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DAbstract

Coastal ocean hydrodynamic models are subject to a number of stability constraints. The most important of these are
the Courant–Friedrichs–Levy (CFL) constraint on gravity waves, a Courant (Cr) number constraint on advection, and a
time step constraint on the vertical component of viscous stresses. The model described here removes these constraints
using a semi-implicit approximation in time and a semi-Lagrangian approximation for advection. The accuracy and effi-
ciency of semi-Lagrangian methods depends crucially on the methods used to calculate trajectories and interpolate at the
foot of the trajectory. The focus of this paper is on evaluation of several new and old semi-Langrangian methods. In par-
ticular, we compare 3 methods to calculate trajectories (Runge–Kutta (RK2), analytical integration (AN), power-series
expansion (PS)) and 3 methods to interpolate (local linear (LL), global linear (GL), global quadratic (GQ)) on unstruc-
tured grids. The AN and PS methods are both efficient and accurate, and the latter can be expanded in a straightforward
manner to treat time-dependent velocity. The GQ interpolation method provides a major step in introducing efficient and
accurate semi-Lagrangian methods to unstructured grids.
� 2007 Published by Elsevier Ltd.
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U
N

C
O1. Introduction

Coastal ocean models operate over a wide range of time and space scales, some that can be resolved and
some that cannot. Typical time scales are of the order of the period of long waves (tens of minutes) and longer.
Typical flow features range from tsunami propagation to seasonal baroclinic circulation. Embedded in these
flows are short gravity waves which may or may not be of interest.

These models are also subject to several stability constraints. The most important of these are the Courant–
Friedrichs–Levy (CFL) constraint on gravity waves, a Courant (Cr) number constraint on advection, and a
time step constraint on the vertical component of horizontal viscous stresses.
1463-5003/$ - see front matter � 2007 Published by Elsevier Ltd.
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In the end, it is desirable to formulate the discrete equations so that there are no major stability constraints.
Thus there would be no need for mode splitting to accommodate fast gravity waves as an example. The tra-
ditional way to eliminate time step constraints on gravity wave and viscous terms is to use a semi-implicit
approach in time. Treating the advection terms is more problematic.

The stability of many explicit advection schemes is limited by Cr. Ideally, calculations that are stable at
higher Cr but do not incur significant overhead are desired and Leonard (2002) shows how such schemes
can be formulated. On the other hand, implicit schemes will involve the solution of a large matrix equation
for the 3-dimensional velocity and thus have a large computational cost. One of the few stable methods avail-
able that does not require a matrix solution is a semi-Lagrangian approximation. This approximation is essen-
tially explicit, removes the stability constraint, and does not necessarily involve a high computational cost.

Semi-Lagrangian methods take advantage of their simple formulation on a fixed grid and the inherent accu-
racy of integrating along streamlines. The equations are integrated in such a way that the trajectory ends at a
fixed node at the end of each time step. Robert (1981, 1982) developed semi-implicit, semi-Lagrangian meth-
ods in a set of seminal papers and an extensive review of these methods for application to atmospheric prob-
lems is found in Staniforth and Côté (1991). Semi-Lagrangian schemes for the shallow water equations have
been analysed in several papers (Casulli, 1987, 1990) where tracking methods, stability, artificial viscosity, and
interpolation methods are considered. In an oceanic context, these methods have been used by Walters and
Casulli (1998), Casulli and Walters (2000), Hanert et al. (2005), and Ham et al. (2005), among others.

Semi-Lagrangian methods seem ideal; however, the proper choice of tracking and interpolation methods is
crucial for maintaining accuracy. Although high-order methods are well established for structured grids with
regular quadrilaterals, they are difficult to implement on an unstructured grid (Staniforth and Côté, 1991; Le
Roux et al., 1997). In a recent paper dealing with unstructured grids, Hanert et al. (2005) compared an explicit
upwind scheme with a semi-Lagrangian scheme that uses a kriging interpolator. As an indication of efficiency,
the semi-Lagrangian calculations were about ten times more expensive than the Eulerian calculations and both
gave acceptable results for the large-scale test problems (Hanert et al., 2005). Hence, there is a need to increase
the efficiency of these methods while maintaining accuracy.

