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Abstract

In this paper, new expressions of radiation stress and volume flux for long waves have been analytically derived by inclusion of higher-order
surface elevations up to the sixth-order. To quantify these expressions, surface elevations along a beach are first simulated using the fully nonlinear
Boussinesq-type model COULWAVE. Then, based on the large amount of numerical data, new equations for radiation stress and volume flux are
statistically formulated. The research unveils the essential roles of the Ursell parameter, Irribarren number and wave steepness described by the
local wave height, wave length and bottom slope. The study shows the importance of nonlinear wave properties in wave-induced currents and
mean water levels (set-up/down). The higher-order formulations produce lower values for radiation stress and volume flux than calculated from
the lower-order and linear waves. Case studies suggest that the new formulations produce an accurate estimation for mean water level. However,
improvement on the computed current profiles is marginal for some cases. This implies that the accurate prediction of the current profile would
require more than just the proposed improvement of the radiation stress and volume flux.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wave-induced currents and set-up/down (mean water level)
strongly influence sediment transport process in the nearshore
region. Significant progress has been made in the development
of numerical models for nearshore circulation. Yet, our under-
standing of the nonlinear transformation of waves and currents
is limited. The nonlinear effects induce significant changes in
wave shape, height, length and phase velocity. Shoaling waves
become more nonlinear; eventually the proximity of sea bottom
will induce breaking and generate currents.

Wave-induced currents and set-up/down may be studied
using either a time-dependent model or a time-averaged model
with respect to the wave period. In recent years, the time-
dependent (Boussinesq-type) models have reached a level of
maturity. The governing equations behind some models, such as
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COULWAVE (Lynett and Liu, 2004), allow for nonlinear
transformation of waves over variable bathymetry to significant
accuracy even for very high waves. One disadvantage of using
such models is that they are computationally intensive, espe-
cially for simulation over a large area. Another disadvantage is
that, an accurate formulation of an underlying current has not
been achieved and the vertical profile of the currents cannot be
predicted properly by such models.

The time-averaged models assume that the water motion
may be split into a wave part and a current part. A recent
advance in this respect is SHORECIRC model (Svendsen et al.,
Version 2.0), which is the three-dimensional modelling of wave-
induced currents. Although the SHORECIRC model represents
a major advance in the quasi-3D solution of the wave-induced
circulation, two fundamental components (radiation stress and
volume flux), have to be expressed in a linear way or corrected
for nonlinear waves using weakly nonlinear wave theories and
experimental formulations. Therefore, the main question facing
the modeller now is how to represent wave nonlinearities when
a time-averaged model is employed.
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In this study, the advantages of time-averaged mode and
time-dependent model are combined. The improvements of
formulation for radiation stress and volume flux are targeted.
These formulations are derived analytically by inclusion of
higher-order surface elevations. Our approach is to quantify the
expressions using the data obtained from the model COUL-
WAVE. The performances of the nonlinear formulations on set-
up and current profile are then demonstrated by their applica-
tions into the time-averaged model, e.g. the SHORECIRC
model.

The organisation of the paper is as follows: Section 2 dis-
cusses the roles of radiation stress and volume flux in deter-
mining mean water level and currents. Section 3 presents the
derivations of higher-order expressions of radiation stress and
volume flux for long waves. The evolution of nonlinear waves
on a beach then is studied using the Boussinesq-type model
COULWAVE in Section 4. Statistical formulations of wave
shape factor, shoaling coefficients and phase velocity are de-
rived based on the numerical experiments. The performances of
the new formulations are presented by comparisons to experi-
mental data in Section 5. Finally, Section 6 summarises the
conclusions.

2. Roles of radiation stress and volume flux in determining
mean water level and currents

2.1. Governing equations

Current circulations over varying bottom topographies have
been studied using two-dimensional horizontal (2-DH, depth-
uniform currents) models, e.g. Ebersole and Dalrymple
(1980) and Wu and Liu (1985). The models describe the
depth-mean current and surface elevation and are based on
depth-integrated and time-averaged Navier-stokes equations.
By making the assumption of depth-uniform currents, the
simplified equations were derived. However, the nearshore
currents normally vary with the vertical location. The vertical
variation is an important part of the mechanism that con-
trols the horizontal distribution of circulation. Svendsen and
Putrevu (1995) presented local solutions for the vertical
structure of velocity profile both inside and outside the surf
zone. They concluded that the local short-wave forcing cause
a substantial vertical variations of current profiles where in
the absence of such forcing the profiles are relatively depth-
invariant. Van Dongeren and Svendsen (1997) presented the
general quasi-3D expressions for horizontal momentums and
continuity which can be solved numerically. The model based
on this is now known as the SHORECIRC model. The time-
averaged and depth-integrated equations of conservation of
mass and momentum are derived for the general form of non-
uniform currents over depth. After time-averaging, the short-
wave motion is replaced by the radiation stress and the volume
flux. The roles of radiation stress and volume flux are clear-
ly demonstrated in the time-averaged equations. The detailed
descriptions of the equations can be found in Svendsen
et al. (Version 2.0). We outline the final forms of governing
equation here.
2.1.1. Conservation of mass

∂Pf
∂t

þ ∂Qa

∂xa
¼ 0

ð2:1Þ

where ζ̄ represents the mean surface elevation. Qα is the total
volume flux, which is

Qa ¼
Z P

f

�h0

Vadzþ P
Qwa ð2:2Þ

where Vα is the current component. Q̄wα is the wave-in-
duced volume flux and defined as a volume transport shoreward
between crest and trough ζt of the wave,

