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[1] Tsunami speed variations in the deep ocean caused by
seawater density stratification is investigated using a newly
developed propagator matrix method that is applicable to
seawater with depth-variable sound speeds and density gra-
dients. For a 4 km deep ocean, the total tsunami speed
reduction is 0.44% compared with incompressible homo-
geneous seawater; two thirds of the reduction is due to
elastic energy stored in the water and one third is due to
water density stratification mainly by hydrostatic compres-
sion. Tsunami speeds are computed for global ocean density
and sound speed profiles, and characteristic structures are
discussed. Tsunami speed reductions are proportional to
ocean depth with small variations, except in warm Mediter-
ranean seas. The impacts of seawater compressibility and
the elasticity effect of the solid earth on tsunami travel-
time should be included for precise modeling of transoceanic
tsunamis. Citation: Watada, S. (2013), Tsunami speed variations
in density-stratified compressible global oceans, Geophys. Res.
Lett., 40, 4001–4006, doi:10.1002/grl.50785.

1. Introduction
[2] Recent tsunami observations in the deep ocean, such

as the Deep-ocean Assessment of Reporting of Tsunamis sta-
tions on the deep ocean floor [Wei et al., 2008; Kusumoto et
al., 2011; Fujii and Satake, 2013], tsunami sensors attached
to the deep ocean bottom cables, and GPS buoys continu-
ously recording sea surface elevations [Kato et al., 2011],
have accumulated unequivocal evidence that tsunami trav-
eltime delays compared with the linear long-wave tsunami
simulations occur during tsunami propagation in the deep
ocean. The delay is up to 2% of the tsunami traveltime.

[3] Watada et al. [2011, 2012] investigated the cause of
the delay using the normal mode theory of tsunamis [Ward,
1980; Okal, 1982] and attributed the delay to the compress-
ibility of seawater, the elasticity of the solid earth, and the
gravitational potential change associated with mass motion
during the passage of tsunamis. The normal mode theory
has been applied to earth models with a compressible homo-
geneous ocean layer. Okal [1982] obtained an asymptotic
formula of the effect of seawater compressibility on the
tsunami propagation speed. Tsai et al. [2013] gave a back-of-
an-envelope estimate of the tsunami speed reduction caused
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by the elastic solid earth and compressible seawater and
found a factor inconsistency in the estimates of the effect of
the seawater compressibility by Okal [1982] and by Tsai et
al. [2013].

[4] Tsunami speed is affected by the seawater compress-
ibility in two ways. The gravity potential energy of elevated
and depressed seawater is not only converted to kinetic
energy but also stored and released as an elastic energy in
the seawater by the fluctuating hydrodynamic pressure. For
a given input of gravity potential energy, smaller available
tsunami kinetic energy for tsunami motion in the com-
pressible water compared with the incompressible water
results in a smaller wave frequency and hence lower tsunami
speed. Real seawater is inevitably density stratified by the
hydrostatic compression. The long-wave speed of a density-
stratified fluid is always slower than that of a homogeneous
fluid, as we see in the application section. Density strati-
fication is also controlled by the temperature and salinity
vertical profiles. The normal mode approach [e.g., Ward,
1980; Okal, 1982; Watada et al., 2011, 2012] has overlooked
the stratification of seawater, and Tsai et al. [2013] assumed
an adiabatic density profile of seawater. It is desirable to
discuss the compressibility effect and density stratification
effect on tsunami speed separately.

[5] This paper focuses on tsunami speed reductions
caused by the density stratification and the compressibility
of seawater. Starting from a propagator matrix of a single-
fluid layer with a constant sound speed and a density scale
height, a dispersion relation of water waves is computed
for a density-stratified ocean represented by a stack of thin
water layers each with a constant density gradient and a
sound velocity. The analytic forms of the dispersion rela-
tion for singe- and two-layer models are compared with the
known dispersion relations of compressible and incompress-
ible water cases. Finally, based on the ocean grid model of
the World Ocean Atlas 2009 [Boyer et al., 2009] (hereinafter
WOA09), global distribution of tsunami speed perturba-
tions and the impacts of the variability of ocean structure
on the global distribution of tsunami speed perturbations
are discussed.

