0.92) 0.30 (0.95) 0.30 (0.94)
Table 3
Tz RMSD (correlation). The RMSD is in s.
Buoy Location No assim MP PIP
Lundy 0.71 (0.77) 1.16 (0.68) 0.76 (0.69)
St Ives 0.71 (0.69) 0.91 (0.70) 0.71 (0.70)
M5 1.17 (0.76) 0.63 (0.71) 0.70 (0.80)
Turbot Bank 1.70 (0.53) 1.03 (0.38) 1.19 (0.61)
FS1 0.68 (0.65) 1.30 (0.16) 0.76 (0.69)

period. This may indicate that the model does not correctly capture

the wave conditions in the case of strong turning winds.
Considering the Lundy buoy results in Fig. 9, the PIP assimila-

tion better captures the wave growth during the storm period than

the MP assimilation. As the winds grow and turn, the PIP assimila-
tion will allow for the different parts of the spectrum to be ad-
justed separately and for energy to be redistributed throughout
the spectrum. In the case of a growing windsea this allows for
the correction of spectral growth.

Fig. 11 shows spectra from the Lundy buoy and WW3 runs dur-
ing the peak of the storm (12:00 13/02/05). The impact of the turn-
ing winds is visible in all spectra. There is old windsea travelling
towards the East and new windsea travelling towards the South.
In the buoy spectra there is a smooth transition between the
new and old windsea. In the original WW3 spectrum the waves ap-
pear to have turned too fast and there is too much energy travel-
ling towards the south. There is an improvement in the MP
assimilation case with less energy travelling towards the South,
but the best results are seen in the PIP assimilation case where
the distribution of the energy in frequency and direction of the
turning windsea best replicates that of the buoy spectra. This sup-
ports the suggestion that the PIP assimilation can provide better
results in cases of turning winds.

In the majority of studies on data assimilation into wave mod-
els, in particular in those assimilating partitioned data, field plots
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WW3 fields with MP assimilation, (c) and (f) are WW3 fields with PIP assimilation.

of mean parameters have not been published. One of the main dif-
ficulties in the data assimilation is preserving a realistic spatial
structure and avoiding the introduction of noise or false variability.
This is a particular problem with assimilating the partitioned data
as the changes made to the spectrum depend on the partitions
identified at each location and the cross-assignment. Earlier the
difficulties of assimilating windsea and swell were discussed. It
was found that using a cross-assignment based on the wavetrain’s
type causes discontinuities in the mean parameter field data. If the
field data is not considered, such weaknesses may be overlooked.
Considering the field data can also be useful for testing the back-

ground error covariance structure and ensuring that the changes
are reasonable. However, since there are no observations which
can give the spatial coverage and resolution of the model it is dif-
ficult to validate the field structures, but the field data is useful for
identifying problems.

Fig. 12 shows plots of Hs and Tz from WW?3 for the free run and
both assimilation runs. At this time the results from the assimilation
experiments show an increase in the Hs within the region of the
observations. In the Tz plots there is an increase in the Tz over the
South of the region. The fields from the assimilation runs are smooth
and there is no indication of noise or discontinuities in the results.
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6. Discussion

In this study HF radar wave data has been assimilated into the
WW3 model. Two different data assimilation schemes have been
described and tested, a mean parameter assimilation scheme and
partitioned integral parameter assimilation scheme. A SOAR model
for the background error covariances has also been described. This
has been specifically designed to deal with complex bathymetry in
this coastal region and has been localized for the Celtic Sea area.
The results from the assimilation schemes have been validated
against various independent buoys in the Celtic Sea region.