The general problem is to solve dx/dt = u for a time step Dt to define the trajectory, then evaluate a func-
tion G at the foot of the trajectory. Because of the influence of coastal geometry, the streamlines tend to be
curved. Hence, the methods of choice track the streamline rather than make a straight-line approximation
such as used by Staniforth and Côté (1991) and Hanert et al. (2005). We consider three such methods in this
paper.

Interpolating on an unstructured grid in an accurate and efficient manner is somewhat of a greater problem.
Low-order methods tend to introduce considerable damping on the solution (McCalpin, 1988; Malcherek,
2001). On the other hand, high-order methods are difficult to implement and can be very inefficient (Hanert
et al., 2005). One high-order method that requires high-order elements is presented in Xiu and Karniadakis
(2001). We present here two low-order (linear) methods and compare these with a new high-order method.

In the following section, an overview of the numerical model is set forth with the details contained in the
cited references. Next, the semi-Lagrangian methods are described in more detail including both tracking and
interpolation. In Section 4, we present some comparative results for the different methods employed here. In
Section 5, we summarise the conclusions.

2. Governing equations

The numerical model is formulated from the Reynolds-averaged Navier-Stokes equations (RANS) with a
free surface. For the simulation of weakly dispersive surface waves, these equations can be averaged over the
water depth to derive a set of equations similar to the standard shallow water equations but containing addi-
tional terms that describe non-hydrostatic forces (Walters, 2005). This procedure can be extended to solve the
full Navier-Stokes equations.

However, for the purposes of this study a simplified set of equations are used to investigate different semi-
Lagrangian advection approximations. In particular, the general equations are depth-averaged and the hydro-
static and Boussinesq approximations are used. The resulting equations are then a simple form of the shallow
water equations.
Please cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
(2007), doi:10.1016/j.ocemod.2007.06.008
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The equation for the free surface g is derived by an integration of the continuity equation over water depth
and application of the kinematic free surface and bottom boundary conditions:
Plea
(200
og
ot
þr � ðHuÞ ¼ 0; ð1Þ
where g(x, y, t) is the water surface elevation measured from the vertical datum, $ is the horizontal gradient
operator, h(x, y) is the land elevation, and H = g(x, y, t) � h(x, y) is the water depth. The variable t is time and
the coordinate system (x, y, z) is directed eastward, northward, and up, respectively.

After depth averaging, the horizontal momentum equation becomes
 FDu

Dt
þ f � u ¼ �grg� sb

qH
; ð2Þ
O
Owhere D/Dt is the material derivative given by D/Dt = o/ot + u � $, u is the depth-averaged velocity,

f ¼ 2XE sin hẑ is the Coriolis parameter, XE is the rotation rate of the Earth, h is the latitude, g is gravitational
acceleration, q is density, and sb is the bottom friction. Surface stress and atmospheric pressure have been ne-
glected, along with the horizontal friction. Bottom friction is written as
Rsb

qH
¼ CDjuju

H
¼ cu; ð3Þ
O
R

R
E
C

T
E
D

Pwhere CD is a drag coefficient and c is defined by (3).
At open (sea) boundaries, either a specified surface elevation or a radiation condition is enforced so that the

outgoing wave will not reflect back into the modelled area.

2.1. Spatial discretisation

Unstructured grids are chosen because of their ability to resolve the complicated and multi-scale geometry
of coastal environments. Finite elements with unstructured triangular and quadrilateral elements of varying-
size and shape are used for the spatial approximation. The specific element used is the Raviart–Thomas ele-
ment of lowest order (RT0) (Raviart and Thomas, 1977; Abrogast, 1995). The basic computational grid is a
tessellation using arbitrary quadrilaterals or triangles in the horizontal, and the projection of the nodes (cor-
ners) in the vertical to derive brick or pie shaped elements for the 3-dimensional form of the model.

For this element, the continuous variables g and u are approximated with the discrete variables gh and uh

where ghðx; tÞ ¼
Pne

j¼1ujðxÞgjðtÞ and uhðx; tÞ ¼
Pns

i¼1UiðxÞuniðtÞ, where j is the index for an element in the global
vector, the basis function uj = 1 on element j and 0 otherwise, ne is the number of elements, ns is the number of
element edges (sides), uni is the normal velocity un on edge i, and Ui is the linear vector basis function for veloc-
ity. Ui is given by UiðxÞjXe

¼ x�xi
Le

on element Xe where xi is the vertex opposite to edge i and Le is the normal
distance from edge i to xi.