P
Qwa ¼
PR f
ft
uwadz � uwa

is the wave velocity.
2.1.2. Conservation of momentum
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where ρ is the water density, p is the instantaneous pressure, g
is gravitational acceleration, Vdα or Vdβ is depth-varying part, α
and β represent the directions x and y in the Cartesian coordinate
system, δαβ is the kronecker delta function and ταβ is turbulent
(Reynolds) shear stress. τβ

S and τβ
S represent the surface and

bottom shear stress respectively.
By including the currents, the radiation stress Sαβ′ is given as

SVab ¼ Sab � q
QwaQwb

h
ð2:4Þ

Sab ¼
PZ f

�h0

pdab þ uwauwb
� �

dz� dab
1
2
qg h0 þ P

f
� �2 ð2:5Þ

where Sαβ is the radiation stresses defined as the excess flow of
momentum due to the presence of waves only. uwα and uwβ are
purely oscillatory part of wave velocity in α and β directions. h0
is still water depth.

2.1.3. Currents profile
The effect of current distribution along the vertical was

expressed semi-analytically. The total current component con-
sists of three parts

Va ¼ Vma þ V 0ð Þ
da þ V 1ð Þ

da ð2:6Þ
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Vmα is the mean current, Vmα=Qαw/(h0+ ζ̄ )·Vdα
(0) is primarily the

(slowly time varying) component created by local external
forcing, the expression is given as

V 0ð Þ
da ¼ d1an

2 þ e1anþ f1a þ f2a ð2:7Þ
where n ¼ zþ h0; d1a ¼ � Fa

2tt
; e1a ¼ sBa

qtt
; f1a ¼ � h

2
sBa
qtt

; f2a ¼
h2Fa
6tt

Fa ¼ 1
qh

∂S Vab
∂xb

þ sBa
qh � fa

n o
; fa ¼ ∂

∂xa

P
uwauwb
� �þ ∂

∂z
P
uwauwð Þ:

The vertical variation of Vdα
(1) generated by the advective terms

can be found in Svendsen et al. (Version 2.0).
It can be clearly seen that the radiation stress S'αβ or Sαβ and

the volume flux Qwα play important roles in the variations of
mean water level and current profile. The volume flux deter-
mines the magnitude of mean current Vmα. The gradient of
radiation stress ∂S Vab

∂x directly affects the gradient of mean water
level ∂

P
f

∂x and the component Vdα
(0) which is the primary current

variation over water depth.

2.2. Existing expressions for radiation stress and volume flux

The concept of radiation stress developed in a series of
publications by Longuet-Higgins and Stewart (1960, 1962,
1964) provided a fundamental theory to explain the mean water
level variation outside and inside the surf zones. It comprises two
components, i.e. the momentum part Sm and the pressure part Sp.
In two horizontal dimensions, Svendsen et al. (Version 2.0) gave
the generalised radiation stress tensor as

Sab ¼ eab Sm þ dab Sp ð2:8Þ

with eab ¼ cos 2aw cosaw sinaw
sinaw cosaw sin 2aw

� �
:

For the linear wave theory, the momentum part is Sm=
ρgH2(1+G)/16 and the pressure part is Sp=ρgH

2G /16, where
G=2kh/sinh 2kh, k is wave number, h is local water depth, H is
wave height. Without considering the roller, the volume flux of
linear waves was given as in terms of wave height H and phase
velocity c by Svendsen (2006), which is Qw=0.125 gH2/c.

To account for the wave nonlinearity, Svendsen (1984)
used empirical information in terms of the dimensionless wave
shape factor and roller area to represent the wave period-
averaged properties. The wave shape factor is defined as B0 ¼
1
T

R T
0

f
H

� �2
dt ¼

P
f2

H2. The value of B0 reflects the shape of the wave
surface profile ζ. A sinusoidal wave has B0=0.125. Svendsen and
Putrevu (1993) concluded that results of the linearwave theory are
far from satisfactory. Even the surf zone wave model given by
Svendsen (1984) which empirically accounts for the actual shape
of the waves described by B0 is not quite satisfactory. The second
order shape factor often has B0~0.04–0.05 at the breaking point
which is much smaller than a sinusoidal wave (Svendsen, 2006).

Waves propagating in shallow water, khbπ/10, are often
called shallow water waves (Dean and Dalrymple, 1991).
Based on shallow water wave theory, Svendsen (1984)
assumed that the distribution of horizontal velocity is uniform
from bottom to free surface. The horizontal velocity simply
equals to u0=cζ /h and the wave phase velocity is c ¼ ffiffiffiffiffi
gh

p
.

Meanwhile the contribution from w2 term (which represents
the deviation from hydrostatic pressure) was neglected based
on the assumption of

P
w2≪

P
u2 . The time-averaged and depth-

integrated volume flux and radiation stress are conventionally
expressed in term of wave height H, wave shape factor B0,
wave length L and phase velocity c. The mass flux and the
radiation stress in two horizontal dimensions are expressed as

Qwa ¼ gH2

c
c2

gh
B0 þ A

H2

h
L
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ka
k

ð2:9Þ
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2

gh
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h
L
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1
2
qgH2B0 ð2:10Þ

where A is the roller area of the breaking wave in vertical
projection.

In the shoaling zone, Svendsen et al. (2003) suggested that
B0 and c may be evaluated using the cnoidal wave theory.
Hansen (1990) suggested the wave shape factor can be ap-
proximated by a simple function of Ursell number of cnoidal
wave theory.

B0 ¼ 0:125 tanh 11:40=
ffiffiffiffi
U

p	 

ð2:11Þ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ AcH=hð Þ

p
with Ac ¼ 1�0:0014=tanh 0:001

ffiffiffiffi
U

p	 

:

ð2:12Þ
Hansen (1990) also used the experimental results to analyse a

wide range of the wave shape factor in the surf zone. He
proposed an empirical equation to estimate the factor B0 inside
the surf zone.