In general, both assimilation schemes have produced satisfac-
tory improvements to the Hs. The overall improvement in Hs at
the independent observation locations shows that the data assim-
ilation is having a positive impact on Hs away from the assimilated
observations locations. The results for the Tz are more mixed with
improvements to the RMSD only seen at the M5 and Turbot Bank
locations. There is a bias in the HF radar Tz data and in particular
in the MP case this can cause the assimilated Tz to be over-pre-
dicted. This impact was found to be lessened by assimilating parti-
tions rather than mean parameters. Assimilating partitions allows
that only the region of the WW3 spectrum corresponding to the ra-
dar spectrum is adjusted. This removes some of the Tz bias caused
by the HF radar’s low cut off frequency. Also, assimilating parti-
tions allows for an extra stage within the data quality control
based on spectral shape. Observations are discarded when no par-
titions can be cross-assigned and thus less poor quality data is
assimilated in the PIP run. Furthermore, the PIP run enables a nat-
ural correlation length scale based on the persistence of partitions
and this prevents unrealistic data assimilation at locations far from
the observations. This is particularly beneficial for a coastal domain
where correlations are more difficult to accurately model. Finally,
in the PIP run, only radar partitions considered spatially persistent
are superimposed into the analysis spectrum. This process removes
spurious partitions and hence noise from the spectrum.

The largest improvements in the data assimilation schemes are
seen during a stormy period with turning winds. The assimilation
runs produce the largest improvements to the Hs at this time and
comparisons of the PIP and MP assimilation schemes suggest that
the PIP assimilation performs better in these conditions. Overall,
this study suggests that there are both practical and physical
advantages to assimilating partitioned data rather than mean
parameters when considering HF radar data. Many of these bene-
fits are likely to extend to other observation types.

Both the assimilation of HF radar wave data and assimilation
within coastal regions are relatively new and hence this study pro-
vides some preliminary results on the feasibility of such work.
Overall there are some encouraging results from the data assimila-
tion which suggest that assimilating partitioned data in a coastal
region is feasible and beneficial for Hs. This study could therefore
be extended to look at assimilating different coastal observation
networks. The data assimilation scheme should be applicable in
different coastal domains, although the design of the background
error covariances is rather specific, so the geography of the region
would need to be considered in its construction.

As this is a preliminary study, there are several areas which
should be considered for future work. At present radar data is only
assimilated when the Hs is greater than 1 m. From Wyatt et al.
(2006) it was found that a 1 m threshold ensures good quality Hs
data but a 2 m threshold is needed to produce good quality Tz
and mean direction data, this might be a more appropriate thresh-
old for future applications. Note that this is specific to this radar
configuration, for a radar operating in a different frequency range
alternative quality control thresholds would be required. Future
work could focus on improving the specification of the background

and observation errors by increasing the ensemble size used in the
QC calculation or by considering more sophisticated techniques for
calculating the background and observation error variances. One of
the key advantages of assimilating partitioned data is the potential
to also correct the wind forcing using the windsea data. This allows
the impact of the data assimilation to be retained over a longer
time period. This should be investigated further. This extension
to the assimilation scheme would be particularly useful within
the framework of a coupled atmosphere-wave model. The assimi-
lation experiments should also be extended to consider different
periods so that the impact of the data assimilation in different
wave conditions can be analysed. The impact of the assimilation
on forecasts should also be addressed in future work to assess
how long the impact of data assimilation persists, and in what re-
gions it has the most significant impact.
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Appendix A. Definition of spectral spread

The spectral spread df2 of a partition is defined as,

= (h—F) +—F) =R+T2+ 2+

where

— 1 7
ﬁ<=e//5(f,0)fc050d0df
E:%//S(f, 0)f sin 0d odf
f2= % // S(f, 0)f% cos? 0d odf
72 = [[ s.o sin odods

where f, 0 and S(f, 0) are frequency, direction and the frequency-
direction spectrum respectively and e is total spectral energy. If
two partitions have peaks located at (f;,601) and (f1, 61), then the dis-
tance between the peaks Af? is determined by,

Af? = (fi cos 0y — f, 05 02)* + (fy sin 0; — f, sin 6,)%.
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