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Abstract

In the present paper, Miles’ (1981) theory is implemented to derive formulae for describing the

Bragg scattering of water waves for doubly composite artificial bars with different shapes, spacings,

relative bar heights, relative bar footprint and the number of bars. The theory has clear advantage in

estimating Bragg reflection coefficient for practical applications concerning coastal problems.

Experiments of Bragg reflections over doubly composite rectangular artificial bars have also been

performed in a wave flume. Key parameters that may lead to the optimal selection of a doubly

composite artificial bar are studied. Theoretical solutions are seen to compare fairly well with the

numerical computations and the laboratory experiments. Our simulated results reveal that the Bragg

resonance for doubly composite artificial bars effectively increases the bandwidth of the reflection

coefficient.
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1. Introduction

During the past decade, the surface wave scattering by rippled seabed has been studied

extensively through experiments, numerical simulations and theoretically. Concerning the

problems of waves passing through a region of the sinusoidal undulation, the interesting

phenomenon of Bragg resonance occurs when the surface wavenumber k is equal to one-

half of bed wavenumber K, i.e. 2k/KZ1. It means that the reflected waves will return in

equal phases and reinforce each other when they match the situation as stated above. The

behavior of the Bragg reflection leads to the possibility that the offshore bars could protect

the beach face from the full impact of the incident waves. Some explanations concerning

the Bragg scattering can be found in the earlier paper of Mei (1985). The case of linear

surface waves incident upon a horizontally one-dimensional sinusoidal bottom was

examined by Davies and Heathershaw (1984). Investigations as conducted by Davies et al.

(1989), and O’Hare and Davies (1993) reveal that there takes place not only the primary

resonance at 2k/KZ1 but also the second-harmonic at 2k/KZ2 can be found for a single

sinusoidal bed. To this point, Miles’ (1981) theory is frequently used to compare the

results of Bragg scattering, as induced by sinusoidal bars, with numerical results or

experimental data. The theory is derived on the basis of linear wave conditions to predict

wave scattering over horizontal bottom superposed by small undulations.

In the case of a bed consisting the superimposition of two sinusoidal bottoms having

different wavenumbers K1 and K2 (K2OK1) and the relative amplitude of the bottom

undulation D/h (D is the amplitude of the bottom undulation, h is the water depth in the

mild-slope sense), the resonances occur at kZ ðK2KK1Þ=2 and kZ ðK2CK1Þ=2, which

were referred to as sub-harmonic and higher-harmonic resonances, respectively, as

addressed by Belzons et al. (1991) and Guazzelli et al. (1992). A step-approximation

model (Guazzelli et al., 1992) and a successive application matrix method (O’Hare and

Davies, 1993) were developed to reproduce the resonant reflection, in which the bed was

divided into a number of very small horizontal shelves. A numerical model of extension of

mild-slope equation (EMSE), has been developed by Kriby (1986) to represent the Bragg

resonances by adding amplitude deviation terms in the slowly varying water depth. Zhang

et al. (1999) developed a hybrid model (HM) by extending the EMSE to the case of

monochromatic waves over a steep undulating bottom. Hsu and Wen (2001) developed a

parabolic mild-slope equation (PMSE) to accommodate the rapidly varying topography in

order to study the Bragg reflection for sinusoidal bottoms. An evolution equation of mild-

slope equation (EEMSE) was also developed by Hsu et al. (2003), in which the higher-

order terms (which is neglected in PMSE) relevant for steep undulating bottoms are

retained. However, it is a very complex and laborious work to derive the reflection

coefficients from numerical methods.

The studies mentioned above are mostly concerned with Bragg scattering of surface

waves over sinusoidal bars which are commonly formed offshore by partial or full

standing waves. However, a practical application of the patches of sinusoidal sand bars is

not feasible in coastal engineering techniques due to many planning difficulties. Mei et al.

(1988) proposed the concept of the Bragg breakwater to protect the oil drilling platform

from wave attack. The potential effectiveness against waves appears to be reasonable on

their studies. Kirby and Anton (1990) presented the theory on the basis of Miles’ (1981)
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theory and Kirby’s (1986) EMSE model to study the Bragg reflection of surface waves

induced by artificial bars placed discretely on the seabed. They discussed the limitations of

both Miles’ (1981) theory and EMSE and compared to experimental results. Bailard et al.

