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Gravity waves propagating into an ice‐covered ocean:
A viscoelastic model
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[1] A viscoelastic model is proposed to describe the propagation of gravity waves into
various types of ice cover. The ice‐ocean system is modeled as a homogeneous
viscoelastic fluid overlying an inviscid layer. Both layers have finite thickness. The
viscosity is imagined to originate from the frazil ice or ice floes much smaller than the
wavelength, and the elasticity from ice floes which are relatively large compared to the
wavelength. A compact form of the dispersion relation is obtained. Under proper limiting
conditions this dispersion relation can be reduced to several previously established
models including the mass loading model, the viscous layer model and the thin elastic
plate model. The full dispersion relation contains several propagating wave modes under
the ice cover. The following two criteria are used to select the dominant wave mode:
(1) wave number is the closest to the open water value and (2) attenuation rate is the least
among all modes. The modes selected from those criteria coincide with the ones discussed
in previous studies, which are shown to be limiting cases in small or large elasticity
regimes of the present model. In the intermediate elasticity regime, however, it appears that
there are three wave modes with similar wavelengths and attenuation rates. Implications
of this intermediate elasticity range remain to be seen. The general viscoelastic model
bridges the gap among existing models. It also provides a unified tool for wave‐ice
modelers to parameterize the polar regions populated with various types of ice cover.

Citation: Wang, R., and H. H. Shen (2010), Gravity waves propagating into an ice‐covered ocean: A viscoelastic model,
J. Geophys. Res., 115, C06024, doi:10.1029/2009JC005591.

1. Introduction

[2] Arctic sea ice is becoming more dynamic due to the
drastic decline of summer sea ice extent [Stroeve et al.,
2008]. The resulting areas of open water now provide suf-
ficient fetch for local winds to generate significant waves on
the surface of the Arctic Ocean itself. Current sea ice models
may need to incorporate wave‐ice interactions to better
describe the Arctic ice conditions.
[3] There have been many models developed to address

how the length and height of a wave change after it enters
an ice field. In general these models can be classified into
two categories [Squire, 2007]: (1) solitary floe models based
on the fact that, in principle, an ice cover consists of indi-
vidual ice floes, and wave effects on large scale can be treated
by a synthesis of many solitary floes and (2) continuum
models in which the physical properties of the ice cover
are empirically represented by certain rheological para-
meters. The latter will be the focus of this study. A detailed
review of wave propagation through arrays of discrete floes
are given by Squire [2007].

[4] Several continuum models have been developed,
including the mass loading model, the thin elastic plate
model and the viscous layer model. Focusing on the dis-
continuous nature, the mass loading model considers the ice
cover as a collection of noninteracting point masses [Peters,
1950; Weitz and Keller, 1950]. The resulting dispersion
relation predicts wave shortening, which implies an increase
of wave amplitude in the absence of any dissipative mech-
anism [Wadhams and Holt, 1991]. The thin elastic plate
model assumes that sea ice behaves as a homogeneous
semi‐infinite thin elastic plate. It was initially developed
for a continuous unbroken ice sheet [Greenhill, 1886]. The
thin elastic plate model cannot predict attenuation, hence
additional mechanisms were adopted to model the energy
loss [Wadhams, 1973; Squire and Allan, 1980; Squire, 1984;
Liu and Mollo‐Christensen, 1988; Squire and Fox, 1992;
Balmforth and Craster, 1999]. The viscous layer model con-
siders the ice layer as a suspension of solid particles in
water. This concept was first introduced by Weber [1987]
and improved by Keller [1998]. The latter considered the
ice cover as a viscous layer of arbitrary thickness overlying
an inviscid water body. De Carolis and Desiderio [2002]
further extended Keller’s model by taking into account the
viscosity of water. De Carolis et al. [2005] derived a theory
to determine the effective viscosity of the ice slurry.
[5] There are many different types of ice cover (A. P.
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Sea Ice Processes and Climate, Hobart, Tasmania, Australia,
1999, available at http://www.aspect.aq/cdrom.html). Near
the open water, the ice cover is often made of small floes.
These can either be formed from broken pack ice, as in a
classic summer marginal ice zone (MIZ) or from pancakes,
as found at the winter Antarctic ice edge. Both can be
interspersed with frazil, or grease ice, depending on the
freezing conditions. The floe size increases gradually further
into the ice cover [Squire and Moore, 1980; Shen et al.,
2001; Lu et al., 2008]. Eventually the cover becomes a
continuous sheet, populated with ridges and leads. Currently
there is no comprehensive model which can describe the
propagation of gravity waves into all types of ice cover. The
mass loading model failed to explain the dispersion relation
observed in a laboratory test for high frequency waves
in grease ice [Newyear and Martin, 1997]. It also over-
estimated the thickness of a pancake ice cover in the field
[Wadhams et al., 2002]. The viscous layer model, on the other
hand, compared well with laboratory data of wave attenu-
ation and dispersion in grease ice [Newyear and Martin,
1999]. It also appeared to be consistent with observations
from a pancake ice field in the Southern Ocean [Wadhams
et al., 2004]. The thin elastic plate model was developed
to describe a continuous ice sheet and hence is most appli-
cable in the interior of the ice field. Some predictions from
the thin elastic plate model agreed with field observations of
the heavily compact ice cover near the ice edge [Liu et al.,
1991a, 1991b]. However, it is hard to believe it can repre-
sent the entire ice cover regardless of its composition [Squire,
1993, 2007].
[6] Ice thickness is difficult to measure on a large scale.