B0 ¼ B0B 1� a b� h=hBð Þ 1� h=hBð Þ½ � ð2:13Þ

in which B0B is the value at the breaking point, and it can be
determined with Eq. (2.11). h is the local water depth, hB is the
water depth at the breaking point. Coefficients a and b depend
on deep water wave steepness and bottom slope. Their detailed
expressions can be found in Hansen (1990).

Obviously, in addition to the phase speed and wave height, the
wave shape factorB0 is a parameter of fundamental importance in
determining the radiation stress and volume flux. However, they
are conventionally expressed by using either symmetric (about a
vertical through the crest) profiles based on steady form solution
(e.g. Cnoidal theory or Stream Function theory) or measured
surface elevation from experiments. In the present paper, we seek
formulations for wave shape factor, wave height and phase speed
which incorporate the actual deformation of the waves as they
propagate onshore. For this purpose, extended Boussinesq-type
equations are sought. We will use the two-layer COULWAVE
model whose one-layer version is identical to the formulation of
Wei et al. (1995). The key feature of this set of Boussinesq-type
equations is that it includes all nonlinear terms of higher-order
consistent with the order of the (linear) dispersion equation. This
was the remarkable departure from the earlier weakly nonlinear



305B. Wang et al. / Coastal Engineering 55 (2008) 302–318
Boussinesq-type equations which retained nonlinear terms only
up to the first order. For certain benchmark cases, it has been
shown byWei et al. (1995) that the higher-order nonlinearity does
improve the performance significantly and closely reproduce the
transformation of high waves as predicted by the ‘exactly-non-
linear’ boundary integral model. Further evidence of the im-
provement of the performance due to the higher-order nonlinear
terms has been provided by Otta and Schäffer (1999) in the
context of the steady permanent form waves. In a further exten-
sion, Lynett and Liu (2004) used two-layer approach to obtain a
higher-order depth-integrated model. This two-layer model can
be optimised to achieve a Pade´ [4/4] approximation of the exact
linear relationship (c2 /gh=tanh(kh)/kh) and it retains all the terms
in the derivation consistently without the assumption of weak
nonlinearity. Both the linear and nonlinear characteristics of this
set are accurate up to kh=6.5.

3. Derivations of higher-order radiation stress and
volume flux

As discussed in Section 2, the wave shape factor, which
accounts for the second-order surface elevation, was widely
used in the past to estimate the nonlinear wave properties. The
derivation given by Svendsen (1984) was based on the as-
sumption that the time-averaged higher-order surface elevation
is negligible. However, it may not be true for fully nonlinear
waves. By analysing the measurements by Ting and Kirby
(1994), we found that the higher-order surface elevations are
actually very significant. Svendsen and Staub (1981) also
concluded that even if ζ4 /h4 is included the error on depth-
averaged velocity u0 is up to 10% for ζ /h=0.6. Therefore, the
first-order expression u0= cζ /h can be regarded as a poor
approximation. Very little is known of the higher-order effects
on integrated wave properties so far. In this section, the task is
to reformulate the radiation stress and volume flux by including
the higher-order surface elevations. A basic premise of the
present work is to investigate if the incorporation of the non-
linear transformation in the calculation of the integrated wave
properties becomes crucial for an accurate prediction of the set-
up/down and currents.

Quantifications of radiation stress and volume flux for long
waves require integration over time and depth of horizontal
velocity. In a closed beach, the depth-integrated net flow must
be zero. The depth-averaged velocity u0 can be generally ex-
pressed in terms of the phase velocity c, the water depth h, the
surface profile ζ and the height of surface roller in vertical
projection e. The velocity profile used in the paper is illustrated
in Fig. 1.

For the instantaneous balance of volume flux, one has

cf ¼ ceþ u0 hþ f� eð Þ ð3:1Þ

u0 ¼ c
f� e

hþ f� e
ð3:2Þ

where h=h0+ ζ̄ , h0 representing the still water level, ζ̄ denoting
the mean water level.
Since it can be assumed that e
hþf≪1 and f

hb1, Eq. (3.2) can
be derived by Taylor series
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The time-averaged velocity Pu0 is given by
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For ē , one has ē =A /L, where A is the area of the roller in
vertical projection. L is the wave length. The purely oscillatory
part of wave velocity uw ¼ u0 � Pu0
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3.1. Volume flux
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Fig. 1. Sketch of velocity profile.
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Due to the small value of ē , term cPe
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where γ=H /h.

3.2. Radiation stress

By neglecting the contribution of vertical velocity w, the
expression for radiation stress in the wave propagation direction
is
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u2w ¼ u0 � Pu0ð Þ2: ð3:9Þ
Neglecting the higher-order term (ē /h)2 and the interactions

between e (or ē ) and higher-order surface elevations, one
obtains
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where B2 ¼

P
f2=H2; g ¼ H=h:

To distinguish the higher-order formulation from the pre-
vious Eqs. (2.9) and (2.10), the wave shape factor, volume flux
and radiation stress are redefined as
The second-order expression:
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The sixth-order expression:
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We can see that, except the first term in shape factor, the
contributions of time-averaged higher-order surface elevations to
shape factor are modified by the ratio of wave height to water
depth γ=H/h. It means that the effects of high order terms will
disappear in intermediate or deep water H/h→0. Moreover, a
positive contribution ismade by the surface elevationwith an even
exponent and an odd exponent makes a negative contribution.