Using this element, the free surface equation is expressed in a standard Galerkin weighted residual form
(e.g. Hanert et al., 2003). Because the basis function for is piecewise constant, the equation reduces to a finite
volume form that conserves mass both locally and globally (Walters and Casulli, 1998).
CAe
oge

ot
þ
I

Ce

ðHunÞdCe ¼ 0 ð4Þ
U
Nwhere subscript e denotes the value for a specific element; Ae is the element area; un is the normal velocity on

an edge, positive outwards; and Ce is the boundary of the element. The last term has been converted from a
divergence form to a line integral using the Gauss Divergence Theorem.

The approximation for the momentum equation is:
Z
X

U � Duh

Dt
þ cuh þ f � uh

� �
dX ¼

Z
X

gghrh �UdX�
I

C
½gghU � n̂�dC ð5Þ
where C is the boundary of the computational domain X, and the pressure gradient term has been integrated
by parts. The line integral in these equations provides a convenient means to specify the boundary conditions
on g. This equation is developed further below.
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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2.2. Time discretisation

Both explicit and implicit methods can be used in the solution of Eqs. (4) and (5). By definition, semi-impli-
cit means that some of the terms in the equations are treated implicitly and some explicitly. Implicit will mean
that a term is approximated in the time interval [N, N+1] by the weight h where FN+h = hFN+1 + (1 � h)FN

such that h = 0 is an explicit approximation and h = 1 is a fully-implicit approximation.
The objective is to choose methods in such a way as to enhance model accuracy, remove restrictive stability

constraints, and enhance model efficiency by removing computational overhead. All of these cannot be opti-
mized simultaneously; nonetheless, certain choices are very advantageous (Casulli, 1990; Casulli and Cattani,
1994) and are described below.

For explicit methods, the two most restrictive stability constraints are the CFL condition for gravity waves
and the viscosity constraint on the vertical component of the viscous terms. Hence the divergence term in (4)
and the gravity and vertical viscosity terms in (5) are treated implicitly thereby removing the stability con-
straints (Casulli and Cattani, 1994). Note however that there are still accuracy constraints that limit the mag-
nitude of the CFL number (cDt/Dx, where c is the phase speed, Dt is the time step, and Dx is an edge length).
In general, the semi-implicit approach is useful for large-scale, long period simulations such as wind-driven
and tidal motions and eliminates the need for mode splitting in baroclinic calculations. On the other hand,
the approach is less useful for short period gravity waves such as tsunami where the time step must be reduced
to resolve the motions. Even so, for complicated field-scale domains there are frequently parts of the grid that
limit stability of explicit methods so that the semi-implicit method is more robust and usually more efficient.

Using a semi-implicit approach for the equations, (4) becomes
Plea
(200
DAe
gNþ1

e � gN
e

Dt
þ h

I
Ce

HNþ1uNþ1
n dC ¼ �ð1� hÞ

I
Ce

H N uN
n dC ð6Þ
R
E
C

T
Ewhich expresses the change in surface elevation as a function of the fluxes through the element sides. In most

cases, HN+1 is approximated as HN because g is usually small compared to depth. For cases where this is not
true, the time step can be reduced if necessary to give more accurate results, or a simple explicit predictor can
be used for HN+1. Other options include the logarithmic form of Le Roux et al. (2000). The value for g on an
edge is computed several ways, depending on the local flow. Some form of upwind weighting is normally used,
such as the methods described in Walters and Casulli (1998), Casulli and Walters (2000) and Stelling and Duin-
meijer (2003).

Next consider the weighted residual form of the momentum equation. Integrating (5) by a midside quad-
rature rule on each element with equal weighting on each edge, and using a discrete time operator for the
material derivative, the momentum equation becomes (Walters and Casulli, 1998)
AuNþ1
n ¼ Gn � hDtN Nþ1

n ð7Þ
Rwhere
C
OA ¼ Mð1þ cNDtÞ

Gn ¼ Mu�n � F �n � ð1� hÞDtN �n

Nn ¼ �
Z

X
gghrn �UdXþ

I
C

gghU � n̂dC
U
Nand * denotes a value evaluated at the foot of the Lagrangian trajectory, Fn contains the explicit and Coriolis

terms, and M is the mass matrix given by M =
R

X U � UTdX. Note that the mass matrix is diagonal when using
numerical integration at the midpoints of the edges. The Coriolis term is integrated by a two-step procedure
described in Casulli and Walters (2000).