(1990) explored the feasibility of the Bragg reflection of artificial bars placed offshore on a

natural beach. Their results concluded that the Bragg reflection of artificial bars may have

merits as an appropriate shore protection method, but its Bragg resonance has only

primary harmonic resonances of waves reflected from a single sinusoidal undulation for a

monochromatic wave with a given wave period. Zhang et al. (1999) proved that the

limitation could be improved to produce both primary and higher-harmonic resonances,

i.e. to increase the bandwidth of the Bragg reflection, by using doubly superposed

sinusoidal bottom undulations.

From engineering point of view, convenience and advantage are both key elements in

practice. Many researches (Hsu et al., 2002, 2003) have shown that different shapes of

artificial bars such as triangular, rectangular and rectified cosine geometries could produce

Bragg scatting as natural ripple seabed and could be constructed easier in the field

application. For this case, Miles’ (1981) theory provides a simple method to explain the

Bragg resonance than any other complex numerical methods. The Bragg reflection

coefficient could be obtained in an easy way after integrating a formula for any undulation

bottom. For the application of Miles’ (1981) theory, the major studies in the earlier stage

focused on the sinusoidal or artificial bars with the same wavenumbers. Up to now there

has been no research for the study of Bragg reflection of combined artificial bars. In this

paper, we extended Miles’ (1981) theory to explore Bragg scattering of monochromatic

water waves over doubly composite artificial bars with varying affecting parameters.

Experiments, Hsu and Wen’s (2001) PMSE (numerical) model, and the EEMSE

(numerical) model of Hsu et al. (2003) were also carried out in recent years to compare the

Bragg reflection over doubly composite artificial bars with the existing theoretical

predictions. By varying the key parameters of doubly composite artificial bars, such as the

number of bars, relative bar height, relative bar spacing, formulae derived from Miles’

(1981) theory is examined in the present study.
2. Theoretical formulation

Notably, Miles (1981) presented an integral equation formulation of wave reflection

due to a cylindrical obstacle using the Laplace equation subject to bottom and free surface

conditions. Later researchers (e.g. Mei, 1985; Kirby, 1986), by using different methods,

have shown that the Bragg resonance could occur for a small amplitude undulation over a

horizontal bottom. The reflection coefficient, R, for an arbitrary topography is given by the

boundary integral equation of Miles (1981)

R Z
���K2ika

ðN

N
dðxÞe2ikx dx

��� (1)

where d(x) represents the bottom undulation varying in the x direction, iZ
ffiffiffiffiffiffi
K1

p
is the

complex unit, k is the wave number and a is a parameter defined as
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a Z
k

2kh Csinh 2kh
(2)

In the present study, in order to improve the narrow bandwidth of Bragg resonance in

water waves, two groups of doubly composite artificial bars are used to produce both

primary and higher-harmonic resonances. Three shapes of artificial bars, consisting of

rectangular, triangular and rectified cosine shapes, with different spacing are considered

(Fig. 1) in the theoretical analysis using Miles’ (1981) theory for Bragg resonance of water

waves. Each group of combination is periodic over an equal spacing S1 and S2,

respectively. In such combinations, the spacing is varied to investigate the performance of

Bragg resonance, where S is the interval between two combinations of bars. In Fig. 1, N is

the total number of artificial bars and N/2 artificial bars in each group, B is the footprint of

the bar on the seabed, D is the bar height and h is the mean water depth.

The undulation term d(x) is arbitrary aside from the small amplitude restriction, i.e.

D/h/1. For convenience, we set the bar spacing in the second combination as SZS2 in

the theoretical formulation. The expressions of undulation term d(x) for these three

different shapes of doubly composite artificial bars are written, respectively, as follows.

