
1

Calculation of Wave-Driven Currents in a 3D Mean Flow Model

D.J.R. Walstra1, J.A. Roelvink1,2 and J. Groeneweg1

Abstract

The theory and implementation of the dominant wave effects in a 3D mean flow
model are described. The effects considered are the wave-induced mass flux, wave-
induced turbulence, the effects of streaming and forcing due to wave breaking. To
model the wave-induced mass flux we have used the GLM method. This method is a
hybrid Eulerian-Langrangian approach that also enables the inclusion of a vertically
non-uniform mass flux distribution. The model shows good agreement with
measurements. It was found that the application of a vertically non-uniform mass
flux improves the model predictions considerably. An important conclusion is that
with minor modifications any Eulerian-based 2DV, 2DH or 3D flow model can be
upgraded to a more physically correct GLM-based model.

Introduction

Within the EU MAST SASME project, a study is being conducted to improve the
computed (wave-averaged) currents in nearshore areas in Delft3D-FLOW. Delft3D-
FLOW solves the unsteady shallow water equations in two (depth averaged) or three
dimensions. In the present version of Delft3D-FLOW the only wave effects that have
been included are: a breaking wave-induced shear stress at the surface (Svendsen,
1985 and Stive and Wind, 1986) and an increased bed shear stress (Soulsby et al.,
1993). Important wave effects such as the wave-induced mass flux, streaming near
the bottom and wave-induced turbulence are not accounted for. In this paper attention
is focussed on the incorporation of these wave effects in the 3D mean flow model.
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Incorporation of wave-induced mass flux

Using the summation convention (Greek indices !,"=1,2 corresponding to horizontal
coordinates x and y; Latin index j=1,2,3 corresponding to x, y, z), the hydrostatic
flow equations in Delft3D-FLOW can be written as:
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where ζ  is the (short wave) averaged free surface elevation, u the horizontal velocity
vector, and τ ij  shear stress tensor. These quantities are given in a Eulerian (fixed)

spatial reference frame. Although Coriolis forces have been taken into account in
Delft3D-Flow, they have been omitted here. The influence of the waves is given by
the mass flux M and the wave-induced driving force F. The choice of these fluxes
strongly affects the mean flow profile, not only in the horizontal direction but also in
the vertical direction. However, each formulation encounters the discontinuities at
trough level or at the level of the mean free surface. For instance DeVriend and Kitou
(1990) mention the difficulties in formulating forces induced by surface waves in a
Eulerian framework in a 3D hydrostatic mean flow model. Formulation of the
vertical distribution of wave forces in this framework leads to singularities at the
mean free surface, due to wave dissipation and wind-input, and at the bottom, due to
bottom friction.

In depth-averaged flow equations the mean motion and wave motion are usually
separated by averaging over the wave phases (see e.g. Phillips, 1997). However, in
the full 3D situation, finding a unique and unambiguous separation of the mean and
oscillating motion is difficult in the Eulerian representation of the flow field, because
a fixed position at a level between the wave trough and the wave crest is submerged
only part of the time. This difficulty can be avoided by considering the Lagrangian
representation of the flow field. The simplest idea is Stokes’ classical idea of
Lagrangian averaging by taking the time mean following a single particle. However,
this idea has its limitations since the formulation can not be applied in any exact
sense if we wish to speak of the Lagrangian-mean velocity at a given point in space.
A followed particle will generally wander away from this point.

In their pioneering paper, Andrews and McIntyre (1978) presented the Generalised
Lagrangian Mean theory, or simply GLM. The GLM description is a hybrid Eulerian-
Lagrangian description of motion, since it describes the Lagrangian-mean flow by
means of equations in Eulerian form with position x and time t as independent
variables. Groeneweg and Klopman (1998) and Groeneweg (1999) developed a
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GLM-based 1DV and 2DV flow model. Experiences from these studies are used here
to formulate the wave-induced effects on the mean flow in Delft3D-FLOW and to
interpret the results obtained using this model.

