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Continued advances in computational resources are providing the opportunity to operate more so-
phisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies
that include interactions between different physical processes. Therefore there is a strong desire to
develop coupled modeling systems that utilize existing models and allow efficient data exchange and
model control. The basic system would entail model ‘‘1’’ running on ‘‘M’’ processors and model ‘‘2’’
running on ‘‘N’’ processors, with efficient exchange of model fields at predetermined synchronization
intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model
Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore
(SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction
System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for
operation control and inter-model distributed memory transfer of model variables. In this paper we
describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and
COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an
example from each coupled system. Methods presented in this paper are clearly applicable for coupling
of other types of models.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Significant investments have been made over the past couple
of decades to develop numerical models for studying and pre-
diction of environmental phenomena of various spatial and
temporal scales. Any particular model, however, is intrinsically
limited by the range of scales and corresponding processes it is
able to represent. In Earth System modeling, for example, the
cascade of resolving scales ranges from global, simulated using
Global Circulation Models (GCM), to regional and local, using
Limited-Area Models (LAM), down to Large-Eddy Simulation
models (LES). For certain process-oriented studies, scale isolation
could be useful for understanding of a particular environmental
phenomenon. For more general model application and research,
however, there is a need to address natural scale interactions.
Various techniques have been developed for this purpose, such as
downscaling or upscaling (Leung, 2005; Lau et al., 1999), multi-
model modeling (Giustolisi et al., 2007), or, most recently de-
veloping, coupled modeling approach (Hermann et al., 2002;
Militello and Zundel, 2002; Perlin et al., 2007; Jorba et al., 2008).
rner), nperlin@coas.oregon-
.D. Skyllingstad).
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Coupled modeling approach can be advantageous because it could
provide two-way interaction between the models either operating
on different scales, or simulating different set of interdependent
processes.

A coupled modeling approach provides means to develop
multidisciplinary application that incorporate more sophisticated
physical processes and interactions in a numerical simulation. For
example, studying the impacts of storms on coastal systems may
require atmospheric winds, surface waves, river discharges, sedi-
ment transport, and biological tracers and address issues related
to aquatic species and habitats. Some of these processes are self
interacting such as the effects of waves on the currents and mu-
tual response of currents on the waves. The circulation of tidal
inlets involves the interactions of seaward flowing currents that
can be strong enough to impede the landward propagation of
wind-driven surface waves. This interaction can only be modeled
correctly if a coupled ocean-wave modeling system is applied. The
waves and currents drive sediment transport that cause changes
to the seafloor morphology which feedback to the wave shoaling
and water circulation. Simulation of this interaction requires
a coupled sediment transport–ocean circulation–surface wave
modeling system. In another coastal circulation system, wind-
driven coastal upwelling, warm surface waters are driven offshore
and replaced by cooler bottom ocean waters in the nearshore.
These cold surface waters interact with the marine atmospheric
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boundary layer, alter its structure, stability, and the intensity of
atmospheric forcing on the ocean. Many of these processes are
typically simulated using different models. Therefore to simulate
the interaction one would either have to parameterize the missing
physical process in their model or dynamically couple to an
existing model. With the increasing ease of acquiring multi-pro-
cessor computers, the logical choice is often to couple with an
already existing model. Coupling allows the models to run si-
multaneously and provide a method to transfer information in an
efficient time stepping manner.

The coupling of models can occur with all the models running
concurrently or sequentially. For the purposes of this paper we
will consider the models to be running concurrently. Each model
runs on its own set of processors that may reside on a common
cluster, and there exists a driver for the coupled modeling system
that controls execution and mediates data exchanges between
the individual models. The use of clusters is increasing in popu-
larity and cluster-based parallel computing is now widely af-
fordable to scientists. Cluster computers give their owners (i)
convenience since they are not sharing a large resource with lots
of other users (i.e. jobs are not spending a lot of time waiting in
a queue); (ii) flexibility since the processors and interconnect are
often purchased separately; and (iii) extendibility because one
can always buy more processors to extend the cluster as budgets
allow. To take advantage of the multiple processors of a cluster,
the models use the Message Passing Interface (MPI) distributed
memory parallelism communication protocol. MPI provides
means for information about the overlapping halo regions of the
grid tiles to be passed between processors different nodes. The
methodology described in this paper uses the MPI protocol
method.

There exist several entities available to act as model coupling
agents. One can certainly write their own routines to allow data
transfer. The programmer would include calls for each processor to
send and receive information from each grid segment or from each
model at various stages in the model stepping. However, each
programmer would inevitably develop their own data acquisition
and dissemination method, and it would be cumbersome to easily
couple different models from different developers. There needs to
be a standard to foster a common protocol.

The Model Coupling Toolkit (MCT; described in more detail
below) is an open source software library to construct parallel
coupled models from individual models. The MCT data model
constitutes three data types for storage of multi-field integer and
real valued data, grids, and domain decompositions. Each separate
model runs on its own set of processors and MCT provides the
protocols for inter-model data coupling, allows efficient data
transfer between the different models, and provides interpolation
algorithms for the data fields that are transferred.

Other coupling methods include the Earth System Modeling
Framework (ESMF; Hill et al., 2004) which is also an open source
code product. ESMF defines architecture for composing coupled
systems. Each component of the system is a physical domain,
a function, a coupler, etc., that has a standard calling interface. This
will allow each component to be completely replaced by another
system. Eventually, ESMF functionality should exceed that of the
MCT, but at the time of writing it is still in development with some
initial applications.

Herein we demonstrate the coupling of an oceanographic cir-
culation model to a surface wave model using the MCT, and the
coupling of an oceanographic model to an atmospheric model using
the MCT. In Section 2 we describe each of the models and the
coupler. In Section 3 the methodology to couple the models is
described in detail. Section 4 demonstrates a few basic applications
of each coupled system. The discussion and conclusions are in
Sections 5 and 6.
2. Models

2.1. Regional Ocean Modeling System (ROMS, v. 2.2)

ROMS is a public domain, free surface, hydrostatic, three-
dimensional, primitive equation ocean circulation model (Shche-
petkin and McWilliams, 2005; Haidvogel et al., 2008). The model
solves the Boussinesq approximation to the Reynolds averaged
form of the Navier Stokes equations on an orthogonal curvilinear
Arakawa ’C’ grid in the horizontal and uses stretched terrain fol-
lowing coordinates in the vertical. The model features second,
third, and fourth order horizontal and vertical advection schemes
for momentum and tracers, and can use splines to reconstruct
vertical advection profiles. Along with temperature and salinity,
ROMS can transport passive tracers, contains algorithms for
suspended and bed load sediment transport, multiple choices for
turbulence closures, biologic routines, and several types of
boundary conditions.