Rectangular bar:

dðxÞ Z

D; nS1%x%nS1 CB; n Z 0; 1;.;
N

2
K1

D;
N

2
K1

0
@

1
AS1 CnS2%x%

N

2
K1

0
@

1
AS1 CnS2 CB; n Z 1; 2;.;

N

2
K1

0; otherwise

8>>>>>>><
>>>>>>>:

(3)
S

D
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….. …..
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Fig. 1. Shapes of doubly composite artificial bars with different spacings: (a) rectangular bar; (b) triangular bar;

and (c) rectified cosine bar.
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Triangular bar:
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Rectified cosine bar:
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(5)

Substitution of these expressions into the integral equation (e.g. Eq. (1)) yields the

reflection coefficients for these three doubly composite artificial bars. After some algebraic

manipulation, the Bragg reflection coefficients of these three doubly composite artificial

bars are given, respectively, by:

Rectangular bar

R Z 2aD sin kB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 C2 cos
kS1ðNK2Þ

2
C

kS2ðN C2Þ

2

� �
A1A2 CA2

2

s
(6)

where the coefficients A1 and A2 are given by

A1 Z
sin kS1N

2

� �
sin kS1

(7)
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A2 Z
sin kS2N

2

� �
sin kS2

(8)

Triangular bar:

R Z 2aDð1Kcos kBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
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2
C
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� �
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2

s
(9)

Rectified cosine bar:
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(10)

From Eqs. (6), (9), and (10), it is interesting to note that the Bragg reflection coefficients

depend on key parameters, such as, the footprint of the bar B, the bar spacing S1 and S2, the total

numbers of bar N, and the bar height D.

In the case of equal bar spacing, i.e. S1ZS2ZS, the doubly composite artificial bars will

be reduced to a series of bars, where the relations of A1ZA2 holds good. This result implies

that the reflection coefficients are consistent with Hsu et al.’s (2002) formulae of a series of

artificial bars, indicating that the formulae in the present paper could easily be applied to a

single series of artificial bars.
3. The evolution equation of the mild-slope equation (EEMSE)

The EEMSE model is developed by Hsu et al. (2003) by extending PMSE (Hsu and

Wen, 2001) and HM (Zhang et al., 1999). The higher-order terms of steep bottom

undulation, neglected in PMSE, are retained in the model. The model has the merits to

achieve the faster convergence and to save computer time for a large coastal area. Here,

the EEMSE model is adopted to study the interaction between surface waves and doubly

composite artificial bars. The numerical results are compared with theoretical

computations obtained from Miles’ (1981) theory.

Following the procedure outlined in Hsu and Wen (2001), Hsu et al. (2003), the

evolution equation of the mild-slope equation (EEMSE) is written as
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K2ui

CCgKgð1Kl2Þd

" #
vf

vt

� �

Z V2
hf Ck2

c f C
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CCgKgð1KlÞd
p 2G1$dVh

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCgKgð1KlÞd

p
" #

C
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CCgKgð1KlÞd
p Vh½ð1Kl2Þ�$Vh

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCgKgð1KlÞd

p
" #

(11)

where

k2
c Z

gG1$Vhd CgG2 Ck2CCg

CCgKgð1KlÞd

� �
K

V2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCgKgð1KlÞd

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCgKgð1KlÞd

p (12)

is a pseudo wave number, u is the angular frequency, C and Cg are the wave celerity and

the group velocity, respectively, g is the gravitational acceleration, lZtanh kh, d

represents a rapidly varying component over a slowly varying depth h, and VhZ
ðv=vx; v=vyÞ is the horizontal gradient operator. The functions G1 and G2 are expressed as

G1 Z lð1Kl2ÞðkVhh ChVhkÞ (13)

G2 Z a1ðVhhÞ2k Ca2V2
hh Ca3Vhk$Vhh=k Ca4V2

hk=k2 Ca5ðVhkÞ2=k3 (14)

The parameters ai in Eq. (14) appear as follows:

a1 ZKlð1Kl
2Þð1KlkhÞK2ð1Kl

2Þl2kd (15)

a2 ZKlkhð1Kl2Þ=2 C ð1Kl2Þlkd (16)

a3 Z khð1Kl2Þð2khl2K5l=2Kkh=2ÞK2ð1Kl2Þð2l2khKlKkhÞkd (17)

a4 Z khð1Kl2Þð1K2lkhÞ=4Kl=4 C ð1Kl2Þlk2hd (18)

a5 Z khð1Kl2Þð4l2k2h2 K4k2h2=3K2lkhK1Þ=4 C ð1Kl2Þk2h2ð1K2l2Þkd (19)