The dispersion relation provides an alternative way to
remotely sense the ice thickness over long distances. Using
the thin elastic plate model, Wadhams and Doble [2009]
demonstrated the ability to track the mean Arctic sea ice
thickness using infragravity waves. While the Arctic Basin
as a whole might be approximated as a thin elastic plate
relative to infragravity waves, in smaller geophysical scales
and especially wind generated waves, it is very likely dif-
ferent rheological models would be required to describe
different ice covers. Since dispersion relations depend on the

rheological models used, it is thus important to select a
model that accurately reflects the type of ice present.
[7] In this paper we propose a finite thickness viscoelastic

model, in which the ice layer is assumed to be a homoge-
neous incompressible viscoelastic fluid and the water layer
is regarded as an ideal fluid. The viscosity property comes
from the frazil ice or ice floes much smaller than wave-
length. Interaction of these small “particles” and their hydro-
dynamic interaction with the surrounding water create an
effective viscosity for the ice layer. The elasticity property
comes from the rigidity of ice floes in which floe sizes are
relatively large compared to the wavelength. When the ice is
consisted of frazil or small ice floes, a viscous parameteri-
zation should be appropriate for the ice cover. When the
ice cover is a continuous ice sheet, an elastic parameteri-
zation is appropriate. To describe the entire ice cover and
provide a smooth transition from ice edge to its interior, a
viscoelastic model may be required. The paper is organized
as follows. The formulation of the viscoelastic dispersion
relation is given in section 2. In section 3 the conditions for
reducing the viscoelastic model to several previous models
are derived. In section 4 we present the mode behavior
of the viscoelastic model and compare the results with
other models. The discussion and conclusion are given in
sections 5 and 6 respectively.

2. Formulation

2.1. Governing Equations

[8] We consider a two‐layer system in which a homoge-
neous viscoelastic ice layer of finite thickness h overlays an
inviscid water layer of finite depth H. A two‐dimensional
Cartesian coordinate (O, x, z) is introduced, in which the
origin is at the unperturbed interface between the two layers.
The x axis is along the wave propagation direction and the
z axis is upward, as shown in Figure 1. h1 and h2 represent
the free surface and interface profiles, respectively. Con-
sidering a simple harmonic small‐amplitude wave, with
period T and a complex wave number k propagating in the
x direction, h1 and h2 can be described as

�1 ¼ a1e
iðkx��tÞ; ð1Þ

�2 ¼ a2e
iðkx��tÞ; ð2Þ

where i =
ffiffiffiffiffiffiffi�1

p
; a is the wave amplitude and s = 2p/T is

the angular frequency, t is time. Subscript 1 and 2 refer to
the ice layer and water layer respectively. The complex
wave number k is defined as

k ¼ kn þ iq; ð3Þ

where the real part kn is the wave number and the imaginary
part q represents the attenuation rate.
[9] There are many ways to describe the coupling of

viscosity and elasticity such as the Maxwell model, the
Voigt model or various combinations of these two. There is
no evidence for which one to better describe the physical
properties of all types of ice cover. We shall adopt the Voigt
model for simplicity, since it has been shown that the
analysis for this type of viscoelastic medium can be per-

Figure 1. The sketch of the viscoelastic model.
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formed in the same manner as that for a pure viscous fluid
by introducing a complex viscosity [Macpherson, 1980; Ng
and Zhang, 2007].
[10] Using the Voigt model, the constitutive equation for a

homogeneous incompressible viscoelastic medium can be
described as

�mn ¼ �P1�mn þ 2GSmn þ 2�1� _Smn; ð4Þ

where r1 is the density of the ice layer; tmn, Smn and _Smn
represent the stress tensor, the strain tensor and the strain
rate tensor, respectively; m and n represent x or z. G and n
are the effective shear modulus and the effective kinematic
viscosity of the ice layer, respectively; P1 is the pressure and
dmn the Kronecker delta. By assuming a simple harmonic
wave, the strain Smn and strain rate _Smn can be related to
each other by

_Smn ¼ �i�Smn: ð5Þ

The constitutive equation (4) can be simplified as

�mn ¼ �P1�mn þ 2�1�e _Smn; ð6Þ

where ne is the complex equivalent kinematic viscosity
written as

�e ¼ � þ iG=�1�: ð7Þ

The imaginary part G/r1s measures the elasticity.
[11] The Lagrangian equations of motion for an incom-

pressible ice layer are then given, in the linear regime, by

@U1

@t
¼ � 1

�1
rP1 þ �er2U1 þ g; 0 � z � h; ð8Þ

where U1 denotes the velocity field in the ice layer and its
components are u1 and w1. g is the gravitational accelera-
tion. The continuity equation is

r � U1 ¼ 0: ð9Þ

The velocity U1 can be split into an irrotational component
and a rotational component by introducing a velocity
potential �1 and a stream function y1 [Lamb, 1932]. The
velocity field in component form can be written as

u1 ¼ � @�1

@x
� @y1

@z
; w1 ¼ � @�1

@z
þ @y1

@x
: ð10Þ

The potential and stream functions satisfy the following
equations:

r2�1 ¼ 0; ð11Þ

@y1

@t
¼ �er2y1; ð12Þ

@�1

@t
� P1

�1
þ 8 ¼ 0; ð13Þ

where 8 is the gravitational potential.