2. Theory
[6] The equations of motion of a compressible inviscid

fluid are found in e.g., section 6.14 of Gill [1982] and
equation 2.10 of Watada [2009]. The x and z axes are taken
along the horizontal and vertical upward positive directions,
respectively. The ocean bottom is at z = 0. �, p, (ux, uz),
(vx, vz) represent density, pressure, fluid displacement, and
velocity, respectively, and g is constant gravity downward
(Figure 1). The subscript l denotes lth layer, and the subscript
o denotes the background equilibrium state, the superscript 0
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Figure 1. Multiple-layer model.

and prefix ı denote Eulerian and Lagrangian perturbations,
respectively. For brevity, the subscript l is omitted when the
layer is obvious and is used when needed. u, v, and the vari-
ables with 0 and ı are assumed small, and higher order terms
are neglected.

[7] Elimination of density perturbation terms in the
linearized momentum equation, the mass conservation
equation, and the adiabatic equation of states, and the use
of the Lagrangian pressure perturbation yield the set of
equations
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where the density-scaled velocities and the pressure pertur-
bation are defined by
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Uz and Vz are related by Uz =
R
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Assuming a constant scale height 1
H = – 1

�o

d�o
dz for density and

a constant cs within the lth layer, N2 and � become constant
and the fluid density is expressed by

�o(z) = �ob exp
�

–
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�
dl – z

H

�
, (6)

where the subscripts t and b denote quantities at the top and
bottom of the layer, respectively, and dl denotes the thick-
ness of the layer. Adopting a plane wave solution for the
density-scaled variables of the form exp(i(kx + mz –!t)), the
differential equations (2) and (3) are expressed by
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By the density scaling in equation (4), the coefficient matri-
ces E and F are independent on z and the dispersion rela-
tion between k, m, and ! is computed from det kEFk =
det kEk det kFk = det kEk = 0. ıP, P, Vx, and Vz share the
dispersion relation that

m2 = k2
�

1 –
!2

k2c2
s

��
N2

!2 – 1
�

– �2. (10)

[8] Because m2 is a constant real number for a given
(!, k) in the lth layer, R(z), the dependence of the normalized
vertical velocity Vz on z satisfies the differential equation

d2R
dz2 + m2R =

d2R
dz2 – M2R = 0, (11)

where M is defined by M 2 = –m2, and its solution has the
form

Vz(x, z, t) = �0.5
o (z)vz(x, z, t) = R(z) exp(i(kx – !t)), (12)

R(z) = C cos(mz) + D sin(mz) = C cos(iMz) + D sin(iMz), (13)

where C and D are constants to be determined from bound-
ary conditions. Note that in the case of m2 < 0, cos(mz)
should be interpreted as cos

�
i
p

–m2z
�

= cosh(Mz) and
sin(mz) as sin(i

p
–m2z) = i sinh(Mz).

[9] From two sets of Vz(z) and ıP(z) at z = zl–1 and zl, C
and D are eliminated and A(dl), the propagator matrix from
z = zl–1 to z = zl = zl–1 + dl of a vector o(z)T = (vz(z), ıp(z))T,
where the superscript T denotes the transpose of a matrix, is
obtained (detailed steps are in the supporting information) as�

�–0.5
o (zl) 0

0 �0.5
o (zl)

�
O(zl) = o(zl) = A(dl)o(zl–1), (14)

where the (i, j) matrix element of matrix A(dl) is given. If
M 2 = –m2 > 0,

a11(dl) = {!Mc(dl) + Gs(dl)}/(!M) exp
�
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2Hl

�
, (15)

a12(dl) = is(dl)/(q!M)/�ol–0.5, (16)
a21(dl) = iq(G2 – !2M2)s(dl)/(!M)�ol–0.5, (17)

a22(dl) = {!Mc(dl) – Gs(dl)}/(!M) exp
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–
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�
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and if m2 = –M 2 > 0,

a11(dl) = {!mf(dl) + Ge(dl)}/(!m) exp
�

dl
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�
, (19)

a12(dl) = ie(dl)/(q!m)/�ol–0.5, (20)
a21(dl) = iq(G2 + !2m2)e(dl)/(!m)�ol–0.5, (21)
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s

– k2)g} = 1
!