The higher-order surface elevations may be related to widely
used time series parameters, such as the standard deviation
of water surface σ, the third central moment (skewness)
Sζ=∑ζ3 / (σ3N) and the fourth central moment (kurtosis)
Kζ=∑ζ4 / (σ4N), where N is the number of sample. The
relations may be established as

P
f2=H2 ¼ r2=H2;

P
f3=H3 ¼

Sfr3=H3 and
P
f4=H4 ¼ Kfr4=H4:

Skewness is an important indicator of nonlinear wave
behaviour and a measure of the vertical asymmetry. When wave
crest heights are larger than the trough depths, as is the case for
shallow water waves, the skewness has a positive value.
Positively skewed waves present a smaller shape factor. Wave
kurtosis represents a degree of the peakedness. Based on its
definition, kurtosis will make a positive contribution to the wave
shape factor, and balance in part the negative effects by skewness.

Having derived the higher-order radiation stress and volume
flux, we need to quantify the expressions for practical
application. The investigation and formulations will be carried
out in Section 4.

4. The Boussinesq model simulations

4.1. Description of the numerical flume

The Boussinesq-type model, COULWAVE, developed by
Lynett and Liu (2004) has been employed to investigate the



Fig. 2. Sketch of numerical flume.
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nonlinear long-period wave properties over a simple bathymetry
profile. The model allows for the evolution of fully nonlinear
waves over variable bathymetry, which implies wave ampli-
tude/water depth=O(1). Our investigation is limited to mono-
chromatic waves shoaling and breaking in a direction normal to
the shoreline. A typical domain of the simulation is sketched in
Fig. 2. A wavemaker is specified on the leftward boundary in
the numerical flume. The length of flat portion is 30 m and the
water depth is 3.0 m.

A parametric study for various environmental conditions is
carried out to assess the nonlinear effects. To accurately predict
nonlinear wave properties, it will be shown that, in addition to
Fig. 3. Time-averaged surface elevations for Case 1 (a) and Case 3 (b).
Simulations:

P
f2=H2 (wide solid line),

P
f3=H3 (dash–dotted line),

P
f4=H4 (dash

line),
P
f5=H5 (dotted line),

P
f6=H6 (solid line). Observations:

P
f2=H2 (o),

P
f3=H3

(+),
P
f4=H4(⁎),

P
f5=H5(×),

P
f6=H6(∇).
incident wave conditions (wave height and period), the beach
slope must be taken into account. The inclusion of these physical
processes is essential to improve quantitative understanding of the
nonlinear wave properties. Beach slopes are set as 1/50, 1/40, 1/
35, 1/30, 1/25 and 1/20. Preliminary results of simulations in-
dicates instability may occur for steeper slopes (N1/20) at the
shoreline boundary. Therefore, the investigation of the slopes
steeper than 1/20 is not further attempted. For those slopes smaller
than 1/50 require a tremendous amount of computer memory and
CPU time, and have not been included in the research.

Although incident waves can be arbitrary in the numerical
model, for the sake of comparison with the experiments carried
Fig. 4. Shape factors for Case 1 (a) and Case 3 (b). Observations: B2 (o), B6 (∇),
Simulations: B2 (solid line), B6 (dotted line).
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in the laboratories, four different wave periods T=2.0 s, 2.5 s,
4.0 s, and 5.0 s are used in the research. Combined with these
wave periods, a large range of incident wave heights is
specified at the upstream boundary of the computational
domain. Sinusoidal waves with incoming wave height equal to
0.04 m, 0.05 m, 0.065 m, 0.08 m, 0.10 m, 0.15 m, 0.20 m
and 0.25 m, are propagated from the left to the right. The
wave heights and periods are chosen based on the generation
of quasi-steady sine waves and a more uniform spread of
nonlinear wave parameters, such as the Ursell number and
wave steepness in the shoaling and breaking zones. The values
of kh vary from 0.76 to 3.01 which are in the range of
COULWAVE model capability. Each wave height is combined
with four wave periods and six beach slopes. The total
combinations of simulation cases are 159. Note that a large
amount of data is of fundamental importance to statistically
formulate the nonlinear wave properties. The incident wave
conditions are also inspected against the possible breaker types.
For the present wave inputs, the maximum and minimum
values of offshore Iribarren numbers are 1.53 and 0.10.
Surging and collapsing breakers are not included, and the
breaker types are either spilling or plunging.

4.2. Scope of investigation

Our study is concentrated on the simulation of wave surface
elevation and phase velocity. Time series of surface elevations
were generated at selected grid points along the numerical wave
flume. The duration of each realization is about 40 s. The
simulations indicate that quasi-steady conditions have reached
within 40 s, even for those long waves. Further increasing the
length of the realization does not have any impact of output.
Using the time series of surface elevation, the averaged wave
crest, trough, height H, and high order surface elevations
P
f2=H2;

P
f3=H3;

P
f4=H4;

P
f5=H5 and

P
f6=H6 are calculated over

eight to fifteen successive waves.
The recorded surface elevations are also used to estimate

wave phase velocity. The numerical wave gages are specified at
fixed locations along the beach. Each crest and trough of the
propagating waves are identified and followed in space and time
from the generation at the upstream boundary to the shoreline.
The local phase velocity can be obtained as c(x)=Δx /Δt, where
Δx denotes the distance between two successive crest (or
trough) locations of the snapshots, and Δt is time interval
between snapshots. The numerically observed phase velocities
oscillate along the flume due to the reflection from the beach
and the broken waves. With the aid of nonlinear least square
regression, one can eliminate these fluctuations to determine the
phase velocity. The nonlinearly smoothed phase velocity will be
used to estimate the local wave length L(x)=c(x)T, where T is
wave period.