[12] For the water layer, which is assumed to be inviscid,
the equations of motion are

@U2

@t
¼ � 1

�2
rP2 þ g; �H � z � 0; ð14Þ

where U2 is the velocity field in the water layer and it
components are u2 and w2. We can introduce a velocity
potential �2 such that

u2 ¼ � @�2

@x
; w2 ¼ � @�2

@z
: ð15Þ

This potential satisfies

r2�2 ¼ 0; ð16Þ

@�2

@t
� P2

�2
þ 8 ¼ 0: ð17Þ

2.2. Boundary Conditions

[13] At the free surface, the linearized conditions of no
shear stress and no normal stress are

�1xz ¼ �1�e
@u1
@z

þ @w1

@x

� �
¼ 0; z ¼ h; ð18Þ

�1zz ¼ �P1 þ 2�1�e
@w1

@z
¼ 0; z ¼ h: ð19Þ

The linearized kinematic condition at the free surface is
given by

w1 ¼ � @�1

@z
þ @y1

@x
¼ @�1

@t
; z ¼ h: ð20Þ

The dynamic condition at the interface requires that the
normal stress must be continuous, so that

�P1 þ 2�1�e
@w1

@z
¼ �P2; z ¼ 0: ð21Þ

The shear stress at the interface must also be continuous.
Since water is assumed to be inviscid, this shear stress at the
interface vanishes

�1xz ¼ �1�e
@u1
@z

þ @w1

@x

� �
¼ 0; z ¼ 0: ð22Þ

The continuity of normal velocity at the interface is dictated
by the requirement that the two layers stay in contact. The
discontinuity of the horizontal velocity is however permit-
ted, since the water layer is assumed to be an ideal fluid.
This condition can be written as

w1 ¼ w2 ¼ @�2
@t

; z ¼ 0: ð23Þ

At the rigid bottom the vertical velocity must vanish which
gives

w2 ¼ 0; z ¼ �H : ð24Þ
Equations (18) and (22) can be written in terms of �1 and y1

as

�2
@2�1

@x@z
� @2y1

@z2
þ @2y1

@x2
¼ 0; z ¼ h; ð25Þ
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�2
@2�1

@x@z
� @2y1

@z2
þ @2y1

@x2
¼ 0; z ¼ 0: ð26Þ

Substituting P1, solved from (13), into (19) gives

� @�1

@t
þ gðhþ �1Þ þ 2�e � @2�1

@z2
þ @2y1

@x@z

� �
¼ 0; z ¼ h: ð27Þ

Combining the time derivative of (27) and the kinematic
condition (20), gives the linearized dynamic condition in
terms of �1 and y1

� @2�1

@t2
þ g � @�1

@z
þ @y1

@x

� �
þ 2�e � @3�1

@z2@t
þ @3y1

@x@z@t

� �
¼ 0;

z ¼ h: ð28Þ

Substituting P1 and P2 solved from (13) and (17), respec-
tively, into (21) yields

�1 � @�1

@t
þ g�2

� �
þ 2�1�e

@w1

@z
¼ �2 � @�2

@t
þ g�2

� �
; z ¼ 0:

ð29Þ

Combining the time derivative of (29) and (23), gives the
dynamic condition at the interface in terms of �1, y1 and �2

�2
�1

� 1

� �
g � @�1

@z
þ @y1

@x

� �

¼ �2
�1

@2�2

@t2
� @2�1

@t2
þ 2�e � @3�1

@z2@t
þ @3y1

@x@z@t

� �
; z ¼ 0: ð30Þ

2.3. Dispersion Relation

[14] The general solution for (11) and (12) can be taken as

�1ðx; z; tÞ ¼ ðA cosh kzþ B sinh kzÞeiðkx��tÞ; ð31Þ

y1ðx; z; tÞ ¼ ðC cosh	zþ D sinh	zÞeiðkx��tÞ; ð32Þ

where a2 = k2 − is/ne. The general solution for (16) can be
taken as

�2ðx; z; tÞ ¼ E cosh kðzþ HÞeiðkx��tÞ; ð33Þ

which satisfies the rigid bottom boundary condition (24). By
noting that

@2�2

@t2
¼ i�

k tanh kðzþ HÞ � @2�1

@z@t
þ @2y1

@x@t

� �
; z ¼ 0: ð34Þ

Equation (30) becomes

�2
�1

� 1

� �
g � @�1

@z

�
þ @y1

@x

�
� �2
�1

i�

k tanh kðzþ HÞ � @2�1

@z@t
þ @2y1

@x@t

� �

þ @2�1

@t2
� 2�e � @3�1

@z2@t
þ @3y1

@x@z@t

� �
¼ 0; z ¼ 0: ð35Þ

Substituting (31), (32) and (33) into (25), (26), (28) and
(35), gives

2ik2Bþ ð	2 þ k2ÞC ¼ 0; ð36Þ

2ik2ðA sinh khþ B cosh khÞþð	2 þ k2ÞðC cosh	hþ D sinh	hÞ¼ 0;

ð37Þ

AðN� cosh kh� gk sinh khÞ þ BðN� sinh kh� gk cosh khÞ
þ Cðigk cosh	hþ 2k	��e sinh	hÞ
þ Dðigk sinh	hþ 2k	��e cosh	hÞ ¼ 0; ð38Þ