GLM theory.  An essential part in the GLM theory is the definition of the particle
displacement # associated with the wave motion. Like all quantities in the GLM
formulation, it is defined as a function of the position x and time t and no longer
primarily as a function of the individual particle label as in a purely Lagrangian
description. In fact, the generalised Lagrangian flow is described by means of
equations in Eulerian form. After having described the disturbance-associated

particle displacement field, the exact GLM operator b gL , corresponding to any given

Eulerian-mean operator b g , is defined as:

u x t u x x t t
L

, , ,b g b gc h= + ξ (3.)

Eq. (3) implies that the average is taken with respect to the values of u at the
disturbed particle positions. In general the combined motion of currents and free-
surface waves can be divided into a mean part, an oscillating part and a turbulent
part. In Groeneweg (1999), the motion was assumed to be averaged over the
turbulent motion. The resulting ensemble-averaged quantities are deterministic and
assumed to consist of a mean part and a part representing the wave motion.
Groeneweg (1999) only considered periodic, non-breaking waves. By averaging over
the short-wave period T, the mean value of an ensemble-averaged quantity u is
defined as:
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This approach implies that interactions between turbulence and wave quantities have
been neglected.

In the special case of a slow-modulation average, or more specifically a time average
as in Eq. (4), the physical interpretation of the GLM framework is straightforward.
Consider the trajectory of a fluid particle starting at point x0 in Figure 1, i.e. the
solution of d dx t u x t/ ,= b g . Since u is averaged over the turbulent motion, the

trajectory is actually an ensemble-averaged trajectory. In a pure Lagrangian setting
the Lagrangian velocity uL is defined implicitly as:
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(see e.g. Phillips, 1977), where the velocity of a particle is actually evaluated along
its trajectory and assigned to its initial position. The time-averaging process
associates two different trajectories with each particle: firstly its actual, rapidly
varying trajectory (dashed line in Figure 1) and secondly its mean, slowly varying
trajectory (solid line in Figure 1).

The GLM theory claims the existence of a disturbance-associated particle
displacement field ξξξξ, that links both trajectories (dotted arrow in Figure 1). In the
ensemble-averaged setting ξξξξ is fully determined by the wave motion. In the GLM
setting a position x at time t is interpreted as a mean position corresponding one to
one to an actual particle position x+ξξξξ. The actual or generalised Lagrangian velocity
is again evaluated at the actual position, but it is now assigned to the mean position:

u x t u x x t tξ ξ, , ,b g b gc h= + (6.)

The GLM velocity is defined by taking the time average of Eq. (6), according to Eq.
(3). The trajectories of points moving with velocity u L are exactly the mean particle
trajectories sought. The analogy between Eqs. (5) and (6) reveals the Lagrangian
aspects in the GLM method. However, the field x depends on the position x and time
t, and is thus no longer primarily a function of the individual particle label, as in a
purely Lagrangian description.

GLM flow equations.  Andrews and McIntyre (1978) derived the exact GLM
equations of motion from the compressible Navier-Stokes equations. Nevertheless,
the GLM theory can also be applied to incompressible flow problems, as in
Groeneweg and Klopman (1998). The general idea is to consider the quantities in the
flow equations for the combined motion of waves and current at their displaced
positions and then take the mean of the resulting equations. For an extensive
description of the derivation of the GLM equations your are referred to Groeneweg
(1999). Only the results of this derivation are presented in this paper.

We start with the Reynolds-averaged Navier-Stokes equations for the total motion:

Figure 1. Mean and actual particle trajectories.
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Note that the quantities in these equations consist of a mean and an oscillating part.
By evaluating these equations at disturbed positions and averaging the result over the
short wave motion, the GLM flow equations are obtained:
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The right-hand side Fc of the depth-integrated continuity equation can be expressed
entirely in terms of wave quantities. This second-order term (in |ξξξξ |, and thus in wave
amplitude) is small and is neglected here. D t u xL

j
L

j= +∂ ∂ ∂ ∂/ / denotes the rate of

change of the GLM flow. In the momentum equations the pressure is assumed to be
hydrostatic. The wave-induced driving force S! in Eq. (10) is also of second order.
By assuming that material derivatives of mean quantities are small, the full
expression for S!, given in Groeneweg (1999), can be simplified to:
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The second term of S! is the well-known wave-induced stress. In the situation of
waves without current this stress force is responsible for streaming. The first term
denotes the gradient of the Stokes correction of the shear stress and denotes an
imbalance term in the GLM equations. This term is wave-related and can be written
entirely in terms of wave quantities, such as the corresponding shear stress
component of the orbital motion. The relative importance of this term in the total
wave-induced driving force S! becomes more significant with increasing rotation.
For regular non-breaking waves with a moderate current, both terms in Eq. (11) are
of similar size (see Groeneweg, 1999). For breaking waves the first term will
dominate over the second.

Vertically non-uniform distribution of wave-induced mass flux

In the GLM formulation the wave-induced mass flux is part of the depth-integrated
GLM velocity, which is output of the model based on the flow equations (9) and
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(10). By definition the relation between the GLM velocity and the Eulerian-mean
velocity is the Stokes drift:

u u uL S= − (12.)

Consequently, part of the explanation of the wave-induced changes in the mean
velocity profiles can be found in the (vertically non-uniform) Stokes drift.

Interpretation for Delft3D-FLOW.  Although the flow equations (9) and (10) are
not formulated in an Eulerian frame, the equations are of exactly the same form as
the Eulerian-mean equations (1) and (2). Therefore, the implementation of the GLM
equations is straightforward. Essential points that have to be considered carefully
though are the boundary conditions at the bed and the free surface and at the
boundaries of the domain under consideration.

Based on Groeneweg (1999) the following modifications were made to upgrade the
Eulerian (wave-averaged) 3D flow model, Delft3D-FLOW, to a GLM-based model:

• The bed shear stress originates from Eulerian velocities (the bed “feels” Eulerian
velocities). The near bed velocities are therefore corrected according to Eq. (12) to
determine the bed shear stress.

• As the model now solves the shallow water equations for GLM velocities, the
forcing on the model boundaries must be of the same type. At lateral model
boundaries where waves are present, the GLM velocities must be defined (instead
of Eulerian velocities).

• To obtain Eulerian flow velocities, the GLM velocities have to be corrected for
the mass flux according to Eq. (12).

Furthermore, the turbulence model that relates the shear stresses with the strain rates
is calibrated with Eulerian information. By modelling the turbulent motion as in the
Eulerian settings, the interaction between the wave motion and the turbulent motion
is neglected.

Incorporation of wave-induced turbulence

The wave effects in the turbulence model are accounted for by assuming an energy
cascade in which the decay of organised wave energy is transferred to turbulent
kinetic energy. The two main sources of wave energy decay that have been included
are wave breaking and bottom friction due to the oscillatory wave motion in the
bottom boundary layer.

In the case of breaking waves, there is a production of turbulent energy directly
associated with the energy dissipation due to breaking (Deigaard et al., 1986). Wave
energy dissipation due to bottom friction is also considered to produce turbulent
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kinetic energy. In the two-equation (k-$) turbulence model of Delft3D-FLOW both
sources are incorporated by introducing source terms in both the turbulent kinetic
energy (k) equation and the turbulent kinetic energy dissipation ($) equation. The
contribution due to wave breaking is linearly distributed over a half wave height
below the mean water surface (Figure 2). The contribution due to bottom friction is
linearly distributed over the thickness of the wave boundary layer (Figure 2).

This gives the following expressions for the turbulent kinetic energy distribution:
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due to wave energy decay in the bottom boundary layer. Here z' is  the vertical
coordinate with its origin in the (wave averaged) water level and positive
downwards, Dw and Df represent wave energy dissipation due to wave breaking and
bottom friction, respectively. The source term, P$, in the $-equation is coupled to Pk

according to:
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where c1ε is a calibration constant (c1ε=1.44).