The paper of Hsu et al. (2003) could be referred for detailed derivations. The rapidly

varying terms, Vhh and V2
hh, neglected in the EMSE model (Kirby, 1986), are retained in

EEMSE to take into account the steep bottom undulations. Notably, the EEMSE model has

the advantage of saving the storage and computing time when compared with the hyperbolic

equation. The equations of PMSE (Hsu and Wen, 2001) can be recovered if dZ0.

The radiation boundary condition for the problem is specified as follows

vf

vx
ZGðK1Þmibkf C2ikfi; onGx direction (20)

where bZ ð1KRÞ=ð1CRÞ is an absorption coefficient, R is the reflection coefficient, fi

denotes the velocity potential of the incident waves. For the partial reflection boundary,
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fiZ0, mZ0 and 0%b%1. For the given boundary condition, mZ1, bZ1 and

fiZ ðigH0

ffiffiffiffiffiffiffiffiffi
CCg

p
=2uÞeis, where H0 is the incident wave height, sZkxKut is the phase

function.
4. Experiments

In order to verify the validity of the present theory, experiments are conducted in a

wave flume with a dimension of lengthZ100 m, widthZ1.5 m and heightZ2.0 m which

is located in the Center of Harbor and Marine Technology, Institute of Transportation,

Ministry of Transportation and Communications, Taichung, Taiwan. A piston-type wave

generator is equipped in one side (end) of the flume to generate the sinusoidal waves and

the other side (end) is placed with the absorbing material to dissipate the wave energy from

reflection. Doubly composite artificial bars are placed discretely on a flat bottom, which

are located in the middle region of the wave flume. The first artificial bar is placed 55 m far

from the wave generator to avoid wave reflection back to it. The spacing of artificial beds

is varied only in the x direction along the wave flume, and thus horizontally one-

dimensional wave motion is generated, propagating normally over the artificial bars.

In total, 11 wave gauges with capacity type are displayed at different locations to

measure the surface elevation in the experiments. The schematic diagram of doubly

composite artificial bars on the wave flume and the setup are shown in Fig. 2. One wave

gauge placed in region A is used to measure and to calibrate the incident wave conditions,

one wave gauge is installed in region E to monitor the transmitted waves, and the other six

wave gauges are setup in region B to estimate the reflected wave. Four wave gauges are

displayed in regions C and D for measuring wave profiles over artificial bars. The

placement of wave gauges in region B matches the requirement of the analysis of wave

reflection coefficient for the least square method developed by Mansard and Funke (1980).

The surface wave elevations were recorded at a 30 Hz frequency to achieve an accurate

resolution in the range of the designed wave period.

Only rectangular artificial bars are chosen as typical examples in the laboratory

experiments for the study of Bragg resonance by doubly composite artificial bars. The bar

footprint B is adopted as 60 cm and the water depth is taken to be 60 cm for all
A BE 

100 m

55 m

D C

Fig. 2. Wave flume system and bar field placement.
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experiments. The bar spacing of first series S1 is fixed to 240 cm and the second spacing S2

is varied as 180, 240, and 300 cm, respectively. Total numbers of bars used in the

experiments are NZ4 and 8. The bar height D is taken as 12 and 24 cm so that the values

of the relative bar heights D/h became 0.2 and 0.4 in the experiments. Sinusoidal waves are

thereby generated from the wave board. The wave height H0 is taken as 4 cm in all the

experiments and the wave periods T is varied from 1.03 to 4.03 s. The detailed

experimental conditions are summarized in Table 1.