In order to make the model more efficient, Eq. (7) is used to eliminate uNþ1
n from the free surface Eq. (6).

The resulting equation is in the form of a wave equation at the discrete level and contains only g at the N + 1
time level.
Aeg
Nþ1
e � h2Dt2

I
Ce

H N A�1NNþ1
n dC ¼ Aeg

N
e � ð1� hÞDt

I
Ce

HN uN
n dC� hDt

I
Ce

HN A�1GndC ð8Þ
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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In practice, Eq. (8) is assembled and solved for gN+1. Using these results, Eq. (7) is solved for uNþ1
n . The full

velocity is recovered by calculating the velocity at the vertices of each element, then interpolating the tangen-
tial component of velocity at the midsides (Walters and Casulli, 1998).

Note that in the discrete wave Eq. (8), water depth H is a factor in all the side flux terms. When H = 0 (i.e.
the side is dry), there is automatically no water flux through that side. When all sides of an element are dry, the
water level is stationary in time. Hence, wetting and drying are implemented without any special treatment.

3. Semi-Lagrangian approximation

The semi-Lagrangian method has two crucial steps: calculation of the trajectory of a fluid particle from a
node in the Eulerian grid backwards to its starting location at the beginning of the time step (referred to as the
foot of the trajectory), and interpolation of a function at this starting location. The purpose here is to present
and evaluate some old and new methods for calculating trajectories and a new high-order interpolation
method.

3.1. Trajectory calculations

Four methods were originally considered for calculating the trajectory location: a simple explicit method
originally used in the numerical model, a second-order Runge–Kutta method, an analytical integration of
the equation for the trajectory, and a power-series approximation method. After some initial tests, the explicit
method was dropped from testing as it was too inaccurate and led to noisy solutions.

3.1.1. Runge–Kutta method (RK2)

The second-order Runge–Kutta algorithm chosen here is:
Plea
(200
E

xjþ1 ¼ xj þ Dtuðxj þ ðDt=2ÞuðxjÞÞ
O
R

R
E
C

TThe basic procedure is to integrate backwards to find the departure point at the foot of the trajectory (x1, y1)
which arrives at the grid node (x0, y0) after a time Dt, which is the model time step. If the point (x1, y1) is
within the element, then immediately interpolate within the element. If the point (x1, y1) is outside the element,
then reduce Dt to substeps Dt/m and find the exit point from the element and the time required to traverse the
element. Then repeat the procedure for the next element until the model time step is used up and interpolate at
the endpoint. The number of substep intervals m varies in the range of 10–50. The intersection of the trajectory
and the element edge is found by an explicit step from the last substep that lies within the element.

The major overhead with this method is a single interpolation of the velocity for each iteration and deter-
mining the location of the exit point on each element. The accuracy is highly dependent on the number of sub-
steps and the variability of the velocity on an element.

3.1.2. Analytical integration (AN)

Since velocity varies linearly over an element it can be represented as
u ¼ Axþ b
U
N

C

where A = a11 a12
a21 a22

� �
and b = b1

b2

� �
. The form of the solution then depends on the form of matrix A. Matrix A

can be classified into seven different types according to its eigenvalues and eigenvectors:

1. Two real distinct nonzero eigenvalues.
2. One real nonzero eigenvalue with two separate eigenvectors. i.e. A = a 0

0 a

� �
.

3. One real nonzero eigenvalue with one root (defective matrix).
4. Two real distinct eigenvalues, one nonzero, one zero. (Singular matrix).
5. Zero eigenvalue, two separate eigenvectors. i.e. A = 0 0

0 0

� �
(zero matrix).