Wave-induced driving forces

Streaming (a wave-induced current in the wave boundary layer directed in the wave
propagation direction) is modelled as a time-averaged shear stress which results from
the fact that the horizontal and vertical orbital velocities are not exactly 90° out of
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Figure 2. Vertical distribution of turbulent kinetic energy production.
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phase. It is based on the wave bottom dissipation (Df) and is assumed to decrease
linearly to zero across the wave boundary layer (Fredsøe and Deigaard, 1992):

∂
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where c is the phase velocity.

The dissipation due to bottom friction is written as:
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where uorb is the orbital velocity near the bed based on the root mean square wave
height and  fw is the friction factor according to Soulsby et al. (1993).

The additional shear stress due to streaming decreases linearly to zero across the
wave boundary layer:
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Wave forcing due to wave breaking is modelled as a shear stress at the water surface
and is related to the wave dissipation (Svendsen, 1985 and Stive and Wind, 1986):

τ br
wD

c
=         (19.)

Comparison with Measurements

Two different types of experiments, in which the physical processes described above
are thought to be important, were used for model validation. In the comparison the
wave-related quantities were modelled separately and were used as input to
determine the wave effects in the mean flow model. The first experiment (Klopman,
1994) involved non-breaking waves and their interaction with a steady current. The
predicted streaming and vertically non-uniform mass flux distribution were compared
with data from this experiment. In the second experiment (LIP11D, Arcilla et al.,
1994) a typical surf zone was considered on proto-type scale. Data from this
experiment was used to verify the forcing and enhanced turbulence due to wave
breaking.
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Klopman (1994) experiment.  The Klopman (1994) experiment, conducted in a
wave-current channel, investigated the combined motion of a current with mono-
chromatic, bi-chromatic and random waves. Test series were performed for waves
following and waves opposing the current, as well as for waves without a current and
for a current without waves (see Figures 3 and 4). The three series with random
waves were used in this study. No scaling was applied in the construction of the
numerical model which therefore had the same dimensions as the Klopman
experiment. The test series with currents only was used to derive the roughness value
applied in the model.
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Figure 5. Comparison of model (solid) with measurements (symbols); left: uniform
mass flux no streaming, middle: uniform mass flux with streaming included, right:
non-uniform mass flux with streaming included.

In Figure 5 the model is compared with measurements for the case with waves only.
The left graph shows the model results if a uniform mass flux is applied and
streaming effects are excluded. Because the equations are solved for GLM velocities,
which are corrected to Eulerian velocities at the bottom to determine the bottom
shear stress, the wave motion induces no (wave-averaged) bottom shear stress. A
significant improvement can already be seen in the middle graph when the streaming
effect is included. In the graph on the right hand side the 2nd order analytical
expression for the Stokes drift is used to convert the GLM velocities back to Eulerian
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(1994)
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Figure 3. Schematic overview of experimental
set-up   in the Schelde flume.
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velocities. The computed velocity profile now compares well with the measurements.
In the lower part of the water column the correspondence is excellent. In the upper
part some deviations can be observed. These are probably due to our relatively
simple GLM model that does not include all terms.

In Figure 6, the cases with waves opposing (left graph) and following (right graph)
the mean currents are shown. Qualitatively, the model shows the correct behaviour:
for the opposing wave case the mean velocity profile shows a relatively linear
increase towards the free surface, whereas the waves following the mean current
results in a velocity profile which is very rounded. In the upper half of the water
column the following waves have smaller (averaged) velocities compared with the
opposing waves. It seems that the non-uniform mass flux distribution can partly
explain this phenomenon. As with the no-current case (Figure 5) deviations are due
to our relatively simple implementation of the wave-induced driving forces.
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Figure 6. Comparison of model (solid) with measurements (symbols); left: waves
opposing mean current and right: waves following mean current (in both graphs
waves are travelling from right to left).