We have implemented algorithms to include the effects of sur-
face wind waves on the currents (Warner et al., in press) based on
the method of Mellor (2003, 2005). For these effects ROMS requires
information of wave energy, wave length, and wave direction.
Other processes such as surface fluxes of turbulent kinetic energy
due to breaking waves, bed-load sediment transport, and enhanced
bottom friction due to waves require information of bottom orbital
velocities, surface and bottom wave periods, and wave-energy
dissipation. These parameters can be obtained directly from a wave
model, such as SWAN.
2.2. Simulating Waves Nearshore (SWAN, v. 4041AB)

SWAN is a public domain spectral wave model that solves the
spectral density evolution equation (Booij et al., 1999; Ris et al.,
1999). SWAN simulates wind wave generation and propagation in
coastal waters and includes the processes of refraction, diffraction,
shoaling, wave–wave interactions, and dissipation due to white-
capping, wave breaking, and bottom friction. SWAN allows input of
wind forcing, water velocity, and water level, and we have added
the input of changing bottom topography. These inputs allow the
wave model to respond to changes in water currents, sea level, and
morphological changes due to sediment transport on the sea floor
to effect the generation and propagation of surface wind waves.
Coupling of ROMS and SWAN is a natural formulation to allow
mutual interactions of the waves and currents. During the coupling,
the SWAN model is run in the non-stationary mode to allow tem-
poral evolution of the model state.
2.3. Atmospheric componentdCOAMPS model (v. 3.1.1)

The atmospheric model component in the coupled system is the
Naval Research Laboratory (NRL) COAMPS� mesoscale model
(Hodur, 1997). It is a nonhydrostatic, quasi-compressible atmo-
spheric model with physics schemes and a variety of physical pa-
rameterizations of sub-grid scale processes for predicting meso and
micro scales of motion. The model predicts wind momentum
components (u, v, and w), surface pressure, dew point, pre-
cipitation, surface sensible and latent heat fluxes, relative humidity,
and air temperature on a sigma-z vertical coordinate grid. COAMPS
has been extensively used for operational forecasts, as well as for
real-data and idealized research experiments (Burk et al., 1999;
Samelson et al., 2002; Pickett and Paduan, 2003). The model sur-
face fluxes of heat, momentum, and moisture are exchanged with
the ocean model. In return, COAMPS requires water temperature
that can be computed by the ocean component.
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2.4. Model Coupling Toolkit (MCT, v. 2.1.0)

The MCT (Jacob et al., 2005; Larson et al., 2005) allows the
transmission and transformation of various distributed data be-
tween component models that constitute a parallel coupled sys-
tem. MCT is an open source software written in Fortran90 and
works with the MPI communication protocol. It is compiled as a set
of Fortran modules and libraries. The modules are used during the
compilation and the libraries are linked to build the executable.
Each model calls the MCT during execution to send and receive
data. The MCT has been used to couple the Weather Research and
Forecasting Model (WRF) to ROMS (Michalakes, 2003) and acts as
the base for the Community Climate System Model coupler (Craig
et al., 2005).
3. Methodology

The component models in a system coupled via MCT will be referred to as
MODEL1 and MODEL2; these are ROMS and SWAN in one case, ROMS and COAMPS
in another case. We present, in a general manner, the methodology implemented to
couple these two sets of models. This provides a basic example that could be used for
coupling of other types of models. A common approach used to develop both sys-
tems is that the data exchange between the individual component models is per-
formed across the horizontal domain, i.e. exchanging only two-dimensional model
fields.
3.1. Master program

Each coupled system was developed in a way to preserve the original MODEL1
and MODEL2 codes as much as possible; these models could be placed into separate
directories. The individual models of the coupled system could be compiled sepa-
rately as libraries and then linked together as one executable program. The main
program that serves to control the flow and processor allocation of the coupled
model system is called ‘Master’. This ‘Master’ program was coded for concurrent
coupling, i.e., in which the component models run simultaneously on several dif-
ferent processors. The MCT allows for other types of coupling as well (such as se-
quential); however, we chose the concurrent configuration as the best alternative for
our applications.

At execution, the ‘Master’ driver program distributes the total number of pro-
cessors allocated for the job to the individual models, and calls each model com-
ponent with an initialize, run, and finalize structure. The master program is
organized as follows. ‘Master’ initializes MPI using a standard call ‘MPI_INIT’ to
activate a common MPI communicator (MPI_COMM_WORLD) for the entire coupled
system. ‘Master’ knows the total number of models that are being coupled (for our
examples this is two), and uses the ‘MPI_COMM_SPLIT’ function to split the com-
mon communicator MPI_COMM_WORLD into multiple communicators COMM1 and
COMM2 (one for each model). It now needs to delegate specific processors to each
model. To accomplish this, ‘Master’ determines the total number of processors
requested for the submitted job using the ‘MPI_COMM_SIZE’ command and reads
an input file to determine the number of processors to be assigned to each model, for
instance, ‘M’ processors to MODEL1 and ‘N’ processors to MODEL2. Then, each
processor ID is determined using the ‘MPI_COMM_RANK’ function; ‘Master’ assigns
processors to each model based on the processor ID and number of processors
requested for that model. In our test cases with ROMS and SWAN we allocated a total
of five processors, two of which are for ROMS, and three are for SWAN. For COAMPS–
ROMS coupled tests we allocated a total of three processors, two for COAMPS and
one for ROMS. These numbers are determined by the specific application and are
limited only by the number of processors on the computer cluster.