Wave steepness ka,with range 0.0013!ka!0.077, and Stokes parameter ŝZa=k2h3

ð0:006! ŝ!0:212Þ used in the experiments are both within the range of linear theory, and

aZH0/2 is the wave amplitude. Fig. 3 presents the measured water surface elevation and it

ensures that the waves are linear gravity waves. These results justify that the theoretical

and the numerical model are based on the linear potential theory form a reasonable basis

for comparison with experiments. The analysis of region E reveals that a reflection from

the absorbing beach is within the order of 6% for all wave periods. This result further

indicates that the influences due to the reflections at the end/side of the wave flume are

negligible, and the experimental results for the Bragg reflection due to the doubly

composite artificial bars are acceptable.
5. Theoretical verification

Using Miles’ (1981) theory, the estimation of reflection coefficients for Bragg resonance

under any shapes of bottom undulation could be achieved easily, even for the case of Bragg

reflection induced by doubly composite artificial bars. With the formulae obtained from the

integral equations in the former section, the phenomena of Bragg resonance could be easily

captured. To have a better understanding of the Bragg resonance, three cases were

considered:(a) a single series bars for NZ4, SZ2.4 m; (b)a single series bars for NZ4, SZ
1.8 m; and (c) doubly composite bars for N1Z4, N2Z4, S1Z2.4 m, S2Z1.8 m. All cases are

investigated at the same situations of BZ0.6 m, DZ0.24 m, and hZ0.6 m. The reflection

coefficients of the three cases are obtained from Eq. (6) and the results are shown in Fig. 4. The

bar spacing has abscissa 2S1/L in Fig. 4, with S1Z2.4 m.

Previous studies have proved that the Bragg resonance of sinusoidal bed include

primary resonance, second-harmonic resonance, sub-harmonic resonance and higher-

harmonic resonance(e.g. Davies et al., 1989; O’Hare and Davies, 1993; Belzons et al.,
Table 1

Experimental conditions

Case Conditions of artificial bars Wave conditions

N1 N2 N S1 (cm) S2 (cm) D (cm) B (cm) h (cm) T (s) H0 (cm)

1 4 4 8 240 240 24 60 60 1.03–4.

03

4.0

2 4 4 8 240 180 24 60 60

3 4 4 8 240 180 12 60 60

4 2 2 4 240 180 24 60 60

5 4 4 8 240 300 24 60 60
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Fig. 3. Comparison of measured surface elevations with the linear wave theory: (a) TZ1.03 s; (b) TZ4.03 s; –,

linear theory; C, measurements.
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1991; Guazzelli et al., 1992). Similar to the sinusoidal bed, the rectangular shape of doubly

composite artificial bars also exhibit such characteristics and could be found in Fig. 4. For

cases (a) and (b), the primary resonance occurs at 2k/K1Z1 and 2k/K2Z1, i.e. LZ2S1 and

LZ2S2, respectively. Apparently, it appears in Fig. 4 at 2S1/LZ1 and 2S1/LZ1.33. The

second-harmonic resonance is seen to occur at 2k/K1Z2 and 2k/K2Z2 for cases (a) and

(b). As evident from Fig. 4, the second peaks occur at 2S1/LZ2 and 2S1/LZ2.67,

respectively. The undulation bottom of case (c) is the superposition of two series

rectangular artificial bars, i.e. cases (a) and (b). The higher-harmonic resonance in this case

occurs at kZ ðK1CK2Þ=2, i.e. LZ2S1S2=ðS1CS2Þ. Although it is not conspicuous in

Fig. 4, we also have higher-harmonic resonance at the frequency of 2S1/LZ2.33. The sub-

harmonic, lower frequency of resonance, appears at kZ ðK1 KK2Þ=2, i.e.

LZ2S1S2=ðS1 KS2Þ. Using S1Z2.4 m and S2Z1.8 m, we get the sub-harmonic resonance

frequency at 2S1/LZ0.33.

Zhang et al. (1999) has observed the enhancement of bandwidth of the Bragg resonance

with superposed sinusoidal undulation. The doubly composite rectangular artificial bars
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Fig. 4. Reflection coefficients with doubly composite rectangular artificial bars: (a) NZ4, SZ2.4 m; (b) NZ4,

SZ1.8 m; (c) N1Z4, N2Z4, S1Z2.4 m, S2Z1.8 m.
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seem to have the good efficiency, too. Because of the superposition, the reflection

coefficients in the case (c) are reduplicated with cases (a) and (b). The resonances caused

by the combinations of two different spacing S1 and S2 produce a larger bandwidth and

enhance the wave-blocking efficiency.