With wave height H, length L, local water depth h and beach
slope, the Irribarren number, Ursell number and wave steepness
can be obtained. It is expected that the expressions for wave
shape factor and phase velocity can be characterized by these
parameters, and their formulations may be derived statistically
from the simulated data sets.
4.3. Model performances

The performances of COULWAVE model have been well
presented in Lynett (2006) in terms of wave surface elevations.
As shown in Section 3, the wave shape factors are expressed in
time-averaged surface elevations scaled by wave height (

P
fn=Hn,

2≤n≤6). In recognizing the importance of
P
fn=Hn for the shape

factors, the comparisons between measured and simulated
results are demonstrated here.

Four sets of physical experiments for regular waves are
selected and examined. These data sets are referred to as Case 1
with T=2.0 s and slope=1/35 (Ting and Kirby, 1994, 1995,
1996), Case 2 with T=5.0 s and slope=1/35 (Ting and Kirby,
1994, 1995, 1996),Case 3with T=2.5 s, slope=1/20 (Govender
et al., 2002), Case 4 with T=4.0 s, slope=1/20 (De Serio and
Mossa, 2006). The detailed descriptions of experiment set-up
can be found in their published papers.

The simulated data for all four cases present a good corre-
lation with the measurements. Fig. 3 displays the results for
Case 1 and Case 3. We can see that the second-order term

P
f2=H2

is 0.125 in deep water, and decreases to a minimum value near
the breaking point. As expected, the third-order term (propor-
tional to the skewness) is nil for a sine wave in deep water and
gradually increases as waves propagate from offshore to the
nearshore. The trend of fourth order of

P
f4=H4 is similar to the

second order. Compared with
P
f2=H2, the higher-order values

P
f3=H3 and

P
f4=H4 are significant, particularly in shallow water.

For instance, the ratio of
P
f3=H3 to

P
f2=H2 can reach 0.50 for the

wave conditions tested.
As shown in Fig. 3, the model also demonstrates its ability to

predict the higher-order terms. The simulations of
P
f5=H5 and

P
f6=H6 are in good agreement with experimental data in terms of
magnitude and trend. The comparisons provide sufficient base to
use these higher-order terms up to the sixth in present investigation.
Comparing to those lower-order terms, much smaller values of
P
f5=H5 and

P
f6=H6 are present. It indicates less importance of

higher-order surface elevations after the fourth order.
Having known the values of

P
fn=Hn, we can compute the

shape factors, B2 and B6. It is worthwhile mentioning here that
shape factors converge quickly in response to

P
fn=Hn. The

analysis indicates that the difference between the sixth-order
and the eight-order is about 1%. Therefore, inclusion of the
sixth-order is sufficient to obtain a reasonable accuracy.

The comparisons of shape factor are made in Fig. 4 for Case 1
and Case 3 respectively. The nonlinear shape factor is radically
different from the simplified sinusoidal value. B2 and B6 have a
same value of 0.125 at deep water but diverge from each other in
shallow water. The higher-order shape factor B6 presents a lower
value than B2.

4.4. Phase velocity

Using some conventional finite-amplitude wave theories,
e.g. cnoidal wave theory and the stream function theory, the
nonlinear wave phase velocity may be calculated numerically.
However, neither of them can be applied in the region near
the breaking point. In our investigation, the phase velocity is



Fig. 7. Ksn/Ksl versus UB at breaking point. Observations (o), predictions (–).

Fig. 5. Phase velocity for Case 3. Simulated (solid line), linear wave (dash–
dotted line), cnoidal wave (o) and stream function (+).
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estimated using the method described in Section 4.2. It is
expected that the approach will approximate the nonlinear wave
phase to some extent.

The numerical results from the COULWAVE model are
compared with those based on the linear, cnoidal and stream
function theories. One example of the comparisons is given in
Fig. 5. The linear wave theory produces the smallest wave phase
velocity due to the assumption of small-amplitude. The simu-
lations suggest that, in intermediate and deep water, the wave
phase velocity estimated by the model reasonably approaches the
results computed by linear wave theory. The results from cnoidal
and stream function theories are situated around the COULWAVE
numerical experiments. This confirms the finite amplitude effects
from the Boussinesq dispersion relation. Although our approach
used here may not be a precise method, it gives a reasonable
approximation of the nonlinear wave phase velocity.

4.5. Simulation results and formulations

The COULWAVE model has demonstrated its efficien-
cy to study wave transformation under various scenarios.
Having tested its performances, its use in the investigation is
straightforward although computations are intensive. The
grouped results for T=5 s, H=0.04 m, 0.05 m, 0.065 m,
0.08 m, 0,10 m, 0.15 m, 0.20 m, 0.25 m, slope=1/50, present
some features common to other groups, and are discussed here.
Fig. 6. Ksn /Ksl versus Ursell p
4.5.1. Analysis of shoaling coefficient
The shoaling coefficient is defined as Ksl =H/Ho, where H is

the local wave height and Ho is the wave height in deep water.
The shoaling coefficient from the linear wave theory can be
calculated by Eq. (3.16) in Goda (2000). As waves approach
very shallow water, shoaling becomes highly nonlinear. The
linear shoaling coefficient significantly under predicts the wave
height. Nonlinear shoaling coefficients are available in several
publications (Goda, 2000; SPM, 1984), in which the shoaling
coefficients are related to parameters of wave steepness, relative
depth and beach slopes.