The ‘Master’ program then calls steps to initialize, run, and finalize on all pro-
cessors for both MODEL1 and MODEL2. It is recommended that the individual
modeling components be structured in this way to provide a consistent framework
and to assist in determining the correct synchronization points. Additional sub-
routines are written for each model to follow steps for the MCT aspect of initiali-
zation, communication via MCT during the run phase, and terminate MCT properly
during the finalize phase. These routines are organized in modules called ADD_
MOD1 and ADD_MOD2, for MODEL1 and MODEL2, respectively, and look sche-
matically as follows:

module ADD_MOD1
use MCT_modules
contains

subroutine MCTinit_MOD1(COMM1,.)
subroutine MCTrun_MOD1(COMM1,.)
subroutine MCTend_MOD1

end module ADD_MOD1
The module ADD_MOD1 is placed with the code for MODEL1 and compiled with
that model. A similar module, ADD_MOD2 is written for MODEL2, and compiled
with that model. The structure of each step of initialize, run, and finalize is detailed
below.

3.2. Initialize

During the initial step, each processor determines its grid segment (tile) for the
model, allocates and initializes arrays and model variables. MCT is also initialized
during this step. This occurs in the corresponding subroutine MCTinit_MODn
(where n is 1 for MODEL1 and 2 for MODEL2). This subroutine is called to activate
MCT connection, to perform MCT domain decomposition, to initialize MCT arrays
and interpolation matrices (if needed). The basic structure of this subroutine is given
below, followed by explanations:

subroutine MCTinit_MOD1(COMM1, ncomps, MOD1_ID, MOD2_ID)
call MCTWorld_init(ncomps,MPI_COMM_WORLD,COMM1,MOD1_ID)
call GlobalSegMap_init(GlobalSegMapMOD1,start,length,root,COMM1,
MOD1_ID)
call AttrVect_init(AV1_toMOD2,rList¼‘‘M1var1:M1var2:M1var3’’,
lsize¼AV1size)
call AttrVect_init(AV1_fromMOD2,rList¼‘‘M2var1:M2var2:M2var3’’,
lsize¼AV2size)
call Router_init(MOD2_ID, GlobalSegMapMOD1,COMM1,Router1)

end subroutine MCTinit_MOD1

First, the MCTWorld_init function registers a component model based on its
communicator and model affiliation (COMM1, MOD1_ID), gets total number of
components in a coupled system (ncomps, equals to two in our examples), de-
termines total number of processes owned by a given component, and identifies
local and global processor rank of each process for a given component and for the
world communicator. Identification number of the second component (MOD2_ID),
needs to be specified explicitly by the user in the subroutine to establish commu-
nication between the models.

When more than one processor is assigned to the model, a model decomposes
its gridded domain into tiles (segments). In our coupling method each processor
performs calculations in one tile of the individual model. The next step in our
procedure is to initialize the global segment map (GlobalSegMap_init), reporting
MCT what segment of the model grid the current processor is working on. To enable
data exchange between the components of model fields scattered across multiple
processors, MCT therefore needs to construct universal identification of grid point
locations. This is accomplished using one-dimensional domain decomposition
known as ‘‘virtual linearization’’ (Larson et al., 2005), in which multidimensional
model arrays are linearized, and multiple indices are converted into a single unique
indexda global ID number of the grid point. Special MCT data type object ‘Global-
SegMap’ holds information on how a grid segment associated with each tile is ori-
entated within the global MCT grid for that model, and is initialized by function call
GlobalSegMap_init. The ‘GlobalSegMap’ data object is determined by the arrays
‘start’ and ‘length’, which indicate starting indices of the linear grid segment on
a global grid, and length of these linear segments, respectively.

As a simple illustration, Fig. 1 shows a computational rectangular grid with 24
points: 4 rows by 6 columns. Small numbers indicate linear indices of the global grid.
Domain decomposition is two-dimensional for MODEL1 (ROMS model), and is
achieved from user-specified number of tiles in x-direction (NTILEI) and y-direction
(NTILEJ), resulting in a global grid subdivided into NTILEI � NTILEJ tiles. Each actual
tile will have ghost (halo) points added around the perimeter of the tile that are
often needed for the numerical algorithms, and contain repeated information (ex-
cept along the perimeter of the domain). Halo points are only updated within each
single component for each model’s own state solution and the halo points are not
referenced or transferred during the model coupling. In this simple example the
MODEL1 will be allocated 2 processors and the grid is decomposed into 2 tiles (tile
0 and tile 1), one for each processor. Tile 0 for MODEL1 will have a ‘Global-
SegMapMOD1’ identified with two ‘start’ indices, grid point number 1 and grid point
number 7, and two ‘length’ values both equal to 6. Total length of the linearized data
array for the tile 0 will be 12. Similarly, tile 1 for MODEL1 will have ‘start’ indices 13
and 19, two ‘length’ values both equal to 6; total length of the data segment equal 12.

The MODEL2 in this simple example has three processors and is decomposed
into three tiles (numbered 0, 1, and 2). Grid decomposition is determined by dividing
the domain into a number of sections equal to the number of processors allocated to
MODEL2 (SWAN model). This could be accomplished by starting along the shorter
direction of the grid (row or column) and taking full rows (or columns) for 1/
(number of processors) of the grid length. In this example, ‘GlobalSegMapMOD2’ for
tile 0 has four elements in ‘start’ array at indices 1, 7, 13, and 19, four elements in
‘length’ all equal to two, and total length of one-dimensional data array equal to 8.
Similar maps are designated for tiles 1 and 2. GlobalSegMap_init also uses in-
formation about the processor rank of the root processor (usually root¼0), and
component model communicator and identification (COMM1, MOD1_ID or COMM2,
MOD2_ID).

Data storage in MCT is accomplished using a data type called an attribute vector
(‘AV1_toMOD2’ as in the above example). Attribute vectors hold data for each



Fig. 1. Simple example of how different models may decompose the same grid. MODEL1 decomposition is user specified whereas MODEL2 decomposition is determined by grid
orientation.
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linearized domain segment as described by corresponding ‘GlobalSegMap’ object for
a given processor, and are initialized using AttrVect_init function that allocates
storage space for the linearized array. Attribute vectors hold real and/or integer data
segments of user-defined fields/variables specified in ‘rList¼‘var1:var2:var3’ for real
fields, or ‘iList¼.’ for integer data. The ‘rList’ (or ‘iList’) is a list of string tokens
delimited by colons that refer to field names. This formulation provides flexibility to
easily adjust the fields that are being used in the coupling. All these data segments
are of equal length, ‘lsize¼AVsize’, corresponding to one-dimensional MCT domain
decomposition. In the examples shown in Fig. 1, sizes of these data segments are
‘lsize¼12’ for both tiles in MODEL1 domain, and ‘lsize¼8’ for each of the three tiles in
MODEL2 grid (although ‘lsize’ may vary for different tiles of a model domain). This
establishes the size of data segments that are sent from one component MODEL1
(MOD1_ID) to MODEL2 (MOD2_ID) (‘AV1_toMOD2’). A separate attribute vector is
initialized for the data to be received from MODEL2 (‘AV1_fromMOD2’). Similarly,
attribute vectors AV2_toMOD1 and AV2_fromMOD1 are initialized in MCTinit_MOD2
routine to allocate storage space for data computed by MODEL2 to be sent to
MODEL1, and for the fields from the MODEL1 to be received by MODEL2,
correspondingly.