The reflection coefficients of experimental results for cases 1–5 are shown in Figs. 5–9.

Results are compared using the deductions in Eq. (6), the PMSE model (Hsu and Wen,

2001), and the EEMSE numerical method (Hsu et al., 2003). In spite of frequency shift, the

magnitude of reflection coefficients as obtained from Eq. (6) appear in good agreement

with the experiments, especially in cases 2 and 3. In cases 4 and 5, the Miles’ (1981) theory

makes a little underestimate for the primary resonance but the PMSE and EEMSE method,

similar to many other numerical methods, appears to have larger errors with

overestimating in all the cases. For safety reason in engineering, underestimation of the

efficiency allow us to strengthen the countermeasures and will improve the safety. It

implies that Miles’ (1981) theory seems to be a very simple and quick method to grasp the

Bragg resonance and could be applied in coastal engineering effectively.
6. Results and discussion

Based on the Miles’ (1981) method, in the present investigation we intend to study

the effect of the key parameters and observe their influence on the Bragg resonance.
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Fig. 5. Results of reflection coefficient for case 1 of Table 1.

S.-K. Wang et al. / Ocean Engineering 33 (2006) 331–349342
The artificial bars are constructed in the field. Here, we keep the water depth to be fixed

(hZ0.6 m) to realize the influence of the other key parameters. Three different

combinations of rectangular artificial bars NZ4 (N1ZN2Z2), NZ6 (N1ZN2Z3), and

NZ8 (N1ZN2Z4) are considered and the cases are investigated under the conditions S2/

S1Z0.75, D/hZ0.25 and B/S1Z0.25. The reflection coefficients as obtained from Eq. (6)

for the three different cases are shown in Fig. 10. Results indicate that the peak amplitude

of primary and higher-harmonic resonance is increased as the numbers of bars increased.

Such results are in agreement with the previous studies on the doubly sinusoidal bed of

Guazzelli et al. (1992) and Zhang et al. (1999). Fig. 10 also shows that the bandwidth of

the resonances increases at primary and higher-harmonic resonance while increasing the

number of bars. It is because, the positions of resonances as caused by two groups with

interval S1 and S2 are very close. Such a situation produces a larger bandwidth of harmonic

resonance especially at the high frequency region.

Notably, Guazzelli et al. (1992) and Zhang et al. (1999) observed that a larger

amplitude of sinusoidal bottom could increase the peak amplitude and bandwidth of Bragg

resonance. In order to investigate the influence of the relative bar heights of doubly

composite rectangular artificial bars, three varieties of relative bar heights D/hZ0.3,

D/hZ0.4, and D/hZ0.5 are considered here with NZ8 (N1ZN2Z4), S2/S1Z0.75 and

B/S1Z0.25. As may be observed from Fig. 11, the present results match very well with the

previous investigations. It is also important to note that the effect on the peak amplitude is
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Fig. 6. Results of reflection coefficient for case 2 of Table 1.
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Fig. 7. Results of reflection coefficient for case 3 of Table 1.
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Fig. 8. Results of reflection coefficient for case 4 of Table 1.
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Fig. 9. Results of reflection coefficient for case 5 of Table 1.
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Fig. 10. Reflection coefficients with doubly composite rectangular artificial bars with different number of bars

(S2/S1Z0.75, D/hZ0.25, and B/S1Z0.25).
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more pronounced than on the bandwidth, as we increase the relative bar heights. In

addition, a comparison between Figs. 10 and 11, show that the larger reflection is caused

by increasing the relative bar heights than the number of bars. It implies that the relative

bar heights could enhance the wave-blocking efficiency.