In the present study, the shoaling coefficients are investi-
gated using the numerical results from the fully nonlinear
COULWAVE model. Both the linear shoaling coefficients Ksl

and the nonlinear shoaling coefficients Ksn are computed up to
the breaking point. As shown in Fig. 6, the ratios between Ksn

and Ksl demonstrate a strong connection to the local Ursell
numbers along a beach. Fig. 7 shows the relation between Ksn

and Ksl at the various breaking points for different cases. Both
Figs. 6 and 7 suggest that the nonlinear effects on the shoaling
coefficient depend on the local Ursell numbers. When Ursell
number is low, the observed shoaling coefficients agree with the
those from the linear theory Ksn /Ksl→1.0, The nonlinear
influences become larger as Ursell numbers increase up to
around U=1500. The maximum value of Ksn /Ksl can reach 1.8.
A further increase in Ursell number will not produce more
arameters along a beach.



Fig. 8. Ksn/Ksl versus h/hB, (a) observations, (b) predictions.
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impact on the shoaling coefficients. It has been found here that
the relation may be approximated as:

Ksn=Ksl ¼ 1þ 0:80 tanh U=1070ð Þ1:06: ð4:1Þ

The performance of Eq. (4.1) is displayed in Fig. 8. The
predicted shoaling amplification of wave height is in reasonable
agreement with the numerical observations.
Fig. 9. Variations of B2 against

Fig. 10. Variations of B6 agains
4.5.2. Wave shape factors
Figs. 9 and 10 show the variations of B2 and B6 in the group

versus the dimensionless water depth h/hB. The waves begin
with a nearly sinusoidal shape factor of 0.125 in deep or inter-
mediate water, and then are transformed to a spilling breaker or
plunging breaker with a significantly reduced shape factor. At
the breaking point, the wave shape factors present the low-
est value, and the shape factor can be as low as 0.025 (B2) and
0.23(B6), much smaller than for a sinusoidal wave. B2 and B6
relative water depth h/hB.

t relative water depth h/hB.



Fig. 11. B2 versus Ursell number UB at breaking point.
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exhibit the same variation trend, but differ in their magnitudes.
For all simulated cases, B2 is 5–23% bigger than B6 at the
breaking point.

After initiation of breaking, waves regain some sym-
metry accompanied by a rapid decay in height. For a spilling
breaker, the wave shape factor increases to a maximum
value and thereafter decrease again toward the shoreline, but
it seems that it does not reach the same low value as at breaking.
For a plunging breaker, the wave shape factor continually
increases in the surf zone, but will be always less than 0.125.
Due to the different trends of variation, the shape factors in
shoaling and surf zones will be formulated separately.

4.5.2.1. B2 and B6 in the shoaling zone. The Ursell number U
is a traditional parameter expressing the balance between
shallow-water steepening and the effect of water acceleration
(Peregrine, 1983). The role as rated by the Ursell number can
increase from a small value in deep water to a large value in
near-shore shallow water. This indicates that the effects of
nonlinearity (amplitude dispersion) gradually become impor-
tant. Figs. 11 and 12 illustrate the shape factors B2 and B6

versus Ursell number UB at breaking point. Two important
features can be identified from the figures. Indeed, the local
Ursell numbers have a crucial influence on the shape factors. As
the Ursell numbers increase, the shape factors are reduced. The
Fig. 12. B6 versus Ursell num
decrease of shape factor becomes slow when the Ursell number
is larger than 1500.

The interpretation of wave shape factor corresponding only
to the local Ursell number is inadequate. The variation trends of
wave shape factor diverge as the Ursell numbers increase. It is
found that another important parameter, the Irribarren number
plays an important role in determining shape factors as well.
Under the same Ursell numbers, the relations between B6 and
the Irribarren number ξB at the breaking point are shown in
Fig. 13. It can be clearly seen that the shape factors tend to
increase as the Irribarren numbers increase.

According to the definition of Irribarren number ξ=tan α/(H /
L)1/2, it actually represents the influences of the beach slope and
the wave steepness. Under the same Ursell number, the shoaling
evolution may be much stronger on a gentle slope than on a steep
slope. We may also see that the dependence on the Irribarren
number is more evident for those large Ursell numbers.

Based on the simulated data sets, the nonlinear regression
analysis has been undertaken to determine the coefficients of
the local parameters (Ursell number U and Irribarren number
ξ) that cause a function to best fit our observations. Hansen
(1990) suggested that the shape factors depend on the Ursell
number U through a hyperbolic tangent function, see Eq. (2.11)
as shown in Fig. 11. The similar function is used here but
modified by an exponential function of the Irribarren number.
ber UB at breaking point.



Fig. 13. B6 versus Irribarren number ξB at breaking point.
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Owing to the importance of prediction at the breaking point, the
expressions at the breaking point are sought first. The analysis
leads two expressions for B2 and B6 at the breaking point
respectively.

B2 ¼ 0:125tanh 3:82U�0:38e5n
2

	 

ð4:2Þ

B6 ¼ 0:125tanh 2:34U�0:35e6n
2

	 

: ð4:3Þ

Before the breaking point, the expressions for shape factor
are obtained by multiplying the relative water depth, which give

B2 ¼ 0:125 tanh 3:82 h=hBð Þ0:30U�0:38e5n
2

	 

ð4:4Þ

B6 ¼ 0:125tanh t 2:34 h=hBð Þ0:50U�0:35e6n
2 b: ð4:5Þ

The predicted and the observations at the breaking point are
linearly well related. The correlation coefficients are R2 =0.90
for B2 and R2 =0.88 for B6.