N�AþMB� iMC þ 2k	��eD ¼ 0; ð39Þ

where

N ¼ �þ 2ik2�e; ð40Þ

M ¼ �2
�1

� 1

� �
gk � �2

�1

�2

tanh kH
: ð41Þ

The dispersion relation relating s and k can be obtained by
imposing that the determinant of the coefficients of the
system of equations (36)–(39) vanishes. Hence, after some
algebraic manipulations, the dispersion relation is obtained
as

�2 ¼ Qcgk tanh kH ; ð42Þ
where

Qc ¼ 1þ �1
�2

� g
2k2SkS	 � ðN4 þ 16k6	2�4e ÞSkS	 � 8k3	�2eN

2ðC	Ck � 1Þ
gkð4k3	�2e SkC	 þ N 2S	Ck � gkSkS	Þ

ð43Þ
is the modification coefficient induced by ice layer to the
dispersion relation for open water. In (43), Sk = sinh kh, Sa =
sinh ah, Ck = cosh kh, Ca = cosh ah.
[15] Defining ~k = kh, ~H = Hh−1, ~� = s(h/g)1/2, ~	 = ah, ~�e =

ne(gh
3)−1/2, r = r1/r2, the dimensionless dispersion relation

is obtained

~�2 ¼ ~Qc
~k tanh ~k ~H ; ð44Þ

where

~Qc ¼ 1þ �
~k2S~kS~	 � ð~N4 þ 16~k6 ~	2~�4e ÞS~kS~	 � 8~k3 ~	~�2e ~N

2ðC~	C~k � 1Þ
4~k4 ~	~�2e S~kC~	 þ ~k ~N2S~	C~k � ~k2S~kS~	

ð45Þ

and S~k = sinh ~k, S~	 = sinh ~	, C~k = cosh ~k, C~	 = cosh ~	, ~N =
~� + 2i~k2~�e.

3. Special Cases

[16] Under proper conditions, the dispersion relation (44)
can be reduced to several previously developed models,
namely the mass loading model, the thin elastic plate model
and the viscous layer model.

3.1. Mass Loading Model

[17] The ice layer is assumed to be noninteracting in the
mass loading model. Hence, we take the normalized com-
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plex equivalent kinematic viscosity ~�e to be zero. The dis-
persion relation (44) becomes

~�2

~k tanh ~k ~H
¼ 1þ �

~k2S~k � ~�4S~k
~k~�2C~k � ~k2S~k

; ð46Þ

which is the dispersion relation for the two inviscid layers
model [Lamb, 1932, p. 372]. If we further assume the wave-
length to be long compared to the ice thickness, i.e., ~k � 1,
then tanh ~k ≈ ~k and the dispersion relation becomes

~�4ð1þ �~k tanh ~k ~HÞ � ~�2~k tanh ~k ~H � ~�2~k2 þ ð1� �Þ~k3 tanh ~k ~H ¼ 0:

ð47Þ

By dropping higher order terms ~�2~k2 and (1 − r)~k3 tanh ~k ~H
in (47), the dispersion relation can be reduced to the mass
loading model written as

~�2ð1þ �~k tanh ~k ~HÞ ¼ ~k tanh ~k ~H : ð48Þ

This shows that the mass loading model is the first order
approximation of the two inviscid layers model with the
assumption that the wavelength is long compared to the ice
thickness.

3.2. Elastic Plate Model

[18] If the viscosity of ice layer is taken to be zero, then
~�e = i~G/r~� and ~	 = (~k2 − r~�2/~G)1/2, where ~G = G/r2gh. The
dispersion relation (44) becomes

~�2

~k tanh ~k ~H
� 1

� �
~R2

~G
�4~k4 ~	S~kC~	 þ ~kð2~k2 � ~R2Þ2S~	C~k �

~R4

~�2
~k2S~kS~	

� �

¼ � ð2~k2 � ~R2Þ4 þ 16~k6ð~k2 � ~R2Þ
h i

S~kS~	

þ 8~k3 ~	ð2~k2 � ~R2Þ2ðC~	C~k � 1Þ þ
~R8

~�4
~k2S~kS~	; ð49Þ

where ~R2 = r~�2/~G. This is the elastic plate model with finite
ice thickness. If ~R2 � ~k2, ~	 can be expanded in powers of ~R

~	 ¼ ~k �
~R2

2~k
�

~R4

8~k3
�

~R6

16~k5
þ Oð~R8Þ: ð50Þ

Then

S~	 ¼ S~k 1þ
~R4

8~k2
þ

~R6

16~k4

� �
� C~k

~k

~R2

2
þ

~R4

8~k2
þ

~R6

16~k4

� �
; ð51Þ

C~	 ¼ C~k 1þ
~R4

8~k2
þ

~R6

16~k4

� �
� S~k

~k

~R2

2
þ

~R4

8~k2
þ

~R6

16~k4

� �
: ð52Þ

Substituting (50), (51) and (52) into (49) and dropping
higher order terms, (49) becomes

� 4~k2S2~k þ 4~k4 �
~R2

�~�2
2~kS~kC~k þ 2~k2
� �þ ~R2 6S2~k þ 2~kS~kC~k � 4~k2

	 