{k2g – !2

2H },
c(z) = cosh(Mz), s(z) = sinh(Mz), e(z) = sin(mz), f(z) =
cos(mz), and �ol–0.5 = �o(z = zl+zl–1

2 ) is the water density at
the midpoint of the lth layer. If the layer density is constant,
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WATADA: TSUNAMI SPEED IN LAYERED OCEAN

Table 1. Tsunami Speed of Single-Layer Ocean Modelsa

Case H (km) Cs (m/s) N (cph) Cpb (m/s) �Vp
Vp (%) �Vp

Vp / �b–�t
�

A 1 1 0 198.214 - -
B 1 1500 N2 < 0c 197.637 –0.291 –0.169
C 229.1 1 3.75 197.926 –0.145 –0.084
D 229.1 1500 0 197.352 –0.435 –0.253

aDepth averaged densities are the same.
bEvaluated at a wavelength of 8000 km as a long-wave limit.
cSuperadiabatic density profile which does not exist stably in nature.

factors exp(˙ dl
2Hl

) are replaced by 1. The propagator matrix,
which was also developed for the atmospheric waves
by Harkrider [1964], has the same characteristics with
det kA(z)k = 1.

[10] Vertically non-uniform stratification of seawater is
modeled as stacked multiple thin layers, each with a
constant-scale height and a constant sound speed. A density
jump can exist between the layers if �ol(zl) ¤ �ol+1(zl). In
that case, ıp but not p0 is continuous at the boundary z = zl;
hence, o(zl) is always continuous across the internal bound-
aries at zl. BL, the propagator matrix from the bottom to the
top of L-stacked layers, is computed as

o(zL) = AL(dL)AL–1(dL–1) � � �A1(d1)o(z0) = BLo(z0), (23)

where z0 and zL are the bottom and top of L layers,
respectively.

[11] The boundary conditions are vz(z0) = 0 at the rigid
bottom and ıp(zL) = 0 at the free surface. Thus, the dis-
persion relation between the horizontal wave number k
and the angular frequency ! for a given layered structure
(�obl, Hl, csl, dl, l = 1, � � � , L) is expressed by bL22(!, k) = 0,
where bLij represents the (i, j) matrix element of 2� 2 matrix
BL. The propagator matrix BL is applicable to all types of
linear water waves including acoustic waves, surface gravity
waves, and internal gravity waves.

3. Application
3.1. Single Layer

[12] The dispersion relation of a single layer (L = 1) using
aLij, the (i, j) matrix element of 2 � 2 matrix AL, is

b122(!, k) = a122(!, k) = –!Mc(d) + Gs(d) = 0, (24)

which is rewritten explicitly as

C2
p(!, k) �

!2

k2 = d
�

g –
!2

2k2H

�
tanh(Md)

Md
, (25)

where Cp is the phase velocity. The newly obtained disper-
sion equation (25) expresses how the density stratification
and compressibility alter the dispersion relation of water
waves of a single layer. Note that in a single-layer case, it is
the density scale height and not the absolute density that con-
tributes to the dispersion relation. When M 2 < 0, replacing
M by m and tanh by tan gives the correct dispersion rela-
tion. Assuming a homogeneous ( 1

H =0) incompressible ( 1
cs

=0)
single layer, !2 = gk tanh(kd) is confirmed.

[13] To evaluate the effects of the density stratification
and the compressibility of seawater separately, four single-
layer problems, in which parameters H and cs are constant
(Table 1), are examined (Figure 2). Assuming adiabatic den-
sity stratification of compressible water, i.e., N = 0, the scale
height is estimated as H = c2

s /g. For a 4 km deep ocean
with g = 9.822 m/s2 and H = 229.1 km, the density increases
by �b–�t

�
= 1.72% from the bottom to the top of the ocean.