LIP11D experiments.  In these experiments, carried out in the WL | Delft
Hydraulics’ Delta flume, detailed measurements of the hydrodynamics and sediment
transports in surf zone conditions were made. The flume has a maximum length of
250 m. Using a water depth of 4.1 m, the length of the constructed bottom profile
was approximately 180 m (Figure 7). Two cases were used in this study: Test 1A
(Hm0=0.9 m, Tp=5 s) and Test 1B (Hm0=1.4 m, Tp=5 s).

SAND

Total length ~ 220m

Wave board

4.1m

DELTA FLUME

Figure 7. Schematic overview of LIP11D experiment in the Delta flume.
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TEST 1A.  In Figure 8 the wave height distribution and the bottom profile are
shown. The vertical lines in the bottom profile indicate the locations at which
velocity measurements have been taken (see Figure 9).

In Figure 9 the vertical cross-shore velocity profiles are shown. There is reasonable
agreement with the measurements. At locations where there is less agreement (e.g. at
x=100, x=115 and x=145), predictions of the wave height gradients, which
determine the dissipation that drives the flow model (Eq. 19), are relatively poor as
well. It seems that the flow model gives an accurate description of the vertical flow
structure if the correct wave forcing is applied.
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Figure 8. Wave height and bottom profile with locations of undertow measurements
for Test 1A.
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Figure 9. Comparison of cross-shore velocity profiles for Test 1A.
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TEST 1B.  In Figure 10 the wave height distribution and the bottom profile are
shown. Again, the vertical lines in the bottom profile indicate the locations at which
velocity measurements were taken. The wave height predictions for Test 1B show
good agreement with the measurements. However, the wave height decay on top of
the bar (at x=138 m) is somewhat under-predicted.
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Figure 10. Wave height and bottom profile with locations of undertow
measurements for Test 1B.

In Figure 11 there is generally good agreement with the measurements. However, on
top of the bar (x=138 m) and in the trough behind the bar (x=145 m) agreement is
poor. At both locations this is caused by incorrect wave forcing. The velocities on top
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Figure 11. Comparison of cross-shore velocity profiles for Test 1B.
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of the bar are under-estimated due to an under-prediction of the wave height decay at
this location (see Figure 10). The under-prediction of the velocities in the trough
(x=145 m) is caused by the absence of a roller model in the wave model. There is no
persistence in the wave forcing in the trough area behind the bar, which results in an
under-estimation of the velocities at this location.

For both cases the flow model is able to give an accurate description of the vertical
flow structure, if the wave forcing is correct. This is an indication that the transfer of
wave energy decay due to breaking to the turbulent motion is accounted for with
sufficient accuracy.

Conclusions and Recommendations

The inclusion of turbulent kinetic energy sources due to wave dissipation (wave
breaking and bottom friction) in the two equations turbulence (k-$) model has yielded
realistic results. The turbulence model predictions have not yet been compared with
measurements directly. However, 3D suspended sediment transport simulations in
which these terms were also included compared remarkably well with measurements
(Lesser et al., 2000).

The inclusion of wave-induced streaming in the wave boundary layer was necessary
to obtain correct velocity predictions in the Klopman experiment. This indicates that
this phenomenon must be included in area models as it may be the significant driving
force of the lower part of the water column at intermediate depths just seaward of the
surf zone.

The GLM method has enabled us to include wave-induced mass flux in 2DH and 3D
mean flow models in a natural way. Although the model has only been tested against
laboratory experiments in this study (which essentially only requires a 2DV model),
the model has successfully been applied in proto-type conditions in 2DH mode (Elias
et al., 2000).

The comparison with measurements has shown that the Stokes drift forms part of the
wave-induced changes in the mean flow profiles. However, we feel that the model
can be improved further by including the vertically non-uniform wave-induced
driving forces as given in Groeneweg (1999).

Finally, this paper has illustrated the potential of the GLM theory to significantly
improve existing (Eulerian-based) numerical flow models at very little cost. With
minor modifications any Eulerian-based 2DV, 2DH, Q3D or 3D mean current model
can be re-formulated as a (simplified) GLM model.
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