6. Zero eigenvalue, one eigenvector (singular, defective matrix).
7. Complex conjugate pair of eigenvectors.
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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In the cases where there are real eigenvalues and the full complement of eigenvectors the matrix can be
decomposed into the Jordan form, viz.
Plea
(200
A ¼ VDV�1 where V ¼ ½ v1 v2 � and D ¼
k1 0

0 k2

� �
;

whereas for defective matrices the Schur decomposition is used, viz.
A ¼ UDUH ; where U is unitary and D ¼
k1 a

0 k1

� �
;
 F

and H represents the Hermitian transpose (Stoer and Bulirsch, 1993).
These decompositions aid in the calculation of e�Adt and A�1, which are used below, i.e.
O

e�ADt ¼ V
e�k1Dt 0

0 e�k2Dt

� �
V�1 and A�1 ¼ V

1=k1 0

0 1=k2

� �
V�1;
 O

for the Jordan form and
 Re�ADt ¼ U
e�k1Dt �aDte�k1Dt

0 e�k1Dt

� �
UH and A�1 ¼ U

1=k1 �a=k1

0 1=k1

� �
UH ;
Pfor the Schur decomposition.
Assuming the arrival point is x0, we wish to find the departure point x1 where it left from a time Dt ago. For

non-singular A with real eigenvalues (i.e. classes 1, 2, or 3),
 Dx1 ¼ e�ADtx0 þ A�1ðe�ADt � IÞb:

If A is singular but has one nonzero eigenvalue, k, then
T
E

x1 ¼ Ve�DDtV�1x0 þ V
1
k ðe�kDt � 1Þ 0

0 �Dt

� �
V�1b:
For A = 0, x1 = x0 � bDt. For a singular, defective matrix
C

x1 ¼ Ue�DDtUH x0 þU
�Dt aDt2=2

0 �Dt

� �
UH b:
E

For complex conjugate eigenvalues, kR ± ikI, with eigenvectors, vR ± ivI, respectively x1 can be calculated as
Rx1 ¼ SG�1ðDtÞS�1x0 � SHðDtÞS�1b;
where
C
O

RS ¼ ð vR vI Þ;

GðtÞ ¼ ekRt cosðkI tÞ sinðkI tÞ
� sinðkI tÞ cosðkI tÞ

� �
;

G�1ðtÞ ¼ Gð�tÞ and

HðtÞ ¼
Z t

0

G�1ðsÞds:
U
NThe basic procedure is to find (x1, y1) for the case Dt, the model time step. If the point (x1, y1) is within the

element, then interpolate within the element. If the point (x1, y1) is outside the element, then iterate, reducing
Dt, to find the entry point and determine Dtt which is the time taken to traverse the element. Then repeat the
procedure for the next element until the model time step is used up and interpolate at the departure point x1. A
Newton–Raphson method was also tried to find where the trajectory entered the element and the correspond-
ing value for Dt, but this suffered from the difficulty of determining which side of the element the trajectory
entered through. The first method was found to be more robust.

The major overheads with this method are in classifying and decomposing matrix A, evaluating the tran-
scendental functions and iterating the entry point when multiple elements were traversed.
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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Ham et al. (2006) have also developed an analytical integration approach which seems to differ mostly in
the treatment of inter-element crossings.

3.1.3. Power-series approximation (PS)

A power-series approximation is given by expanding the coordinate variables as a power-series in time
about the arrival point (x0, y0):
Plea
(200
xðtÞ ¼ x0 þ p1t1 þ p2t2 þ � � � þ pntn

yðtÞ ¼ y0 þ q1t1 þ q2t2 þ � � � þ qntn
 F

The velocity is given as a linear function on each element:
 Ouðx; tÞ ¼ a11xðtÞ þ a12yðtÞ þ b1

vðx; tÞ ¼ a21xðtÞ þ a22yðtÞ þ b2
 OThen expand dx/dt = u in terms of these expressions. Matching powers of t, it follows that p1 = u0 = b1 and
q1 = v0 = b2, and the following recursion relation holds:
P
Rpj ¼

a11

j
pj�1 þ

a12

j
qj�1

qj ¼
a21

j
pj�1 þ

a22

j
qj�1
U
N

C
O

R
R

E
C

T
E
DThe series converges for all finite t (Pearson, 1974, p. 84).

This approach is applied by first evaluating the location of the departure point for the model time step Dt.
Similar to the case of analytical integration, if the location is outside the element, the time step is repeatedly
reduced by a factor of 2 until the point is within the element. Then half of the last time step change is added or
subtracted from the estimated time depending whether the point is inside or outside the element. Eventually
this converges to the entry point on an edge.

The major overhead with this method is calculating the velocity gradients on each element in order to deter-
mine the coefficients (aij, bi, i, j = 1,2), and finding the intersection of the trajectory and the element edge when
the trajectory passes out of the element. The determination of the intersection can compromise the inherent
speed of this method as it involves repeatedly reassembling the time series as part of an iteration loop. Obvi-
ously, using an iterative procedure that converges faster is desirable.