MCT data transfer requires a special communication table called ‘Router’. An
MCT ‘Router’ is a data type object that is created from two components’ respective
domain decomposition descriptors (i.e., their corresponding ‘GlobalSegMap’) to al-
low for parallel data transfer between model domain segments residing on different
processors (Larson et al., 2005). For a given set of MODEL1 gridpoints on a given
processor (‘GlobalSegMapMOD1’), the ‘Router1’ determines corresponding grid point
locations of MODEL2 (‘GlobalSegMapMOD2’) on other processors, and provides the
conduit for data that will be transferred. The ‘Router1’ table for the MODEL1 is ini-
tialized by a Router_init function call in MCTinit_MOD1 subroutine, which connects
information about a second component ‘MOD2_ID’, domain decomposition of the
calling component ‘GlobalSegMapMOD1’, and the communicator of the calling
component ‘COMM1’. A similar procedure is employed to initialize the corre-
sponding ‘Router2’ communication table for the second model, in MCTinit_MOD2
routine.

3.3. Run phase

Each model operates on its own set of processors according to split communi-
cators COMM1 and COMM2, and continues through its own time stepping loop,
communicating amongst all the processors for that same model. At some point it
reaches a user-defined model time, for instance MCTtime, where it communicates
with the other models and exchanges data. Component models may have different
time steps; the user has to make sure all component models have the information
about MCTtime and are able to access it during model time integration. In our test
cases, instantaneous model fields for a specific time were used for data exchange;
MCT, however, has capabilities to perform time average of model forcing fields as
well.

When each component model reaches MCTtime, it calls a corresponding sub-
routine MCTrun_MODn (n is 1 or 2). This routine is called by each processor of the
model and marks a convergence point where all the processors must synchronize
for data exchange. Subroutine MCTrun_MOD1 operates on attribute vectors
AV1_toMOD2 and AV1_fromMOD2. In a similar way, the second component operates
on attribute vectors AV2_toMOD1 and AV2_fromMOD1, to be sent to and received
from MODEL1. A modeled data field to be transferred to the other component has
to be linearized before loading into the MCT attribute vector. The linearization
could be accomplished, for example, by loading a 2-D data from a domain segment
into a working vector array ‘avdata’ that is of the equivalent linear dimension as
the 2-D data segment. Further, uploading this working array into a particular
variable ‘M1var1’ of attribute vector ‘AV1_toMOD2‘ could be done via a single
function call:

call AttrVect_importRAttr(AV1_toMOD2,‘‘M1var1’’,avdata)

As an example, MODEL1 fills its attribute vector with data to be transferred to
MODEL2 (AV1_toMOD2) by importing all the variables (‘‘M1var1’’.‘‘M1varn’’). Then
MODEL1 calls MCT_Send to transfer the attribute vector ‘AV1_toMOD2’ to the MCT
via the ‘Router1’ previously established. MCT then redistributes the data using the
‘GlobalSegMapMOD2’, and fills the attribute vectors AV2_fromMOD1. MODEL2 re-
ceives the attribute vector AV2_fromMOD1 via its corresponding ‘Router2’ by in-
voking MCT_Recv. In our implementation, this is a fundamental synchronization
point of the coupled models, because MCT_Send and MCT_Recv are blocking
commands. This means that the component model that sends the data with a special
‘tag’ to MCT waits until the second component model receives that data with the
same ‘tag’, which completes a given data transfer session on both sides. Data transfer
from MODEL2 to MODEL1 requires a separate set of MCT_Send and MCT_Recv calls.
The form of data transfer sessions we implemented is as follows:

call MCT_Send(AV1_toMOD2,Router1,tag1)
(in MCTrun_MOD1, sending data via ‘Router1’ computed by first model)

call MCT_Recv(AV2_fromMOD1,Router2,tag1)
(in MCTrun_MOD2, receiving the data by the second model)

call MCT_Send(AV2_toMOD1,Router2,tag2)
(in MCTrun_MOD2, sending data via ‘Router2’ computed by second model)

call MCT_Recv(AV1_fromMOD2,Router1,tag2)
(in MCTrun_MOD1, receiving data by the first model)

Attribute vectors on a receiving end could be exported into a linear working
array ‘avdata’ for further use by a component in a way similar to the uploading
process:

call AttrVect_exportRAttr(AV2_fromMOD1,‘‘M1var1’’,avdata, avlen),

where avlen is the length of a linear data segment of ‘M1var1’ variable, filling avdata
working array.

After each component finishes its data transfer procedures, model integration
resumes for another MCTtime period. The process is repeated for the remainder of
the simulation.



J.C. Warner et al. / Environmental Modelling & Software 23 (2008) 1240–12491244
3.4. Finalize phase

The last step is for all the components to finalize their calls and close all ‘Routers’,
attribute vectors, ‘GlobalSegMap’-s, MCT, and MPI communications. The MCT module
ADD_MOD1 may contain the following:

subroutine MCTend_MOD1
call Router_clean(Router1)
call AttrVect_clean(AV1_toMOD2)
call AttrVect_clean(AV1_fromMOD2)
call GlobalSegMap_clean (GlobalSegMapMOD1)
call MCTWorld_clean()

end subroutine MCTend_MOD1

After model integration is completed for all components, and the corresponding
MCT communications are closed, the execution returns to the ‘Master’ program. It
completes the simulation by closing all the MPI communications.
‘Master’  program

• initialize MPI

‘Master’  program
• finalize MPI

• program STOP, END

MCT
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Fig. 2. A flow chart of the coupled code that forms a single-executable modeling
system; its components run in concurrent mode.
3.5. Sparse matrix interpolation

If the component model grids are not identical, MCT has the capability to per-
form matrix interpolation to remap the model fields from one horizontal grid to
another. It is the user’s responsibility, however, to provide corresponding matrices
with remapping weights prior the simulation start. Separate programs could be used
for that purpose, for example, SCRIP (Spherical Coordinate Remapping and In-
terpolation Package; Jones, 1999; http://climate.lanl.gov/Software/SCRIP/).