þ
~R2

� tanhð~k ~HÞ 2S~kC~k þ 2~k
� � ¼ 0: ð53Þ

If ~k � 1 is further assumed, S~k ≈ ~k + ~k3/6, C~k ≈ 1 + ~k2/2.
The leading order equation for (53) is given as

~�2 ¼

~G

3
~k4 þ 1

� �
~k tanh ~k ~H

1þ �~k tanh ~k ~H
: ð54Þ

The above is the same as the dispersion relation from the
thin elastic plate model for incompressible media. However,
~G can be expressed by ~G = 6~L(1 − u)/h3 without loss of
generality, where ~L is the dimensionless flexural rigidity and
u the Poisson’s Ratio. Therefore, to recover the thin elastic
plate model, two conditions should be satisfied, which are
given by

~k � 1

~R2 � ~k2

9=
;: ð55Þ

Strathdee et al. [1989], in their study of moving loads across
a finite thickness plate, obtained similar results as (49) and (55)
using the Green’s functionmethod, without the assumption of
incompressible media.

3.3. Viscous Layer Model

[19] For the case when the ice layer has no rigidity, i.e.,
G = 0, replacing ~�e by ~�, the dispersion relation (44) becomes
identical with equation (19) of Keller [1998]. For the typical
case in the field, where waves are long compared with ice
thickness, i.e., ~k � 1, we further assume ~�/~� � 1 which

follows that ~	 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 � i~�=~�

q
� 1. The asymptotic forms of

the hyperbolic functions in (44) can be expressed as

S~k � ~k; S~	 � ~	; C~k � 1þ ~k2=2; C~	 � 1þ ~	2=2: ð56Þ

Then the simplified dispersion relation can be written as

~�2

~k tanh ~k ~H
¼ 1� �

~�2ð~�2 þ 4i~k2~�~�Þ � ~k2

~�2 þ 4i~k2~�~� � ~k2
; ð57Þ

which is the same as equation (29) of Keller’s model. For
~k � 1, if the viscosity is assumed to be small, i.e., ~�/~� � 1
and ~	 � 1. By assuming tanh ~	 ≈ 1 and tanh ~k ≈ ~k, and
dropping higher order terms, (44) can be simplified to (48)
which is the dispersion relation from the mass loading
model. This result is expected since under the current limit
the ice layer is almost inviscid. Further discussion about the
viscous layer model are given by Keller [1998] and De
Carolis and Desiderio [2002].

4. Results of the Dispersion Relation

[20] The dispersion relation (42) is complicated and non-
linear. Typically for each set of parameters s, h, H, G and n,
there are infinitely many values of k that satisfy the equa-
tion. Muller’s method, which is a generalized secant method
and is advantageous for finding complex roots [Press et al.,
1992], is used to solve the dispersion relation. Three initial
guesses required in Muller’s method are obtained from the
contours of the modulus of ~�2 − ~Qc

~k tanh ~k ~H in the complex
k plane. An example of these contours is shown in Figure 2,
in which the real axis represents the wave number and the
imaginary axis represents the attenuation rate. Figure 2 shows
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that there are an infinite number of roots slightly rotated from
the imaginary axis and eighteen other complex roots in the
plotted domain. Since we are interested in the progressive
wave components, we shall only discuss the wave modes
with a positive wave number. The wave modes with negative
attenuation rates are also rejected because waves growing
with distance are physically unacceptable in our study.
[21] It is shown that a single open water wave can split

into many wave modes when it propagates into the ice‐
covered ocean. All modes share the progressive wave
energy and propagate with different wave speed. Of all these
waves we shall choose only one wave mode which is
assumed to be the dominant one based on two criteria:
(1) wave number is closest to the open water value k0 and
(2) attenuation rate is the least among all modes. The wave
modes with larger wave attenuation rate dissipate rapidly,
therefore they are not observable in the large scale. The
wave modes with wave numbers far from k0 are also rejected

because it is assumed that most of the wave energy will
be carried by the wave mode which does not alter the
wave speed too much. These two criteria have been used
implicitly by many [Keller, 1998; Newyear and Martin,
1999; De Carolis and Desiderio, 2002; Wadhams et al.,
2004], although they were not stated in their papers.
[22] The values of viscosity of a grease ice cover and a

frazil‐pancake ice field have been estimated from laboratory
and field data, respectively, to be in the order of 10−2 m2 s−1

[Newyear and Martin, 1999; Wadhams et al., 2004]. The
typical order of magnitude of elasticity for a continuous
ice plate is about 109 Pa. Based on these data we will
confine our study in the range where the viscosity parameter
is 0–1 m2 s−1 and the elasticity parameter is 0–109 Pa. The
density ratio r = 0.917 will be used in all cases. The nor-
malized wave number 
 = kn/k0 is introduced for conve-
nience. When 
 > 1 the wavelength is shorter than the open
water case, and 
 < 1 indicates the opposite.