When the ocean layer has uniform density and a constant
sound velocity (case B), the dispersion relation equation (25)
reduces to

C2
p(!, k) �

!2

k2 = gd
tanh(Md)

Md
, (26)

where M2 = k2
�

1 – !2

k2c2
s

+ g2

!2c2
s

�
. Assuming long-wave

Md � 1 and knowing that the tsunami of the Earth’s ocean
satisfies !2

k2 � c2
s , the dispersion relation for waves with

horizontal wavelength � = 2�
k � 200 km becomes (details

are in the supporting information)

Cp(!, k) �

s
gd
�

1 –
!2

3k2c2
s

�
�
p

gd
�

1 –
gd
6c2

s

�
. (27)

When water is stratified adiabatically with a uniform sound
velocity (case D), gH is equal to c2

s and the dispersion
relation equation (25) reduces to

C2
p(!, k) �

!2

k2 = gd
�

1 –
!2

2k2c2
s

�
tanh(Md)

Md
, (28)
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Figure 2. Dispersion curves of the surface gravity waves for the ocean structures in Table 1. (top left) Reference dispersion
curve of a 4 km deep incompressible homogeneous ocean. (bottom left) Phase velocity reduction from the reference. (right)
Density structure. The blue line overlaps the green line, and red line overlaps the black line.
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WATADA: TSUNAMI SPEED IN LAYERED OCEAN

Figure 3. Data locations where a vertical ocean profile deeper than 2500 m is available in WOA09. The dark gray area
indicates the Pacific Ocean defined in WOA09.

where M 2 = k2
�

1 – !2/k2

c2
s

�
+ 1

4H2 . Again, with the long-wave
and !2

k2 � c2
s assumptions, the dispersion relation for waves

with horizontal wavelength � � 200 km becomes (details
are in the supporting information)

Cp(!, k) �

s
gd
�

1 –
!2

2k2c2
s

�
�
p

gd
�

1 –
�b – �t

4�

�
. (29)

[14] Case B is used for normal mode tsunami computation
by Ward [1980], Okal [1982], and Watada and Kanamori
[2010]. Case D is equivalent to the ocean assumed by
Tsai et al. [2013]. The difference of the estimates of the
tsunami speed dependency on the seawater sound velocity,
or incompressibility, between Okal [1982] and Tsai et al.
[2013] originates from the assumption of the reference den-
sity profile of the water layer. Okal [1982] obtained Cp �
p

gd
�

1 – gd
6c2

s

�
for a homogeneous compressible ocean and

Tsai et al. [2013] obtained Cp �
p

gd
�

1 – �b–�t
4�

�
for an

adiabatically stratified compressible ocean. Their asymptotic
tsunami speed expressions are identical to mine only when
the tsunami period is much larger than 1000 s or the wave-
length is much longer than 200 km, which is a stronger
condition than the long-wave condition kd� 1.

3.2. Two Layers
[15] The dispersion relation of a compressive fluid with

two layers of different densities (L=2) is

b222(!, k) = a221a112 + a222a122 = 0, (30)

which is rewritten explicitly, assuming incompressible
homogeneous water, as

!2�1
coth(k(d1 + d2))

sinh(kd1) sinh(kd2)
{!2 – gk tanh(k(d1 + d2))}

+ (�1 – �2)(g2k2 – !4) = 0. (31)
This is equivalent to equation 17 in section 231 of Lamb
[1945]. The dispersion relation can be rewritten as

p2(x)
cosh(x)

sinh(ˇx) sinh((1 – ˇ)x)

�
p2(x) –

tanh(x)
x

�

+ (1 – ˛)
�

1
x2 – p4(x)

�
= 0, (32)

where
x = kD, D = d1 + d2, p2(x) =

!2

k2gD
, (33)