3.2. Interpolation

Three methods were considered for interpolating within the elements: a local linear approximation based on
the finite element approximation within each element, a global linear approximation based on a global recon-
struction of the fields, and a global quadratic approximation.

3.2.1. Local linear approximation (LL)

The normal component of the momentum equation is defined at the midpoint of the element edges. From
the normal values of a function and the direction of the normal on the edges, a local linear vector field can be
uniquely determined for that function. In this manner, the function Gn in (7) is defined at the vertices and the
standard area coordinates are used to interpolate the function at any point within the element.

However, the normal component is constant along each edge as a consequence of the definition of the bases
for the RT0 element. Thus the tangential variation of the function is not included in the approximation which
in a sense is then incomplete. Although not explored here, this limitation appears to cause jets and small scale
eddies in field-scale simulations.

3.2.2. Global linear approximation (GL)

As an alternative, the vector field for Gn can be approximated at the element vertices and a standard linear
interpolation used on each element. Although there are a variety of approximations that can be used, we use a
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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This can be written
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where W are the linear bases (hat functions) for the vertices, Ĝ is the vector of values of G at the vertices, U are
the bases for the RT0 elements, and G is the vector of values for Gn.

Linear interpolation has been found to be highly dissipative (Staniforth and Côté, 1991; McCalpin, 1988;
Malcherek, 2001). Moreover, this approximation does not reproduce the exact values for G at the midpoints
on the element edges. These errors cause unwanted accelerations in the momentum equations.

3.2.3. Global quadratic approximation (GQ)

This approximation was developed to satisfy two criteria: to reproduce the values of a function G accu-
rately at the midside of the edges where the momentum equations are discretised, and to provide a higher
order approximation that has minimal dissipation. The procedure is to first calculate the values for G at
the vertices in the same manner as for the global linear approximation. Then quadratic bases are used for
interpolation on the element with the midside values specified by Gn.

In retrospect, this seems like a natural way to make this approximation and takes advantage of the discret-
isation on the RT0 element. A similar method could also be applied to the P nc

1 � P 1 element, which also has
midside velocity nodes. On the other hand, it is not obvious how to extend this to yet higher-order without
extensive multi-element approximations.

4. Results

The objective of the first set of test problems is to evaluate the accuracy and efficiency of the three different
methods for calculating the trajectory location. Following this, two examples illustrate the accuracy and effi-
ciency of these methods for a gravity wave (tsunami) problem at low Cr, and a flood problem with a large Cr

and Froude number (Fr).

4.1. Trajectory tests-accuracy and efficiency

The first set of test cases is designed to evaluate the accuracy and relative efficiency of the different methods
for calculating the trajectory location. A square basin is constructed using square elements and a rotating flow
is specified where u = �y and v = x. The basin extends from �2 to 2 in both x and y. In the first case, one
element is used for the entire domain so the trajectories are contained entirely in one element (no inter-element
crossings). The time step is adjusted to give a rotation of p/2, p, and 2p from the initial point. This result gives
a measure of the relative execution times and accuracy for the different methods. In the second test, four ele-
ments are used and the time step was adjusted so the trajectory crossed 0, 1, 2, or 3 elements (rotation of p/4,
3p/4, 5p/4, and 7p/4). These results give a measure of the relative performance when intersection of the tra-
jectories with the element edges is included.

For the first test case, which has no element crossings, the execution time for AN was independent of the
time step size. On the other hand, the execution time for PS increased with time step size because the number
of terms in the time series increased (11 for a rotation of p/2, 16 for a rotation of p, and 25 for a rotation of
2p). For 16 terms in the series, PS and AN had the same computational overhead. For less terms, PS was faster
(timePS/timeAN = 0.63 for a rotation of p/2) and for more terms AN was faster (timePS/timeAN = 1.45 for a
rotation of 2p). Both methods had errors of the order of machine accuracy. For RK2, the execution times are
at least an order of magnitude slower and the accuracy depends on the number of iterations used. For a time
step of p/2 (quarter of a circle), the errors were of the order 6 � 10�3 with 10 iterations and 10�3 with 20 iter-
ations. As the time step increased, the required iterations increased so that the relative performance as com-
pared to PS and AN worsened.