Furthermore, the investigation by Kriby and Anton (1990) reveal that the peak values of

primary and higher-harmonic resonance can be adjusted by changing the bar spacing. In

order to investigate such phenomenon with doubly composite rectangular artificial bars,

three cases of relative bar with footprints B/S1Z0.2, B/S1Z0.3 and B/S1Z0.4 are studied

here with NZ8, S2/S1Z0.75 and D/hZ0.4. Fig. 12 shows that while the primary

resonance increases with larger relative bar footprint, the higher-harmonic resonance

decreases in such a situation. It is therefore concluded that pushing bars closer together

could reduce the importance of higher-harmonic resonances.

Fig. 13 presents the effects of the ratio of bar spacing on Bragg reflection. Doubly

composite artificial rectangular bars with different ratio of bar spacing, S2/S1Z0.8, S2/S1Z
1.0 and S2/S1Z1.2 are investigated under the condition NZ8, D/hZ0.4 and B/S1Z0.25.

Notably, compared to the equal bar spacing (S2/S1Z1.0), the bandwidth of both primary

and higher-harmonic resonances become larger under the doubly composite artificial bars

conditions (S2/S1Z0.8 and S2/S1Z1.2). The reason, as discussed above, is that different

bar spacing could produce distributive positions of the Bragg reflection. It is interesting

to note here that the primary and the second resonance do not occur at 2S1/LZ1 and 2S1/

LZ2 but at 2S1/LZ0.83 and 2S1/LZ1.67 under the condition of S2/S1Z1.2. It seems that
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Fig. 12. Reflection coefficients with doubly composite rectangular artificial bars with different relative bar

footprints (NZ8, S2/S1Z0.75, and D/hZ0.4).
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the Bragg resonance is particularly influenced by the bigger spacing when doubly

composite artificial bars are used.

Finally, we examine the efficiencies of different shapes of artificial bars. The reflection

coefficients for three differently shaped artificial bars, i.e. rectangle, triangle and rectified

cosine, with NZ8, S2/S1Z0.75, D/hZ0.4, and B/S1Z0.25 are presented in Fig. 14. The

rectangular artificial bars are seems to have more influence than the other two shapes. The

reason is that, the rectangular bars have a large volume and a vertical contour in the front

face. Consequently, it produces higher reflection coefficients and therefore have important

role to play.
7. Conclusions

Based on the Miles’ (1981) theory, in the present study, the reflection coefficients (as

induced by the Bragg scattering for wave propagation) over doubly composite artificial

submerged breakwaters with different spacing were derived. The distributive positions of

the Bragg reflection by doubly composite artificial bars could be illustrated reasonably.

Comparison of the experimental measurements, Hsu and Wen’s (2001) PMSE model and

Hsu et al’s (2003) EEMSE method, reveals that the present method is capable of producing

good results. It seems that Miles’ (1981) theory could be a much simple and quick method

to interpret the Bragg resonances than many other complex numerical methods. It can be

applied effectively and conveniently in practical engineering.



0.0 0.5 1.0 1.5 2.0 2.5 3.0

2S1 / L

0.0

0.2

0.4

0.6

0.8

1.0

R

rectangle
triangle
rect. cosine

Fig. 14. Reflection coefficients of different shapes of doubly composite artificial bars (NZ8, S2/S1Z0.75, D/hZ
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Three shapes of doubly composite artificial bars are considered to examine the

efficiency of resonance. Rectangular bars produce higher reflection coefficients in both

primary and higher-harmonic resonance than triangular and rectified cosine bars. It also

shows that the Bragg resonances are governed by some key parameters, the number of

bars, relative bar height, relative bar footprint and ratio of bar spacing. In addition to

resonance peak, doubly composite artificial bars are observed to significantly influence the

higher-harmonic resonances and the bandwidth at the high performance region. It also

found that when two different spacing of doubly composite bars were used the Bragg

resonances are dominated by the bigger spacing. An increase in the numbers of bars and

the relative bar heights, both the amplitude and bandwidth increase at primary and higher-

harmonic resonances. But the magnitude and bandwidth increases at primary resonance

and decreases at the higher-harmonic resonance when the relative bar footprint increased.

It is concluded that key parameters could be suitably chosen to control the Bragg

resonance. Doubly composite artificial bars with appropriate key parameters may used to

protect the beach face from erosion.
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