4.5.2.2. B2 and B6 in the surf zone. The shape factors in the
surf zone exhibit a very complex pattern. Hansen (1990) noted
Fig. 14. Comparisons between (a) the numerical simu
that variation of B2 with deep water steepness Ho/Lo and beach
slope. It is found here that shape factors are controlled by their
local wave steepness H /L, shape factor at breaking point B2B or
B6B and the location in the surf zone h /hB. The individual role
of the parameters involved is examined by the comparisons
between the variation trends of shape factor and the parametric
wave inputs. The expressions are formulated as Eqs. (4.6) and
(4.7). The role of each term is discussed in what follows.

B2 ¼ B2B 1þ 2 tanh 5aBuð ÞÞexp �40a2BvB 1� h=hBð Þ� �
 �
ð4:6Þ

B6 ¼ B6B 1þ 2:5tanh 5aBuð Þexp �40a2BvB 1� h=hBð Þ� �
 �
ð4:7Þ

where αB=B2B /0.125 for B2 and αB=B6B /0.125 for B6.
φ=χB /χ−1, v ¼ ffiffiffiffiffiffiffiffiffi

H=L
p

; vB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HB=LB

p
:

Wave shoaling processes cause waves to steepen, with short
steep crests and broad shallow troughs. When wave slopes at the
crest become sufficiently steep, the waves break. Following the
initiation of breaking, wave shapes reform and their steepness
decreases. The steepness variation is described here by the
parameter φ=χB /χ−1. It is observed that for a spilling breaker,
the shape factor quickly increases to a maximum value in a short
distance, while a plunging breaker regains its shape in nearly the
entire surf zone. Therefore, the bigger an initial shape factor
at the breaking point, the quicker an increase in shape factor
after breaking. This implies that the dimensionless parameter
αB=BB /0.125 affects the development of wave shape. The data
analysis found that the variation trend can be represented by the
function of tanh(5αBφ). The coefficient of five in the function
was obtained by nonlinear least square fitting.

A spilling breaker quickly increases its shape factor to a
maximum value and then decreases again toward the shoreline.
lations and (b) the analytical predictions for B2.



Fig. 15. Comparisons between the numerical simulations (a) and analytical predictions (b) for B6.

Fig. 16. Numerical and analytical wave phase velocities. Analytical solutions (dashed line), Numerical simulations (solid line).

Fig. 17. Wave heights for Case 1 (a), Case 2 (b), Case 3 (c) and Case 4 (d). Measurements (o), predictions (solid line).
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Fig. 18. Mean water levels for Case 1 (a), Case 2 (b), Case 3 (c) and Case 4 (d). Predictions based on B2 (dashed line) and B6 (solid line), measurements (o, +).
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For a plunging breaker, the wave shape factor continually in-
creases in the surf zone. Here the exponential function exp
[−40αB2 χB (1−h /hB)] is used to represent this process. The
Fig. 19. Current profiles for Case 1. Measurements (o), simulations
function indicates a decrease in shape factor for a spilling
breaker after an initial increase, but less effect on a plunging
breaker owing to the relatively smaller values of αB

2 and χB.
based on B2 (dashed line), simulations based on B6 (solid line).



315B. Wang et al. / Coastal Engineering 55 (2008) 302–318
Inclusion of shape factor value at the breaking point suggests a
certain memory in broken waves. Comparisons between the
formulations and the simulated data outside and inside the surf
zone exhibit a good agreement with the observations. Figs. 14
and 15 illustrate the comparisons for the grouped case T=5.0 s,
slope=1/50.

4.5.3. Nonlinear phase velocities
For long and high wave waves, permanent wave phase

velocity depends on the wave amplitude. The term c2 /gh is not
a unit constant, but varies with the wave amplitude. There are
several existing theories or formulations to represent nonlinear
wave phase velocity. The Stokes theory results from an expan-
sion of the dependent variables based on an assumed small
parameter ε=ka, where k is the wave number and a is the linear
wave amplitude. The solution for Stokes waves is valid in deep
or intermediate water depth. In order to mimic the effect of
amplitude dispersion in shallow water, Hedges (1976) proposed
a simple modification to the linear dispersion relation., which is
c=c0 tanh(kh+ε). Kirby and Dalrymple (1986) further pro-
posed a composite dispersion relation to model nonlinear effects
Fig. 20. Current profiles for Case 2. Measurements (o), simulations
over a broad range of water depths. The corresponding wave
phase velocity is

c ¼ c0 1þ f1e
2D

� �
tanh khþ f2eð Þ ð4:8Þ

where f1 khð Þ ¼ tanh 5 khð Þ; f2 khð Þ ¼ kh=sinh khð Þ½ �4;D ¼
8þ cosh 4kh�2 tanh 2

kh

8 sinh 4
kh

:

The wave number is calculated using linear wave theory in
Eq. (4.8). To represent the nonlinear effects in a wide range of
water depth, the corrections to Eq. (4.8) are sought here. Instead
of using linear wave number, the local wave number determined
by the Boussinesq-type model is tried to search for a rela-
tionship between wave phase velocity and ε=ka. Up to the
breaking point, the corrected relation is given as

c ¼ c0 1� f1e
2D

� �
tanh khþ 0:80f2e½ �: ð4:9Þ

In the surf zone, the observations suggest that wave breaking
has some effects on the dispersion relation. Following the initial
breaking, the value of ka drops significantly. However, the
wave phase velocity does not correspondingly decrease greatly.
based on B2 (dashed line), simulations based on B6 (solid line).
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It is found that wave phase velocity can be corrected by the
change of local wave steepness H/L and relative location in the
surf zone. This leads to

c ¼ wc0 1þ f1e
2D

� �
tanh khþ 0:80f2e½ � ð4:10Þ

where w ¼ 1þ h=hBð Þ0:8 sp=s� 1
� �

; s ¼ H=L; sp ¼ Hp=Lp:
Fig. 16 demonstrates the results of numerical observa-

tions and analytical solutions from Eqs. (4.9) and (4.10). The
comparisons suggest a good agreement in a wide range of the
nearshore region.
5. Application of the new formulations

The formulations of nonlinear wave properties have been
completed based on the very extensive numerical simulations.
The nonlinear corrections of shape factor, shoaling coefficient
and phase velocity are given in their relationships with the local
wave parameters, such as Irribarren number, Ursell number and
wave steepness. In other words, the proposed relationships
allow the more representative shape factor, phase velocity and
wave height to be corrected directly from the local wave
parameters.