In summary for the first test case, AN and PS were roughly equivalent in accuracy and run times and RK2
was slower by an order of magnitude with decreased accuracy (Fig. 1, case 1).
se cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
7), doi:10.1016/j.ocemod.2007.06.008
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Fig. 1. Comparison of execution times for the three trajectory calculation methods: PS, power-series approximation; AN, analytical
integration; RK2(10), second-order Runge–Kutta with 10 substeps; RK2(40), second-order Runge–Kutta with 40 substeps. All the times
are normalised with respect to the time for PS with no element crossings (case 1, single element). Errors for PS and AN were of the order
10�7. Errors for RK2(10) cases 2, 3, and 4 and for RK2(40) cases 3 and 4 were greater than 1% and unacceptable. Case 1 has no element
crossings, case 2 has 1 element crossing, case 3 has 2 element crossings, and case 4 has 3 element crossings.
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For the second case, the execution times for PS and AN increase significantly when element edge crossings are
included although the errors remain at machine accuracy. Both PS and AN use an iterative procedure with about
10 iterations to find the element crossings so the execution time increases by an order of magnitude in these cases.
On the other hand, RK2 was generally less efficient and became less accurate unless the number of substeps was
increased. With RK2, there are significant trade offs between accuracy and execution speed. To be competitive
with PS and AN, the number of substeps must be decreased to where the error is unacceptable (10–20%). For
better accuracy, the execution times for RK2 were at least an order of magnitude larger than PS or AN.

In summary for the second test case, the execution times for AN and PS increased significantly with the
number of element crossings but a high accuracy was retained. An obvious improvement is to use methods
that converge more rapidly at the element crossings. The execution times for RK2 were always larger than
PS and AN with poor accuracy (Fig. 1).

4.2. Tsunami test problem-wave height and stability

This example is a field-scale problem simulating the propagation of a tsunami generated by a submarine
fault rupture on the New Zealand continental shelf (Walters et al., 2006). The location of the fault is near
the town of Kaikoura on the northeast coast of the South Island of New Zealand (Walters et al., 2006;
Fig. 1). The area is characterized as the convergence zone between the Pacific and Australian plates and
the fault is a thrust fault on the continental slope at a depth of about 1000 m. The fault is about 100 km long
and 10 km wide, and has a maximum vertical displacement of 4 m (Fig. 2). The fault displacement shown in
Fig. 2 was used as the initial condition for water surface elevation.

Initially, the water elevation is specified and the velocity is zero. This initial condition gives rise to two
waves propagating in opposite directions. As the shoreward propagating wave shoals, its speed decreases
and its height increases. Initially the trailing side of the wave is steeper because of the initial wave shape. Phase
speed is only dependent on the height of the wave so the crest travels faster than the trailing slope and the
entire wave steepens on its forward face as it propagates shoreward (from 0 to 6 in Fig. 2). The waves finally
steepen into a bore directly inshore from the source area.
Please cite this article in press as: Walters, R.A. et al., Semi-Lagrangian methods for a finite element ..., Ocean Modell.
(2007), doi:10.1016/j.ocemod.2007.06.008



P
R

O
O

F

378

379

380

381

382

383

384

385

386

387

Fig. 2. Surface deformation (initial condition) for the fault generated tsunami near Kaikoura.
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The time series of sea level for three different interpolation schemes (LL, GL, and GQ) are shown in Fig. 3.
NA is the case where advection is neglected. The large, excessive damping from the low order scheme (GL) is
obvious. In reality, advection should have a minor effect on sea level for these long waves until they approach
shore. The damping is exacerbated by the small time step (2 s) required to resolve the short period of the wave
(60 s). On the other hand, LL and GQ compare realistically with the NA case. The case LL eventually gen-
erates large unreasonable oscillations along the shoreline. The simulation does not become unstable, but a
rapid run off at the shoreline causes water level oscillations. We believe this is related to the poor approxima-
tion of the tangential variations in velocity with the LL approximation.