As the horizontal model grid meshes are linearized into vector arrays, the task or
regridding becomes a matrix-vector multiplication, similar to Y ¼ M,X, where Y is
a linearized vector array of global destination grid elements, M is multiplication
matrix, and X is a vector of global source grid elements. If a horizontal global des-
tination grid Y consists of imax by jmax grid elements, its linear size is
nRows¼imax*jmax; linear size of a destination grid defines a number of rows in the
interpolations matrix M. Similarly, nCols is the linear size of a horizontal global
source grid X that defines the number of columns in the matrix M. A total number of
elements in interpolation matrix M is equal to num_elements¼nRows*nCols. The
interpolation stencil is generally fairly small (e.g., four adjacent points for bilinear),
and thus M is very sparse matrix.

MCT creates a special data type object ‘SparseMatrix’ to store sparse matrix
weights in a compact form; it stores only non-zero elements with their corre-
sponding column and row indices. First, user-supplied remapping weights and their
index locations need to be loaded into working linear arrays weights, rows, columns.
The sizes of these variables have to be identical, size(weights), size(rows), and
size(columns). Then, MCT sparse matrix ‘sMat’ is created in the following way:

call SparseMatrix_init(sMat, nRows, nCols, num_elements)
call SparseMatrix_importGRowInd(sMat,rows,size(rows))
call SparseMatrix_importGColInd(sMat,columns,size(columns))
call SparseMatrix_importMatrixElem(sMat,weights,size(weights))

Next, we illustrate how to apply the matrix ‘sMat’ for remapping. Consider an
example that requires remapping data from the first component model grid to the
second component model grid. Assume the interpolation is performed in the second
component module (MCTinit_MOD2). Two sets of similar attribute vectors holding
the same variables have to be initialized in the same module; one for the data on the
source grid (‘AV_gridMOD1’), and another for the remapped data on the second
model grid (‘AV_gridMOD2’). Remapping is performed on real fields only, associated
with corresponding tokens in ‘rList’ of input and output attribute vectors. When
input and output data vectors ‘AV_gridMOD1’ and ‘AV_gridMOD2’ are purely data-
local, sparse matrix-vector multiplication could be achieved with a single function
call as follows:

call sMatAvMult(AV_gridMOD1, sMat, AV_gridMOD2).

Here, the condition of total data locality implies that the input data vector
contains all the values referenced by the local column indices of ’sMat‘, and the
output data vector contains all the values referenced by the local row indices of
argument ‘sMat’. Note, that in this case ‘sMat’, a ‘SparseMatrix’ data object, holds
information about remapping weights for the entire (global) domains of both
component model grids.

When horizontal model grids are distributed over a number of processors, the
input and output vectors will not be totally data-local. Then, matrix-vector multi-
plication process has to be explicitly distributed-memory parallel, performed on
each processor for its domain segment. Another data type object, ‘SparseMatrixPlus’,
is defined to store the elements of M and all the information needed to coordinate
data redistribution and reduction of partial sums.

Domain decomposition for two sets of grids needs to be defined by the corre-
sponding ‘GlobalSegMap’ objects, for example, ‘GSMapMOD2_grid1’,‘GSMapMOD2_
grid2’.
To perform distributed-memory parallel matrix-vector interpolation, i.e., in-
terpolation performed on each processor for its domain segment, a data type
‘SparseMatrixPlus’ is defined. It uses previously created ‘sMap’ for global grid
remapping, and information about domain decompositions, ‘GSMapMOD2_grid1’
and ‘GSMapMOD2_grid2’. The corresponding function call to create this object,
named below ‘sMatPlus’, has the following form:

call SparseMatrixPlus_init(sMatPlus, sMat, ‘GSMapMOD2_grid1’,
‘GSMapMOD2_grid2’, strategy, root, COMM2, MOD2_ID),

where ‘strategy‘ is a method of matrix decomposition by rows (Xonly), columns
(Yonly), or both (XandY). As ‘sMatPlus’ now encapsulates all the information neces-
sary to perform a distributed-memory parallel matrix-vector multiplication, ‘sMat’
data object is no longer needed, and it could be cleared from memory. The in-
terpolation is then executed by a single function for matrix multiplication:

call MCT_MatVetMul(‘AV_gridMOD1’, sMatPlus, ‘AV_gridMOD2’)

After this call, the attribute vector ‘AV_gridMOD2’ holds data fields computed by
the first component and remapped onto second component’s grid. If attribute
vectors ‘AV_gridMOD1’ and ‘AV_gridMOD2’ contain a number of attributes, as spec-
ified in their correspondent ‘rList’-s, the function MCT_MatVetMul performs in-
terpolation of multiple fields in a single library call.
4. Test cases

We have included several test cases to demonstrate the neces-
sity for coupling and to compare the performance of the coupled
system. The first example involves the ROMS–SWAN coupled sys-
tem and demonstrates the significance of using two-way coupling
for model prediction. The second example of COAMPS–ROMS code
includes tests with variable model grids and resolutions, demon-
strating advantages and limitations of remapping capabilities. Both
coupled codes were implemented as single-executable systems,
following flow chart shown in Fig. 2.

http://climate.lanl.gov/Software/SCRIP/
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4.1. ROMS–SWAN: Tidal inlet wave-current coupled system

This coupled example demonstrates the significance of wave–
current coupling and includes ROMS coupled to SWAN. The test
case is a simple tidal inlet system, based on a rectangular basin
domain that is 15 km wide by 14 km in length. The entire basin is
initialized with a uniform water depth of 4 m (Table 1). The seafloor
is initialized as a 10 m thick bedlayer of uniform very fine 0.10 mm
diameter sand. The backbarrier region (bottom) is enclosed with
four walls, except for a 2 km wide inlet centered along the middle
wall that connects the back region to the seaward domain. The
seaward (top) region has northern, western, and eastern edges that
are open (Fig. 3). The model is forced by oscillating the water level
on the northern edge with a tidal amplitude of 1 m and a period of
12 h. Waves are also imposed on the northern edge with a height of
1 m, directed to the south with a period of 10 s. The water level
oscillations drive the ocean circulation model and the wave am-
plitude drives the wave model. The model system is run with two
configurations: (1) one-way coupled with wave information passed
to the circulation model; (2) two-way fully coupled where the
ocean model sends water velocities, water level, and bottom mor-
phologic change to the wave model, and the wave model sends
wave height, period, and wave length to the ocean model. For both
configurations the modeling system is simulated for a period of
2 days. A morphologic scale factor of 10 provides an increased re-
sponse of the seafloor evolution to the stresses imposed by the
currents and waves. Thus the total simulation is considered to
represent a 20-day period.