4.1. Two Inviscid Layers Model and Mass Loading
Model

[23] As discussed in section 3, when both viscosity and
elasticity are ignored, the viscoelastic model reduces to the
two inviscid layers model. There are two types of propa-
gating wave mode for the dispersion relation of the two
inviscid layers model [Lamb, 1932;Macpherson, 1980]. It is
known that one of the wave modes corresponds to the wave
in which the free surface and the interface propagate exactly
in phase, called the ‘external’ wave. The other corresponds
to the wave mode in which the free surface and interface
propagate exactly out of phase, called the ‘internal’ wave.
Typically the wave number of the ‘external’ wave is closer
to the one of open water, named as the dominant wave mode
for the two inviscid layers model. In addition there are
infinitely many wave modes on the imaginary axis which
are named evanescent waves. The mass loading model has
only one propagating wave mode which corresponds to the
‘external’ wave. This is expected since the free surface and
the interface in the mass loading model are always parallel.
Figure 3 shows that the wave number from the mass loading

Figure 2. A typical contour plot showing the position of the
various roots: (a) close‐up view and (b) wide‐angle view.
Notice that details of the roots near the origin are lost in the
wide‐angle view. There are six roots shown in Figure 2a
and twelve are visible in Figure 2b. Parameters used are as
follows: h = 0.5 m, H = 100 m, n = 5 × 10−2 m2 s−1, T =
6 s, G = 104 Pa.

Figure 3. Comparison between mass loading model and
two inviscid layers model (TIM). Parameters used are as fol-
lows: h = 0.5 m, H = 100 m.
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model converges to the dominant wave number from the two
inviscid layers model as the wave period increases. This
is because that for larger wave period which corresponds to
~k � 1, the mass loading model is the first order approxima-
tion of the two inviscid layers model, as shown in section 3.
For a typical field case the two inviscid layers model pre-
dicts nearly no change in wave number when the wave
propagates from open water to the ice‐covered ocean. It
implies that the two inviscid layers model is not applicable
to describe the wavelength change observed in the field.

4.2. Viscous Layer Model

[24] When the viscosity of the ice layer is considered but
the elasticity is ignored, such as one would expect from a
frazil‐grease ice cover, it is noted that many new wave
modes appear in the four quadrants, and that the modes are
antisymmetric. It is also found that the roots previously lined
up along the imaginary axis rotate slightly about the origin if
viscosity is considered.
[25] We shall only discuss our results in the intermediate

to long wave regime (with period 4–20 s) which is typical in

the field. In Figure 4, we present the wave number and wave
attenuation rate of the dominant wave mode as the function
of wave period for different viscosities. It is found that the
wave number of the dominant wave mode is nearly the same
as the one in open water for a wide range of wave periods
and viscosities. However, the wave attenuation rate decreases
with increasing wave period and increases with increasing
viscosity. The ice thickness effect on the wave number and
wave attenuation rate for different wave periods is plotted in
Figure 5. It shows that the wave number of the dominant
wave is almost independent of the ice thickness, and the
wave attenuation rate increases with increasing ice thick-
ness. It is also found that the wave attenuation rates of the
secondary wave mode are several orders of magnitude larger
than the one of the dominant wave mode, depending on the
viscosity of the ice layer and the wave period. The sec-
ondary wave mode is defined as the one with the attenuation
rate closest to the dominant wave mode.

4.3. Viscoelastic Model

[26] When both viscosity and elasticity are considered, the
roots in the first quadrant rotate and tend to be symmetric as
the elasticity increases. Figure 6 plots the typical behavior of

Figure 4. Viscous layer model for long waves. (a) Normal-
ized wave number 
 versus wave period T(s) for the domi-
nant wave mode and (b) attenuation rate q(m−1) versus wave
period T(s) for the dominant wave mode. Parameters used
are as follows: h = 0.5 m, H = 100 m, G = 0.

Figure 5. Ice thickness effect for viscous layer model. Para-
meters used are as follows: H = 100 m, n = 5 × 10−2 m2 s−1,
G = 0.

WANG AND SHEN: WAVE UNDER VISCOELASTIC SEA ICE C06024C06024

7 of 12



the roots for (42) with respect to the elasticity parameter G.
It shows that the first wave mode is dominant in the low
elasticity regime, and it is very stable against variations of G
when G is small. The second wave mode is dominant in the
high elasticity regime and its wave number decreases with
increasing elasticity. In the intermediate elasticity regime,
when G is 104 ∼ 105 Pa, the third wave mode approaches
and departs k0 rapidly. The approach of the third wave mode
causes the other two wave modes to readjust their roles. The
wave number from the first wave mode starts to move away
from k0 and the one from the second mode becomes closer
to k0. The attenuation rate of the first wave mode increases
while that of the second decreases. At the crossing point the
dominant wave mode switches from the first to the second.

Thereafter, both the first and third wave modes approach
zero wave number as G increases. This transitional behavior
is observed in all cases analyzed. In the transition zone, all
three wave modes could be physically important and form a
complex wave packet. However, the third wave mode has a
higher wave attenuation rate and only affects the transition
zone, as shown in Figure 6. Beyond the transition zone, it is
assumed that only one wave mode is dominant. In what
follows we will focus on the dominant mode, either the first
or the second mode depending on G.
[27] Figure 7 plots the wave number and wave attenuation

rate of the dominant wave mode for various viscosity and
elasticity. It shows that the dominant wave number is insen-
sitive to viscosity regardless of the elasticity. The dominant
wave attenuation rate increases as the viscosity increases.
The behavior of the dominant wave mode as a function of
the wave period is plotted in Figure 8. It shows that the wave
number of the dominant wave mode is different from the
one in open water only at smaller wave periods. The wave
attenuation rate decreases as the wave period increases.