˛ = �2/�1, ˇ = d2/D = d2/(d1 + d2). (34)
Assuming long waves (x � 1), tanh(x) is approximately
x, coth(x) approximately 1/x, sinh(x) approximately x, and
cosh(x) is approximately 1, equation (32) approaches

p4 – p2 + (1 – ˛)(1 – ˇ)ˇ = 0, (35)

which is equivalent to equation 48 in p. 219 of Stokes [1880]
and equation 6.2.14 of Gill [1982] for long waves in a two-
layer fluid. The solution, which corresponds to external and
internal waves (+ and –, respectively), is

p2
˙

=
1
2

n
1˙

p
1 – 4(1 – ˛)(1 – ˇ)ˇ

o
. (36)

In a layered fluid, usually ˛ = �2/�1 � 1 and 1 – ˛ � 1, and
two long-wave modes approach

p2
+ � 1 – (1 – ˛)(1 – ˇ)ˇ, p2

– � (1 – ˛)(1 – ˇ)ˇ. (37)

Imamura and Imteaz [1995] obtained the external and the
internal wave phase velocities which are expressed with ˛
and ˇ:

p2
+ = 1 – (1 – ˛)ˇ, p2

– = ˇ
�

1 + ˛
ˇ

1 – ˇ

�
. (38)

Note that ˛ and ˇ in Imamura and Imteaz [1995] are defined
differently from the definitions here. Equation (38) is in
error, which is easily checked, for example when ˇ = 1, the
tsunami speed p+ should be 1, not ˛.

3.3. Multiple Layers
[16] As tests of the code, a density-stratified incompress-

ible layer with a scale height H (case C in Table 1) is
emulated by stacked multiple homogeneous incompressible
layers (case A), and a density-stratified compressible layer
(case D) by stacked multiple homogeneous compressible
water layers (case B). In both cases, the computed disper-
sion relations of 32 layers are identical to the single-layer
dispersion relation within the accuracy of numerical errors
(Figures are in the supporting information). In the analy-
sis of realistic density profiles, because N 2 determined from
d�o
dz is less accurate than �o measurement, a staircase repre-

sentation of the density gradient with many homogeneous
multiple layers is preferred to a fewer thick layers with
density gradients.
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WATADA: TSUNAMI SPEED IN LAYERED OCEAN

Figure 4. (a) Tsunami speed variations. Red bars represent the global speed distribution except in the Mediterranean Sea
for which black bars are used. Gray bars, which are a subset of the red bars, correspond to the Pacific Ocean. Three arrows
in the 4000 m histogram correspond to the stars in Figure 3. (b) Regression lines of the tsunami velocity reduction for all
oceans except for the Mediterranean Sea (red line) and for the Mediterranean Sea (black line). Error bars indicate the range
of the computed tsunami speed variations shown in Figure 4a. (c) Vertical ocean profiles at grid points indicated by the stars
in Figure 3. Left panel shows the in situ density (solid lines) and sound velocity (dashed lines) profiles, the middle panel
shows the potential density (solid lines) referenced to the surface and in situ temperature (dashed lines) profiles, and the
right panel shows the buoyancy frequency profile computed from the potential density.

4. Analysis
4.1. Global Variations in Tsunami Speed Reduction

[17] Seawater density and compressibility are controlled
by the pressure, salinity, and temperature of the ocean [Talley
et al., 2011]. WOA09 gives salinity and in situ temperature
profiles at 1°� 1° time-averaged grid points. The TEOS-10
toolbox [McDougall and Barker, 2011] converts a WOA09
profile to in situ density and sound velocity profiles. WOA09
unevenly covers all the oceans (Figure 3). WOA09 defines
33 depth grids; the grid spacing becomes coarser with depth
(every 500 m after 2000 m) toward the deepest grid at
5500 m. Local ocean models are artificially truncated at the
maximum grid depth where salinity and temperature data
are listed in WOA09 and do not represent the ocean profiles

down to the real bottom. Tsunami speed, defined as the phase
velocity at a wavelength of 8000 km in the dispersion curve,
has been computed at each surface grid having a depth pro-
file deeper than 2500 m (Figure 4c). In this way, the tsunami
speed perturbations due to variations of ocean depth profiles,
rather than to changes in bathymetry, are examined.