In the one-way coupled system the wave heights quickly evolve
to a steady state. The wave heights decreasing southward toward
the inlet and show no effect from the inlet currents (Fig. 3). The
wave heights along the western and eastern edges are lower in
amplitude because there were no waves imposed on these
boundaries. The contour of wave height is straight across the inlet
opening showing that there is no sign of the currents interacting
with the waves, as specified for this one-way coupled application.
At the peak of the ebb tide the combined wave-current bottom
stresses on the seafloor are maximum near the location of maxi-
mum currents. As the tidal currents transport sediment, the ba-
thymetry of the sea floor will evolve. Flood and ebb tidal shoals are
produced with a larger ebb than a flood shoal. By contrast, the two-
way coupled model results demonstrate that the wave heights are
greatly increased in front of the inlet. The wave height contour lines
show increased wave amplitudes in the inlet as the approaching
wave interacts with an opposing current. The increased wave
heights create combined bottom stresses that are greater than the
one-way coupled system, and the peak bottom stresses are located
Table 1
Model parameters for the ROMS–SWAN test case 1

Model parameter Variable Value

length, width, depth Xsize, Esize, depth 15000 m, 14000 m, 4.0 m
number of grid spacings Lm, Mm, Nm 75, 70, 10
bottom roughness zob 0.015 m
time step dt 10 s
simulation steps Ntimes 17280 steps (2 days)
morphology factor morph_fac 10 (¼20 day scaled simulation)
grain size Sd50 0.10 mm
settle velocity ws 11.0 mm s�1

erosion rate E0 5 � 10�3 kg m�2 s�1

critical stresses scd, sce 0.10 N m�2

porosity 4 0.50
bed thickness bed_thick 10.0 m
northern edge tide A, Tt 1.0 m, 12 h
northern edge wave height Hsig 2 m
northern edge wave period T 10 s
northern edge wave direction q from 0� (from North)
near the maximum wave heights. The seafloor morphology evolves
to produce a stronger ebb shoal than the one way coupled system
due to the higher stresses and the shoal is displaced slightly further
seaward. The coupling of the wave and ocean models demonstrates
an important feature that the nearshore wave and circulation dy-
namics are mutually interactive and accurate modeling of this type
of system should include these communications.
4.2. ROMS–COAMPS

The coupled system for the next example includes ROMS as the
ocean component and COAMPS as the atmospheric component. The
simulations below analyze and compare tests with identical grids
in both components vs. tests where model grid resolutions differ
and MCT remapping capabilities are used. Domain location and
model initial conditions were chosen to represent typical summer-
time conditions off the central Oregon coast with its relatively
straight north-south oriented coastline. Strong and persistent
northerly winds during the summer season in this area create
conditions where warm surface waters are transported offshore
and replaced by upwelled colder bottom waters, forming a narrow
strip of cool surface temperatures within 10–50 km from the coast.
The spatial scales of this upwelling are typically under-resolved by
common operational forecast models. Because of the simple, linear
configuration of the Oregon coast, we use an idealized two-di-
mensional simulation domain.

The control case has a horizontal domain 50 km in latitudinal
direction (x-direction) and 20 km in the longitudinal (y-direction),
with 1-km grid spacing (dx ¼ dy ¼ 1 km); grid spacing was similar
in both model components. The simulations were numerically two-
dimensional; the along-channel grid points (y-direction) were
added only to assure proper numerical execution of the atmo-
spheric model code. Test cases in the present paper are organized
by their corresponding grid box sizes in atmosphere and ocean
models in cross-shore (dxatm,dxoce) in kilometers; given this
scheme, the control case is further referred as case(1,1). The hori-
zontal domain is located over the coastal ocean and excludes land;
the eastern boundary of the ocean domain is a ‘‘coastal wall’’
boundary condition (BC). The western boundary of the ocean do-
main has open BCs; the atmospheric model has open BCs for both
east and west boundaries. Periodic north–south BCs in both models
are used to form a periodic channel. Ocean bathymetry is uniform
in alongshore y-direction; it changes linearly in the cross-shore x-
direction from 10 m at the eastern edge of the domain to about
300 m at the western edge about 50 km offshore. Model time step
was 3 s for the atmospheric model, and 300 s for the ocean model;
data exchange via MCT was performed every 300 s (the larger time
step of the two models).

The coupled model forecast is run for 72 h. Forcing in the at-
mospheric model is prescribed using a constant 15 m/s geostrophic
northerly wind, whereas the ocean is started at rest. Horizontally-
homogeneous initialization is chosen for temperature and moisture
in the atmospheric model, and for temperature and salinity in the
ocean model. For the atmospheric model, the vertical profile of
potential temperature linearly increased from 287 K at sea level to
350 K at 9 km elevation. For the ocean model, the temperature was
set at 14 �C for a surface mixed layer depth of 20 m, a sharp ther-
mocline with a decrease in temperature to 10 �C at 40 m, and then
a linear decrease in temperature to 6 �C at 300 m. The salinity
reflected a similar shape as the thermocline and increased from
32.5 at the surface to nearly 34 at depth. During data exchange
sessions via MCT, the ocean model receives predicted momentum
(wind stress) and heat fluxes from the atmospheric model, and
atmosphere receives sea surface temperature (SST) updates from
the ocean model. More analysis of the similar case studies and the



Fig. 3. ROMS–SWAN coupling tidal inlet test case. Comparison of significant wave height, maximum bottom stress, and bed thickness for a one-way coupled simulation (wave
parameters sent to ocean model) to a fully coupled simulation (wave parameters to ocean model and ocean data to wave model). For the fully coupled system, the wave heights
show effect of currents, the maximum bottom stress in enhanced due to increased wave heights, and bed thickness develops a stronger ebb shoal than the one-way coupled system.