Figure 6. (a) Normalized wave number 
 versus elasticity
G(Pa) and (b) attenuation rate q(m−1) versus elasticity G(Pa).
Dashed curves represent the first mode, solid curves repre-
sent the second mode, and dotted curves represent the third
mode. Heavy portions correspond to when the particular
mode is dominant according to the two criteria. Note the
switch of dominant mode between the first and the second.
This switch occurs when the curves in Figure 6b cross. Para-
meters used are as follows: h = 0.5 m, H = 100 m, n = 5 ×
10−2 m2 s−1, T = 6 s.

Figure 7. (a) Normalized wave number 
 versus viscosity
n(m2 s−1) and (b) attenuation rate q(m−1) versus viscosity
n(m2 s−1). Parameters used are as follows: h = 0.5 m, H =
100 m, T = 6 s.
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4.4. Finite Elastic Plate Model and Thin Elastic Plate
Model

[28] When viscosity is ignored and elasticity is consid-
ered, (44) becomes that of the finite elastic plate model. As
discussed in section 3, the finite elastic plate model (FEPM)
can be reduced to the widely used thin elastic plate model
(TEPM) under the assumptions of long wave (~k � 1) and
large elasticity (r~�2/~G � ~k2). Figure 9 plots the compar-
isons between FEPM and TEPM for ice thickness h = 0.5 m
and h = 3.0 m with different wave periods. It shows that for
large elasticity, the wave number from TEPM almost coin-
cides with the dominant one from FEPM. For small elas-
ticity, the wave number differences between TEPM and
FEPM vary as wave period and ice thickness vary. The
difference increases when the wave period decreases and the
ice thickness increases. This is because smaller wave period
and larger ice thickness correspond to a larger ~k, which

violates the ~k � 1 requirement for TEPM. For a continuous
ice sheet where the order of magnitude of elasticity is about
109 Pa, and r~�2/~G is of order 10−7, TEPM is a good
approximation of FEPM. The fluctuation of 
 in the dashed
curve, as observed in Figure 9, results from the interaction
of the second and the third mode as they approach each
other. This fluctuation is more prominent when ~k increases,
i.e., when the wave period is low and the ice is thick.
Incidentally, this fluctuation phenomenon is also present
when viscosity is considered. The amplitude of fluctuation
decreases with increasing viscosity. For a typical value of
n = 5 × 10−2 m2 s−1, such as shown in Figure 6, the fluc-
tuation is negligible.

5. Discussion

[29] In this study the ice‐ocean system is modeled as a
homogeneous viscoelastic ice layer of finite thickness
overlying an inviscid water layer of finite depth. The visco-

Figure 8. (a) Normalized wave number 
 versus wave
period T(s) and (b) attenuation rate q(m−1) versus wave period
T(s). Parameters used are as follows: n = 5 × 10−2 m2 s−1,
h = 0.5 m, H = 100 m. All curves are for the dominant mode.
For G = 0, 102, 104 Pa this mode is the first one and for G =
106 Pa it is the second one.

Figure 9. Comparisons between finite elastic plate model
and thin elastic plate model for (a) h = 0.5 m, H = 100 m
and (b) h = 3.0 m, H = 100 m. Dotted curves represent
the wave number from TEPM and dashed and solid curves
represent the two wave modes from FEPM.
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elastic property is represented by the Voigt model. The
compact form of the resulting dispersion relation is obtained.
The dispersion relation from the viscoelastic model covers
those from several previously developed models.
[30] The viscoelastic model indicates that the open water

wave splits into many wave modes when it propagates into
the ice‐covered ocean. However, only the wave mode most
observable in the field is physically important, we name this
mode as the dominant wave mode. Two criteria are used to
select the dominant wave mode: (1) wave number is the
closest to the open water value k0 and (2) attenuation rate is
the least among all modes. It is shown that there is always
only one obvious wave mode, which is dominant in both
small and large elasticity regimes regardless of the viscosity.
In the intermediate elasticity regime, however, it appears
that there are three wave modes with similar wavelengths
and attenuation rates. Consequently, the criteria used to
choose only one dominant wave mode may be insufficient
to describe the wave characteristics accurately. In this case,
the partition of wave energy into each of these three modes
remains to be determined.
[31] In the small elasticity regime, the viscoelastic model

predicts nearly no change in wave number (
 ≈ 1) regardless
of viscosity, wave period and ice thickness. In the large
elasticity regime for a given ice thickness and wave period,
there is a critical G0. When G < G0, waves shorten as they
propagate into the ice cover. When G > G0, waves lengthen.
In this case, G0 is independent of the viscosity. The wave
attenuation rate depends on parameters such as ice thick-
ness, wave period, the viscosity and the elasticity of an ice
layer. In general, wave attenuation rate increases with
increasing ice thickness and viscosity, and decreases with
increasing wave period. The effect of elasticity on wave
attenuation rate is very small when elasticity is small. As the
elasticity increases, the wave attenuation rate starts to
increase with elasticity until it reaches a maximum. At this
point, the dominant wave mode switches and the attenuation
begins to decrease with increasing elasticity. In the small

elasticity regime, there are fluctuations appearing in a very
small range of G. The fluctuation effect is significant for
some extreme cases such as large kh and very small vis-
cosity, which are not typically observed in the field. It can
be concluded that this fluctuation will not affect the general
conclusion discussed above. For large G, the thin elastic
plate model is a good approximation to the finite thickness
viscoelastic model; for small G, the results from viscous
layer model are valid. Figure 10 summarizes the applica-
bility of different models depending on the elasticity and
viscosity of the ice field.
[32] Mechanisms controlling the interaction between waves