The computational overhead associated with the different schemes was highly variable. As a rough guide, a
single iteration of the PS or AN scheme has about the same overhead of a single step of the RK2 scheme
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Fig. 3. Time series of sea level at sites shown in Fig. 2. The sites are 1, 3, 5, and 7, located shoreward of the source. NA, no advection
included; LL, local linear interpolation; GL, global linear interpolation; GQ, global quadratic interpolation.
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(assembling a power-series as opposed to interpolating the velocity). For 20 steps of the RK2 scheme per
model time step, The RK2 scheme takes 6.2 times the run time of the PS scheme for later times in the simu-
lation when the solution is more dynamic. The run time of the RK2 scheme scales linearly with the number of
steps so reducing the number of steps makes the scheme more competitive, although at reduced accuracy. The
AN scheme takes 1.68 times the run time of the PS scheme because the power-series required a relatively small
maximum of 5 terms to converge. In the end, the PS scheme provided high accuracy with runtime always less
than RK2, and was more robust in determining the inter-element crossings. In addition, the PS scheme was
more robust than the AN scheme because of the difficulty in trapping all the pathological solution cases.

When compared with the total runtime, RK2 took about 60%, AN took about 22%, and PS took about
15% on average. The percentage was low during the initial period of propagation, and higher when the wave
ran up on land and velocity became large. The overhead of RK2 can be reduced with fewer substeps, but with
reduced accuracy.

4.3. Flood test problem-relative efficiency and comparison for transcritical flows

During January and February of 1993, a flood on the Verde River in Arizona achieved water levels not seen
in the previous 1100 years (House et al., 2002). The channel is bedrock and sand, the bedrock forming con-
strictions along the river that provides rigid boundaries to flow. One such constriction, 15 km above the con-
fluence with Horseshoe Reservoir, is at Sheep Bridge (Fig. 4). The reach above and below Sheep Bridge was
measured with a combination of real-time kinematic GPS and aerial photogrammetry when the river was at a
low flow of a few tens of cubic meters per second. High water indicators, as described in Denlinger et al. (2002)
were also measured. In most cases these marks were grasses caught in bushes or flotsam deposited on the
bank. In all cases the high water indicators are a lower bound of the high water level, as rising water would
have removed and re-deposited the material. The accuracy of the measurements was estimated at 0.1 m.

Topographic data were used to construct a detailed grid of the topography surrounding the Verde River
(Fig. 4). Steady flows of discharges between 300 cms and 4300 cms were modeled on the grid, and the corre-
sponding model high water compared to the observed high water at various grid locations along both sides of
the channel.

The different semi-Lagrangian schemes were compared for a discharge of 3105 m3/s, the measured maxi-
mum flow during the flood. The discharge was introduced at the upstream end of the grid in Fig. 4 (lower
right). A major control point on the flow was at Sheep Bridge where the flow turned sharply to the right,
passed through a constriction, and dropped. The flow was supercritical in parts of this reach, with large eddies
spun off on both sides. From an oceanographic perspective, this flow is similar to the flow through tidal rapids,
which are a common occurrence on the coast of British Columbia, Canada, among other places.
U
N

C
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R

Fig. 4. Reach of the Verde River used for the flood tests. Maximum Cr is 10.4. The flow enters from the lower right, passes through the
flow constriction and exits into a reservoir at the upper left.
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In general, the trajectory calculation is more time consuming than the interpolation at the foot of the tra-
jectory. Moreover, Cr was relatively high (up to 10.4 for this case) over large parts of the flow. Hence, inter-
element crossings of the trajectory are a significant part of the calculations. RK2 with 20 substeps has an exe-
cution time about 3 times that of PS. This can be reduced by a half with judicious choice of substeps, but with
reduced accuracy. Even with 20 substeps, the method has poor accuracy for the high Cr cases.

Model water surface elevations gave excellent agreement when compared to the measured high water
marks. A detail of the flow through the constriction is shown in Fig. 5. The maximum velocity was 8.3 m/s
with a strong flow core and counter-rotating eddies along the edges.

5. Conclusions

The choices described here result in a model that is applicable to a wide range of time and space scales and
flow regimes that are encountered in coastal oceanography. For the semi-Lagrangian approximation, the cru-
cial elements are the accurate calculation of the trajectory and the interpolation at the foot of the trajectory.
Of the methods evaluated here, the power-series expansion method (PS) and analytical solution (AN) appear
to be the most accurate and efficient as compared to the second-order Runge–Kutta method. Of these, PS is
straightforward to implement and was found to be more robust. All the interpolation methods tested have
similar efficiency. However, the global quadratic (GL) method has higher-order accuracy and does not suffer
from excessive damping that is common with linear interpolation.
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