Fig. 4. Ocean model 72-h forecast of sea surface temperature (SST),�C, in cross-shore
direction for COAMPS–ROMS test cases. Upper panel shows cases with similar reso-
lutions and computational grids in both ocean atmosphere components; lower panel
shows a control simulation, case(1,1), and cases that involve interpolation for grid
remapping. Plotted SST values correspond to the center of a grid box. Having the
coastal wall at the eastern boundary, the closest grid point to the coast is plotted at
0.5 km offshore distance for 1-km grid box, at 1.5 km offshore for 3-km grid box, at
4.5 km offshore for 9-km grid box, and so on.
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effects of model coupling on ocean and atmosphere boundary
layers’ formation could be found in Perlin et al. (2007).

Additional cases were run with similar settings, but variable grid
spacing. In some experiments, grid box size was similar in both
atmosphere and ocean models; according to the naming conven-
tion accepted earlier, these simulations are labeled as case(0.5, 0.5),
case(3,3), and case(9,9). Three other experiments smaller grid box
size in cross-shore direction (dx) for the ocean model; these are
labeled as case(1,0.25), case(3,1), and case(9,3). Grid box sizes in y-
direction (dy) remained identical for ocean and atmosphere model
pairs in each of the cases. To account for different model resolution
in x-direction, remapping of fields from one model grid to another
was needed. In some cases, the differences in model resolutions
dictated choosing smaller or larger time steps accordingly, and also
extension of model domain further offshore in coarser resolution
simulations. These differences nevertheless allowed making direct
comparisons between the cases in order to analyze the effects of
remapping.

Results of 72-h forecasts show that upwelling developed at the
eastern domain boundary in all the cases, with sea surface tem-
peratures (SST) in the control case(1,1) about 4 �C colder than the
offshore temperature (Fig. 4). One of the atmospheric responses to
the cold water near the coast is reduced wind stress (Fig. 5); the
primary atmospheric forcing for upwelling circulation has an im-
portant feedback to the ocean during the run. The control case
resulted in a 42% reduction of the nearshore meridional wind stress
in comparison with values 20 km or more offshore.

Decreasing grid spacing in half in case(0.5,0.5) as compared to
case(1,1), produced almost identical SST fields and meridional wind
stress across the domain. This indicates that the intensity and
spatial scale of the upwelling circulation were resolved sufficiently
good with the 1-km grid. SST in case(1,0.25) was also similar to the
control case, except for slight variations within 2–3 km of the coast.
In case(1,0.25) a band of colder water consisting of several grid
points extended almost all the way to the coast. Effects of de-
creasing resolution become notable in case(3,3): the nearshore cold
SST region was represented by a single grid point, and coastal wind
stress reduction was 34% versus w42% in the control case. However,
with the identical atmospheric model resolution in case(3,3) and
case(3,1), decreased grid spacing in ocean model in the latter case
produced SST values very similar to the control case. Further de-
crease in model resolution affected the SST prediction more nota-
bly. With the closest grid point center located at 4.5 km off the coast
in case(9,9), a critical nearshore region is excluded from the model



Fig. 5. Atmospheric model 72-h forecast of meridional wind stress (sy), N m�2, in
cross-shore direction for four test cases with different horizontal resolution in the
atmospheric component of the COAMPS–ROMS coupled system.
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calculations, and the lowest SST in this simulation is 0.8 �C warmer
than in the control case. The spatial scale of the upwelling circu-
lation in case(9,9) is larger than in other cases, and extends at least
30 km off the coast, as seen in both SST and meridional wind stress
Fig. 6. Ocean model cross-section of turbulent kinetic energy, 104 * m2 s�2, at the end of
depends on model resolution, and data points indicate the middle of a grid box (for case(9
plots. Wind stress reduction was about 30%. Decreased ocean
model grid box size in case(9,3) corrected the scale and intensity
(SST) of upwelling. The coldest temperature at the last inshore
point in case(9,3) was similar to minimum temperature in
case(1,1).

Comparison of ocean cross-sections of turbulent kinetic energy
(TKE) at the end of the simulation (Fig. 6) serves another good il-
lustration of useful remapping capabilities. Areas of elevated TKE
near the surface and the bottom indicate locations of surface and
bottom boundary layers, respectively. As water shoals near the
coast, the two boundary regions tend to merge and form a mixed
layer across the entire water depth. Note the similarities in TKE
prediction in the nearshore 5 km in case(1,1), case(0.5,0.5), and
case(3,1), whereas TKE in case(9,9) is overestimated. The TKE fields
are similar for case(3,3) and case(9,3) which had identical ocean
model resolution; merging of the boundary layers for the latter case
occurred further offshore, as marked by ‘‘1’’ isoline, in comparison
with the higher-resolution cases. The case(9,9) differs significantly
from the other simulations because of poor resolution in the coastal
shallow water region.

Notable improvement in SST prediction from increased ocean
model resolution is a valuable result because the atmospheric model
takes most of the computational time. The atmospheric model is
more costly because of smaller time step required: 3 s in case(1,1)
72-h simulation. The coast is at ‘‘0’’ distance. Note that nearshore ocean bathymetry
,9) a nearshore grid point is 4.5 km from the coast).
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versus a time step of 300 s in the ocean model. Use of a coarser
resolution for the atmospheric model grid therefore helps to reduce
computational costs of the coupled runs, without degradation of
the ocean model prediction. However, decrease in atmospheric
model resolution may lead to smoothing of smaller-scale circula-
tion features, which may be important for estimation of turbulent
properties in the upper ocean (mixing) layer.

5. Discussion

The MCT method provides a rather unintrusive technique to
allow model coupling in that each model runs as a separate entity,
with data exchanges at predetermined synchronization intervals.
Each model operates on its own grid and with independent input
and output functions. However, there are drawbacks to this for-
mulation. For example each model may require redundant in-
formation, such as a surface wind field. In the current formulation
the same data would be required multiple times but most likely in
different file formats. A more intrusive method would be to use the
core computational components from each model and develop new
components to perform the I/O for the coupled system. This could
potentially be more efficient, but would require fragmenting the
individual models and require more code development.