and an ice cover depend on ice thickness, ice concentrations,
ice temperature, and size distribution of ice floes. It is dif-
ficult to conduct field work and to parameterize this com-
plicated process without a general model framework. From
the above analysis two parameters, G and n, are shown to
control the wave‐ice interaction. If we define l as the ratio
of ice floe size to wavelength, it is likely that the viscosity is
a function of l and the elasticity is a function of l and ice
temperature. When l is very small, viscosity dominates and
elasticity can be ignored. Viscosity can be determined by
(44) through an inverse problem procedure: by measuring
wave attenuation rate and ice thickness. When l is large,
elasticity dominates and the effect of viscosity becomes
insignificant. Elasticity can be determined inversely by
measuring wave number and ice thickness. When l is in the
intermediate range, all three parameters: wave number, wave
attenuation rate, and ice thickness, should be measured to
determine both viscosity and elasticity. Once the function
between ice rheological parameters and l is established, the
wave characteristics in the whole ice field can be obtained
from the viscoelastic model.
[33] The thickness of an ice cover can be determined by

(42) for a given set of s, H, G and n. As shown in Figures 6
and 11, in the small elasticity regime, wave number is
insensitive to h and G, but fortunately the attenuation rate is
sensitive to ice thickness. Hence, the ice thickness can be
determined by measuring the wave attenuation rate. In the
large elasticity regime, the wave attenuation rate is too low
to be measured, but the wave number is sensitive to the ice
thickness. Ice thickness can be determined inversely by
measuring the altered wave number. In the intermediate
elasticity regime, both wave number and wave attenuation
rate are sensitive to ice thickness so it can be determined by
both the altered wave number and the attenuation rate.
[34] At 10−6 m2 s−1 the viscosity of water is four orders of

magnitude lower than the reported ice viscosity and hence is
not considered in this study. In our model, the wave decay
mechanism is from the combination of viscosity and elas-
ticity of ice layer only. In previous studies, eddy viscosity in
the boundary layer under the ice cover was considered to
describe the wave decay [Weber, 1987; Liu and Mollo‐
Christensen, 1988; De Carolis and Desiderio, 2002]. It is
worth mentioning that if needed, the present approach can
easily be extended to a more general model, in which the
ice‐ocean system can be treated as a viscoelastic ice layer
overlying a viscous water layer. The only change would be
to replace ice viscosity in De Carolis and Desiderio’s model
by the complex equivalent viscosity ne. However, this will
introduce more parameters in the model and the eddy vis-

Figure 10. Zones of applicability for different models. The
viscoelastic zone expands when kh increases, as shown by
the dotted curves.
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cosity is difficult to parameterize. In addition, a compact
form of the dispersion relation may not be obtained easily.

6. Conclusion

[35] The viscoelastic constitutive law for an ice cover with
finite thickness gives a general dispersion relation that can
be reduced to previously established models. In this study
we have found that there are several propagating modes
under the ice cover. In most cases, only one mode is
observable over a long distance. This mode coincides with
those discussed in previous studies under various limiting
conditions. For a range of intermediate elasticity, it appears
that three equally dominant modes may coexist. These three
wave modes, with similar wavelength and attenuation rate,
can travel as a group. Implications of this intermediate range
remain to be seen.
[36] There are two geophysical scale implications of the

present study. The first concerns the ability for better fore-
casting ice conditions and the second concerns remote
sensing of ice properties. We first consider forecasting. As

the Arctic regions are becoming more dynamic and the
desire for accurate ice predictions becomes more pressing,
improved parameterization for different types of ice cover is
needed. The long‐term vision is that remote sensing and
some sparse in situ data will be constantly collected to
update the input parameters for a proper viscoelastic model.
The model may then be used to simulate different types of
ice cover based on: ice concentration, ice floe size distri-
bution, and surface temperature. While realization of this
prospect is still distant, the current study provides the nec-
essary step to unify various theories for different types of ice
cover. Second, the ability to determine the properties of ice
cover is required for many offshore operations. Large scale
survey of ice properties can only be done using satellites.
The present study provides a tool to the inverse problem.
If the ice type and wave properties are obtainable from
satellites, the current theory gives a way to relate the dis-
persion and attenuation of the measured wave spectra to the
ice thickness and the effective rigidity and viscosity. These
three parameters are the key for many offshore applications
such as navigation and structure designs.
[37] Currently our conjecture is that the two parameters:

effective rigidity and viscosity are uniquely determined by
the ratio of ice floe size to wavelength, ice concentration and
ice temperature. Theoretical derivation of their relations is
envisioned to be extremely challenging. Attempts to derive
the viscosity of an idealized frazil ice layer [De Carolis
et al., 2005] exemplified the extent of this challenge. The
most practical way to parameterize the rigidity and viscosity
in the geophysical scale is through an inverse method, by
simultaneously measuring ice and wave conditions in the
field. We also envision carefully designed laboratory studies
with controlled environment as an alternative to validate the
viscoelastic model.

[38] Acknowledgments. The authors would like to thank Vernon
Squire and the anonymous reviewers for comments that helped to improve
this paper.
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