To apply the new formulations, they are incorporated into the
SHORECIRC model. The desired nonlinearities are approached
using the iteration technique based on the new formulations.
Because the nonlinear expressions are formulated in terms of
the local wave parameters, the initial values can be the results
Fig. 21. Current profiles for Case 3. Measurements (o), simulations based on
B2 (dashed line), simulations based on B6 (solid line).
from either the linear wave theory or the weakly nonlinear wave
theory.

Cases 1, 2, 3, and 4 introduced in Section 4.3 are used to
compare with the numerical simulations. These experimental
data involve various bathymetries and incident wave conditions
with extensive measurements of mean water levels and currents.
The numerical flumes are built with the same dimensions as
those original physical experiments.

In the original SHORECIRC model, the wave filed is
calculated using Kirby and Dalrymple (1986) which is based on
the weakly nonlinear theory. The radiation stress and volume
flux are estimated by either a linear shape factor 0.125 or a
reduced value to correct the nonlinear effect. The approaches
have been proved to be far from satisfactory, see Svendsen
(1984) and Svendsen and Putrevu (1993). Case studies show
that they can overestimate the set-up and currents up to 40%–
100%.

A series of simulation results using the newly formulated
equations are illustrated in Figs. 17–22. The locations of current
profile can be found in the corresponding papers, i.e. Ting and
Kirby (1995, 1996, 1994), Govender et al. (2002) and De Serio
and Mossa (2006).

The comparisons suggest the predictions of set-up from the
sixth-order formulation are closer to the measurements than
those using the second-order formulation. The average differ-
ences of maximum set-up between simulations and measure-
ments are less than 15%, which can be regarded as a significant
improvement. For the current profiles, the improvements from
the second and sixth-order formulations are inconsistent. Some
locations show a marginal change; this suggests that the current
profiles would require more than just the correct wave shape.
More physical processes are needed to determine the current
profiles, such as the momentum transfer between the surface
roller and the underlying water, and the mixing of momentum
over the water column. The other possible reason may be the
result of new expressions that are statistically formulated and are
not able to exactly represent one specific case.

6. Conclusions

In this work, the nonlinear wave properties, radiation stress
and volume flux, are investigated. The studies presented here
are based on new theoretical development, advancement of a
numerical simulation and comparison with experimental data.
The importance of wave nonlinearity has been clearly demon-
strated to understand the characteristics of currents and variation
of mean water level.

In the modelling efforts, the integrated wave properties are
specially targeted. Novel mathematical formulations of radiation
stress and volume flux for shallow water waves are derived. The
formulations include the higher-order surface elevations up to
the sixth-order, which were neglected in previous studies. To
quantitatively describe these properties, a comprehensive inves-
tigation of the wave fully nonlinear transformation on a beach
has been conducted in a numerical flume using the COULWAVE
model. Based on the results of the numerical simulations, the
expressions of the wave shoaling coefficient (Eq. (4.1)), the



Fig. 22. Current profiles for Case 4. Measurements (o), simulations based on B2 (dashed line), simulations based on B6 (solid line).

317B. Wang et al. / Coastal Engineering 55 (2008) 302–318
second-order and the sixth-order shape factors (Eqs. (4.2)–(4.7))
and the phase velocity (Eqs. (4.9) and (4.10)) have been
formulated.

The second-order and the sixth-order shape factors exhibit
the same variation trend, but differ in their magnitudes. The
sixth-order shape factors (B6) give a lower value than the
second-order (B2). At the breaking point, the wave shape factors
present the lowest value, and the shape factor can be as low
as 0.025 (B2) and 0.23 (B6), much smaller than a sinusoidal
wave. For all simulated cases B2 is 5–23% bigger than B6 at the
breaking point.

Two important features have been identified from the
research. The shape factors are reduced as the Ursell numbers
increase. However, the decrease of shape factor becomes slow
after the Ursell number is larger than 1500. It is also found that
the traditional interpretation of wave shape factor corresponding
only on the local Ursell number is inadequate. Another param-
eter, the Irribarren number, plays an important role in deter-
mining the shape factors as well. When the Irribarren numbers
increase, the shape factors tend to increase. In the surf zone, the
shape factor is well controlled by the local wave steepness,
shape factor at the breaking point and the location in the surf
zone.

The shoaling coefficients were investigated by comparison
of the linear shoaling coefficients and the fully nonlinear
shoaling coefficients simulated by the COULWAVE model. The
results demonstrate that their ratio has a strong connection to the
local Ursell numbers. Regarding the phase velocity, the dis-
persion relations representing the nonlinear effects have been
sought in a wide range of water depth. In the present work, the
formulations are derived by a modification to the equation
proposed by Kirby and Dalrymple (1986).

The applications of the new formulation suggest that, by
inclusion of the nonlinear formulations in the basic hydro-
dynamic model, the predictions of mean water level have been
improved. The sixth-order formulation of shape factor produces
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a better estimation than the second-order formulation. The im-
provements on current profile are marginal at some locations. It
implies that, in addition to the radiation stress and volume flux,
the current profiles are determined by more physical process.
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