[18] Equation (37) shows that tsunami speeds in oceans
with warmer and deeper (up to a half of the depth) lay-
ers are slower than incompressible long-wave speed pgzL.
The Mediterranean Sea is characterized by warm water at all
depths, which results in higher sound velocities and smaller
tsunami speed reductions (Figures 4a and 4b). The North
Atlantic near Greenland is characterized by nearly con-
stant cold temperature over the entire water column, similar
to uniform water (Figure 4c). Adiabatically stratified cold
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WATADA: TSUNAMI SPEED IN LAYERED OCEAN

dense water is the easiest to sink. In fact, off the coast of
Greenland in the North Atlantic is the sinking point of the
great ocean conveyor ocean circulation model [Broecker,
2010].

[19] Given that the two vertical columns have identical
sound speed, tsunami speed is larger when the potential
density is constant, i.e., when the buoyancy frequency is
zero throughout the water column and therefore the tsunami
speed is insensitive to the absolute magnitude of water
density. The western Pacific Ocean near Taiwan, which is
characterized by a 1 km thick warm top layer, exhibits global
maximum tsunami speed reduction in 4000 m deep oceans
(Figure 4a). The difference of the tsunami speeds between
near Taiwan and near Greenland is due to the thick sur-
face warm layer near Taiwan. The difference of the tsunami
speeds between near Greenland and in the Mediterranean
Sea is due to temperature, hence the sound speed, differences
extending throughout the water columns (Figure 4c).

5. Discussion and Conclusion
[20] The analytic forms of the dispersion relation for

single- and two-layer models are compared with the known
dispersion relations for compressible and incompressible
water. The dispersion relation of water waves for an ocean
layer found in sections 54–57 of Eckart [1960], which is
obtained under the condition of � = 0 in equation (10), is
extended to � ¤ 0 and multiple-layer cases. Panza et al.
[2000] gave a propagator matrix for seawater composed of
homogeneous layers. For a 4 km deep compressible stratified
ocean model, the total tsunami speed reduction is expected to
be 0.44% from the tsunami speed in incompressible homo-
geneous seawater; 0.29% is due to the elastic energy stored
in compressible water, and 0.15% is due to the density
stratification mainly by the hydrostatic compression. Note
that the differences in the phase velocity reduction between
compressible and incompressible models are evidenced in
a slight difference of the corner periods of the dispersion
curves (Figure 2, bottom left).

[21] The propagator matrix method has been applied to
the real ocean profiles deeper than 2500 m compiled in
WOA09, and tsunami speeds in the deep oceans have been
computed. An expression for the tsunami speed reduction of
a given depth has been obtained as �V/V = a*(depth, m) + b
(Figure 4b), where a = 1.00 � 10–6 m–1 for an average
4000 m deep ocean (except in the Mediterranean Sea), and
a = 9.63 � 10–7 m–1 for the Mediterranean Sea. The depth
coefficient a has been previously estimated by Okal [1982]
as g

6c2
s

= 7.28 � 10–7 m–1 and by Tsai et al. [2013] as
�b–�t
4�zL

= 1.08 � 10–6 m–1. In the deep ocean, the tsunami
speed perturbation from the average tsunami speed due to
natural variations in the vertical structure of the ocean is usu-
ally ˙0.01%. An exceptionally diminished tsunami speed
reduction of –0.05%, i.e., faster than the global average, is
found in the warm Mediterranean seas.

[22] Seawater compressibility affects tsunami speeds
through its effects on density stratification and elastic energy
stored in seawater. These effects, in addition to the solid

earth elasticity effect and the gravitational potential pertur-
bation effect [Watada et al., 2011, 2012], should be included
for the precise estimates of the traveltime of transoceanic
tsunamis. Local variations in the seawater properties of deep
ocean water have negligible impacts on tsunami speeds, and
their effects are not likely to be observed.

[23] Acknowledgment. The Editor thanks Victor Tsai and an anony-
mous reviewer for assistance in evaluating this manuscript.
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