MCT is easy to install and we have successfully compiled the
libraries on systems ranging from a dual core PC using Windows XP
and MPICH2 to a 76-processor AMD Linux cluster. Computational
costs for the MCT component itself are typically small, but it does
add to the overall computational effort of the coupled system. A
single user may be able to develop a more efficient data re-
construction and dissemination formulation, but the MCT provides
a standard method and allows different developers to share com-
mon formulations and increases portability.

The efficiency of the coupled system can be increased by de-
termining optimal load balance on the processors. If MODEL1 rea-
ches the synchronization point first and requires a long wait time,
then this severely increases the total computation time. Processor
allocation should be arranged to allocate processors amongst
MODEL1 and MODEL2 so that both models reach the synchroni-
zation point as close to the same time as possible. It is difficult to
predict exactly how the load balance should be allocated initially, as
this is very dependent on the type of simulation being performed.

When two models are dynamically coupled the behavior of each
model may be different than before. The dynamic feedback can
cause the models to evolve into a state that is not expected. Users
need to experiment with time stepping, spatial resolutions, and
synchronization intervals to address the impact of coupling on their
particular application. Additionally, boundary conditions on one
model may now affect both models. Also, if two model grids are not
identical then developers need to be cautious on how to handle the
regions not computed by one of the models.

6. Conclusions

We used the Model Coupling Toolkit (MCT) to develop coupled
modeling systems of MODEL1 running on ‘‘M’’ processors and
MODEL2 running on ‘‘N’’ processors. In such a system, each model
component is formulated in an initialize, run, and finalize structure.
A ‘Master’ program controls the execution of the modeling system
and allocates processors to each model. A new module consisting of
several subroutines needs to be written for each of the component
models, and we describe in detail the structure and function of
these modules and routines. The routines create global segment
maps that describe how the grid is divided amongst different
processors for each model, the creation of attribute vectors that
hold the data, and routers that transfer the data. The models ini-
tialize, enroll into MCT, and transfer data using MPI-based MCT
protocols to efficiently send and receive model fields during model
execution.

We demonstrate the application of two coupled model systems:
an ocean–wave and an ocean–atmosphere system. All the
employed models had structured grids, and coupling was imple-
mented on the horizontal plane. MCT can be adapted to handle
unstructured grids and future implementations will provide in-
terpolation in the vertical dimension. Results suggest that the
coupled systems provide more realistic simulations. A set of sim-
ulations is presented demonstrating the capabilities of using sparse
matrix interpolation, when the two models have different grid
resolutions. The remapping requires the user to first obtain a matrix
with interpolation weights, which can be computed with the SCRIP
package. Future versions of the coupling can easily call the package
during initialization. The MCT is found to be a relatively simple and
non-intrusive communication library for dynamic coupling of
existing earth system models.
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the advanced research WRF meteorological model with the CHIMERE chemis-
try-transport model. Environmental Modelling & Software 23, 1092–1094.

Larson, J., Jacob, R., Ong, E., 2005. The model coupling toolkit: A new Fortran90
toolkit for building multiphysics parallel coupled models. International Journal
of High Performance Computing Applications 19, 277–292.

Lau, L., Young, R.A., McKeon, G., Syktus, J., Duncalfe, F., Graham, N., McGregor, J.,
1999. Downscaling global information for regional benefit: coupling spatial
models at varying space and time scales. Environmental Modelling & Software
14, 519–529.

Leung, L.R., 2005. Regional climate modeling: Research needs and direction. WRF/
MM5 Users Workshop, Boulder, CO. June 27–30, 2005.

Mellor, G.L., 2003. The three-dimensional current and surface wave equations.
Journal of Physical Oceanography 33, 1978–1989.

Mellor, G.L., 2005. Some consequences of the three-dimensional currents and sur-
face wave equations. Journal of Physical Oceanography 35, 2291–2298.

Michalakes, J.G., 2003. Infrastructure development for regional coupled modeling
environments, Final Project Report. Contract No. N62306-01-D-7110, Task Order
No. 0041, Project ID: CWO-03-002, September 2003.

Militello, A., Zundel, A.K., 2002. Coupling of regional and local circulation models
ADCIRC and M2D. Coastal and Hydraulics Engineering Technical Note ERDC/
CHL CHETN-IV-42. U.S. Army Engineer Research and Development Center,
Vicksburg, MS.

Perlin, N., Skyllingstad, E., Samelson, R., Barbour, P., 2007. Numerical simulation of
air-sea coupling during coastal upwelling. Journal of Physical Oceanography 37,
2081–2093.



J.C. Warner et al. / Environmental Modelling & Software 23 (2008) 1240–1249 1249
Pickett, M.H., Paduan, J.D., 2003. Ekman transport and pumping in the California
Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS).
Journal of Geophysical Research 108 (C10), 3327, doi:10.1029/2003JC001902.

Ris, R.C., Holthuijsen, L.H., Booij, N., 1999. A third-generation wave model for coastal
regions, Part II, Verification. Journal of Geophysical Research 104 (C4), 7667–
7681.

Samelson, R., Barbour, P., Barth, J., Bielli, S., Boyd, T., Chelton, D., Kosro, P., Levine, M.,
Skyllingstad, E., Wilczak, J., 2002. Wind stress forcing of the Oregon coastal
ocean during the 1999 upwelling season. Journal of Geophysical Research 107
(C5), 3034, doi:10.1029/2001JC000900.

Shchepetkin, A.F., McWilliams, J.C., 2005. The Regional Ocean Modeling System: A
split-explicit, free-surface, topography-following coordinates ocean model.
Ocean Model 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C.K., Arango, H.G., in press. De-
velopment of a three-dimensional, regional, coupled wave, current, and sedi-
ment-transport model, Computers and Geosciences.


	Using the Model Coupling Toolkit to couple earth system models
	Introduction
	Models
	Regional Ocean Modeling System (ROMS, v. 2.2)
	Simulating Waves Nearshore (SWAN, v. 4041AB)
	Atmospheric component-COAMPS model (v. 3.1.1)
	Model Coupling Toolkit (MCT, v. 2.1.0)

	Methodology
	Master program
	Initialize
	Run phase
	Finalize phase
	Sparse matrix interpolation

	Test cases
	ROMS-SWAN: Tidal inlet wave-current coupled system
	ROMS-COAMPS

	Discussion
	Conclusions
	References


